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Abstract

We show that when outcomes are di¢ cult to forecast in the sense that forecast

errors have a large common component that (a) optimal weights are not a¤ected by this

common component, and may well be far from equal to each other but (b) the relative

MSE loss from averaging over optimal combination is small. Hence researchers could

well estimate combining weights that indicate that correlations could be exploited for

better forecasts only to �nd that the di¤erence in terms of loss is negligible. The results

then provide another explanation for the commonly encountered practical situation of

the averaging of forecasts being di¢ cult to improve upon.
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1 Introduction

A basic puzzle in forecasting is the long documented good performance of simple averag-

ing techniques for forecasts over combination methods that use correlations in the data to

construct theoretically more precise forecast combinations. Even in their seminal paper

introducing optimal forecast combination under mean square error (MSE) loss Bates and

Granger (1969) noted this property. Indeed, it led them in this seminal paper to consider

approaches that did not utilize the optimality theory completely, but instead consider less

optimal methods. Clemen (1989), in a review of literature up to that time found that simple

methods (such as averaging) often perform better than more complicated methods (such as

the Bates and Granger optimal combination). In a more recent review Timmermann (2006)

notes that in practice modi�cations to the combination methods (such as shrinkage) can

outperform averaging (which both outperform optimal combination). However in a large

scale forecasting study of US macroeconomic data Stock and Watson (2001) present results

that show that averaging forecasts does as well as more complicated methods (they do not

consider the Bates and Granger optimal combination, but another of the �simpler�methods

of that same paper).

The main thrust of the literature in explaining this puzzle has focussed on the e¤ects of

estimation error in estimating the weights for forecast combination (see Smith and Wallis

(2009) for a recent example). Since simple averaging does not require any estimation, we

expect that such estimation error harms the performance of methods where estimation of the

weights is required relative to averaging. However the magnitudes of these e¤ects are often

not large. In a classical regression situation (stable parameters and variances), estimation

error is of the order of (m�1)=T when we havem forecasts to combine and T observations to
estimate the weights. This is often relatively small. A number of authors (Bates and Granger

(1969), Clemens and Hendry (2004)) have suggested that instability in the weights might

also result in di¢ culties for situations where the weights are estimated. This will increase

the error for such methods, although there is little documentation of actual rejections of

tests of stability of the weights.

These possible explanations undoubtedly are part of the story. This paper examines

another part of the explanation. We examine the potential gains from optimal combination

over averaging the forecasts. If such gains are likely to be small for reasonable models,
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then (a) it is unlikely that more sophisticated methods can improve forecasts over simply

averaging, and (b) it would provide an explanation of why even small amounts of estimation

error might result in a better performance of averaging in practice. Situations that can be

identi�ed to have small gains would then be suspected to be more likely to be situations

where we might just simply average and also could be used to examine if indeed these are

the situations for which the puzzle arises.

We �nd that the larger the unpredictable component, the smaller is the potential gain

from exploiting correlations in the data to provide more optimal forecast combination proce-

dures over simple averages. An interesting piece of the result is that even though this is true

there is no implication for the optimal combining weights � these weights can be far from

the averaging weights even though the losses associated with the di¤erent weights are very

similar. So in applied work a researcher might see estimated weights that give a very high

weight to some forecasts and a low weight to others, suggesting that there are gains from

exploiting the correlations, however in the context of MSE loss these gains are very small.

There are a number of practical implications for forecasters, as well as insights that can be

gained from reevaluating the literature. First, at longer horizons variables are often harder

to predict. In this sense we might expect to see that it is more di¢ cult to �nd methods for

forecast combination that use the correlations in the data that work better than averaging.

On the other hand for very short term forecasting we might expect that such gains from

utilizing the data in a more sophisticated manner might well yield useful gains. It will also

be the case that for variables that are very hard to forecast, for example exchange rates,

that there are few gains to optimal combination. Situations which are di¢ cult to forecast

will appear as ones where forecasts cluster (display herding) relative to the actual outcome,

a situation that has been noted by many researchers. Ito (1990) details how in forecasts

of the US Dollar Yen exchange rate market participants tend to be all on one side of the

outcome (typically underpredicting changes in the exchange rate). The herding feature of

forecasts of company earnings has been well documented in the �nance literature (see for

example Trueman (1994)).

The following section reviews quickly forecast averaging and optimal combination under

MSE loss. The main results of the paper are then presented. Section 3 examines the results

in a Monte Carlo. In section 4 we examine three forecasting methods of some prominent
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US macroeconomic series. Using di¤erent forecast horizons as a �natural experiment� for

variation in the degree of predictability we are able to examine the theoretical results of the

second section. We show that the e¤ect does indeed show up in the data. A �nal section

concludes.

2 Gains from optimal combination

We are interested in forecasting the variable yT+h, and we decompose this into a potentially

forecastable component mT = E[yT+hj
T ] and an unforecastable component "T+h; i.e.

yT+h = mT + "T+h: (1)

The sigma �eld 
T is generated by a set of variables available to forecasters at time T , and

as such is the best any forecaster in the set of forecasters can do in forecasting the outcome

variable. Typical forecasters will have only a subset of this information � indeed we assume

that each forecaster has di¤ering variables they consider useful as well as potentially di¤erent

models and estimation techniques. Because of this, forecasters attempting to minimize mean

square loss provide forecasts of yT+h (or equivalently estimates of mT ; since minimizing MSE

is equivalent to attempting to �nd the conditional expectation for yT+h) that di¤er amongst

the forecasters1. Such di¤erences are of course always found empirically. Further, following

the assumption on 
T we assume that E["T+hj
T ] = 0 with variance �2":
We have available a set of forecasts fiT for i = 1; :::m. We assume that individual

forecasters measure mT with an idiosyncratic error. We write this as

E[yT+hj
T ] = fiT + viT+h (2)

where the timing convention on the error term is simply to keep track of the outcome for

which the forecast is constructed. In the spirit of Bates and Granger (1969) as well as much

of the forecast combination literature we assume that E[viT+h] = 0, which is to say that the

forecasts are unbiased forecasts of the outcome. Let the variance covariance matrix of the

idiosyncratic components be ~�:
1Alternatively, we could consider that forecasters do in fact observe the relevant information but have

forecasts that di¤er from each other as they add in an additional random error. This would leave the

following mathematical results unchanged, although is perhaps a less defendable story for the di¤erences

amongst forecasts.
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From these two equations the forecast errors for each individual forecast have the form

yT+h � fiT = "T+h + viT+h (3)

This is equivalent to the model of forecast errors of Zellner and Palm (1992). De�ne the

vector of forecasts fT = (f1T ; :::; fmT )0: We can write the variance covariance matrix of the

forecast errors as

E[(yT+h�� fT )(yT+h�� fT )0] = � = �2"��0 + ~� (4)

where � is an mx1 vector of ones.

For such a model, the �forecastability�of yT+h corresponds to the relative variances of mT

and "T+h: Holding the variance of mT constant then it follows that the larger the variance

of the unforecastable component �2" the more di¢ cult it is to forecast yT+h: Throughout the

remainder of this paper we hold the variance of the forecastable part constant and hence

refer to forecastability and the size of �2" interchangeably.

The �rst main result of the paper is that the optimal combination of forecasts, in the sense

of Bates and Granger (1969), is independent of the degree of forecastability, i.e. independent

of �2": This result is stated in the following proposition and proved in the appendix.

Proposition 1 For psd � write � = �2"��
0 + ~�; then for ~� nonsingular then the Bates and

Granger (1969) optimal weights from using � and ~� are equivalent, i.e

!opt = (�0��1�)�1��1�

= (�0 ~��1�)�1 ~��1�:

This result has a number of implications.

First, the proposition shows that the optimal Bates and Granger weights do not vary with

the existence or size of a common component in the variance of the forecast errors �2": This

means that regardless of the level of predictability of the outcome, the Bates and Granger

weights will still depend only on the idiosyncratic variability of forecast errors. Hence even

with a very large variance of the unpredictable component, the weights may still well result

in weights far from averaging if the forecasts are such that there are gains from a non even

weighting in population.

Second, this result provides a potential explanation for situations where we observe high

correlations between forecast errors but we might still have very non even weights on indi-

vidual forecasts, even in population. The high correlation is driven by the unforecastable
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component being large, however the weights are still driven by the variations in the correla-

tions. To see this notice that the correlations in � are equal to

�ij =
1 + (~�ij=�

2
")r�

1 + (~�ii=�2")
��
1 + (~�jj=�2")

�
which converges to one as �2" gets large (holding ~� �xed).

Third, a model such as described in (1) and (2) can easily generate models for which

forecast errors are very correlated however the optimal weights are equal to the combining

weights from averaging. Such models, where the variances of the forecast errors are equal to

each other (�ii = �jj for all i; j) and the correlations are also equal to each other (�ij = �kl

for all (i; j) 6= (k; l)) are well known and often cited as a potential explanation for the good
performance of using the average to combine forecasts. To see this consider a situation

where the idiosyncratic errors are uncorrelated, all with the same variance, i.e. ~� = �2v:

Now we have a variance covariance matrix of the forecast errors that has covariance equal to

�2"=(�
2
v + �

2
"), so for �

2
"=�

2
v large enough the forecast errors could be highly correlated even

though in the optimal combination all weights are equal to each other

Fourth, even when the variance covariance matrix of the forecast errors is very highly

correlated, it may not mean that the reason for this is that the forecasts themselves are

very similar. It could well be (and potentially mostly is) that the high correlation is due

to the fact that none of the forecasts are picking up much of the variation in the variable

to be forecast, but they all have a common source of noise. We often observe in practice

that forecasts are clustered on one side of the outcome each period. One explanation of

this is that much of the variation in yT+h is actually due to unforecastable shocks ("T ): The

forecasts may well be evenly clustered around the conditional mean of yT+h but the common

shock "T+h causes them all to be o¤ similarly. Thus when forecasts are compared to yT+h

they all look o¤ in a similar way � the similarity is the unpredictable component.

Having established that the optimal weights are not a¤ected by the variance of the

unpredictable component, we now turn to the e¤ect this variance has on the gains from

optimal combination over simple averaging. The population loss from averaging over the

forecasts when the forecast errors have a variance covariance matrix � is m�2(�0��): For

the Bates and Granger optimal combination, this loss is (�0��1�)�1: Naturally, due to the

latter being optimal, we have that (�0��1�)�1 � m�2(�0��) for any positive de�nite variance
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covariance matrix �: The previous expression attains equality when the optimal weights are

all equal to each other. It follows directly from these expressions as well as (4) that

m�2(�0��) = m�2(�0[�2"��
0 + ~�]�) = �2" +m

�2(�0 ~��)

in the case of using average weights and

(�0��1�)�1 = (�0
h
�2"��

0 + ~�
i�1

�)�1

=
�
�0 ~��1�� (1 + �2"�0 ~��1�)�1�2"(�0 ~��1�)2

��1
=

 
�0 ~��1�

1 + �2"�
0 ~��1�

!�1
= �2" +

�
�0 ~��1�

��1
in the case of the optimal weights.

Thus clearly the size of the variance of the unforecastable component impacts the MSE

loss from using either average weights or from using the optimal weights. In each case �2"

provides a wedge over and above the loss from loss based on forecasting the conditional

mean (i.e. the expressions based on ~� rather than �): The form is not surprising given the

de�nitional independence between the forecastable and unforecastable components.

Since both loss from averaging and loss from the optimal weights are a function of the

variance of the unforecastable component, the question remains as to how these are a¤ected

di¤erently. This is an interesting question because it will only be useful to use optimal

weights if the expected gain outweighs the estimation error that is incurred in estimating

the (m� 1) weights. De�ning the relative loss as the loss from averaging as a proportion of

the loss from using the optimal weights, we have that the minimum relative loss is one (in

population). Hence relative loss is

rl =
�2" +m

�2(�0 ~��)

�2" +
�
�0 ~��1�

��1 � 1: (5)

Proposition 2 For any positive de�nite ~� relative loss given by (5) is either (a) equal to

zero for all �2", or (b) strictly decreasing in �
2
":

Proposition 2 shows that the relative loss from averaging over optimal weights is declining

with increases in the variance of the unforecastable component, unless it was already zero.
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The positive implication of this result is that the less forecastable the variable of interest the

smaller is the expected gain from using optimal weights. Hence, taking into account that

one incurs estimation error when using the optimal weights in practice whereas there is no

estimation error in constructing the weights for the average forecast, we might expect that

the gains from using optimal weights are less likely to be apparent the harder is the outcome

variable to forecast.

The results give a potential explanation for the poor performance of estimated optimal

weights in practice. If the outcome to be forecast is su¢ ciently di¢ cult to predict then we

would expect that relative loss is small enough that it becomes smaller than the estimation

error that arises through the estimation of the optimal weights. Indeed, for any size of

estimation error and any set of optimal weights there exists a level of unpredictability for

which this is true. This explanation di¤ers greatly from previous work that tends to suggest

that the optimal weights are just close to the average weights. For this explanation we do

not require that optimal weights be near the average weights � they could be very di¤erent,

even with some of the weights being negative. But the e¤ect of the size of the unpredictable

component is that it reduces the gains from using these weights in practice.

Finally, we turn to considerations of reasonableness of having the common error large

relative to idiosyncratic error. First, note that especially in macroeconomics in �nance but

true more generally it is often considered that good forecasts that capture a signi�cant

portion of the variation in the variable to be forecast are rare. Indeed, examples abound

of forecast models that have di¢ culty outpredicting the simple use of the current level.

Examples along this line include oil forecasting (for example Alquist and Kilian (2010)) and

exchange rate forecasting. Breakdowns in the Phillips curve suggest it may be the case for

in�ation forecasting as well.

3 Monte Carlo Analysis

We choose the design of the Monte Carlo experiment to demonstrate both of the theoretical

results above. First, that weights stay the same even when �2" changes and second that

relative loss is decreasing as this parameter changes. We also show a third result of interest

� that even though the variance of the unforecastable component is su¢ ciently large as to

make the relative loss from averaging zero, tests of the hypothesis that the optimal weights
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di¤er from equality (the average weights) can still be rejected with reasonable frequency

(power of the test is nontrivial even when there are no gains over averaging).

Since results depend only on the forecast error (3) and not the individual yt and fit, we

generate directly the forecast errors "t and vit: We generate "t from a normal distribution

with mean zero and variance �2": Setting the number of forecasts m = 3 the idiosyncratic

errors vit are drawn from a normal distribution with mean zero and variance covariance

matrix ~�, where

~� =

0BB@
1 0:2 0:2

0:2 5 0:2

0:2 0:2 5

1CCA :
This design is chosen so that the optimal weight vector (0:75; 0:125; 0:125) is far from the

equal weights vector of one third on each forecast. We draw 80 observations splitting this

sample in to a �rst half of observations that are used to estimate the weights and then

make a one step ahead forecast based on both the estimated and average weights. We then

recursively update the data from observations 41-80 at each step repeating the estimation

of the weights on all data up to that point and constructing ones step ahead forecasts. We

then estimate the MSE of both combination methods by averaging over the squared one step

ahead forecast errors. This is repeated 10000 times for various �2", and the results reported

in Table 1.

Table 1 shows in the �rst column the choice of �", the standard error of the common

component of the forecast error. The second column shows the average relative loss over

the Monte Carlo replications, computed as the average MSE over the replications for the

averaging method divided by the same outcome for the optimal combination method minus

one. The third and fourth columns report the average estimated weight parameters (averaged

over all of the estimates for each sample and each Monte Carlo replication). The �nal column

reports the average rejection frequency over the Monte Carlo replications of a full sample

test that the optimal weights are equal to the average weights.

First, the e¤ect presented in Proposition 1 that relative loss is decreasing in �2" is shown

in the second column. Larger variances of the unforecastable component result in the relative

loss � which starts well above zero indicating a large loss from averaging � correspond with

a smaller relative loss. For large enough variances the gain from optimal forecast combination

is wiped out, and indeed the relative loss dips below zero giving an indication of the e¤ects
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Table 1: Monte Carlo Evaluatoin

�" rl Estimated Weights Rej Freq.

!1 !2

1 0.262 0.751 0.126 1.00

2 0.076 0.751 0.126 0.85

3 0.019 0.751 0.126 0.56

4 -0.004 0.751 0.127 0.36

5 -0.015 0.751 0.127 0.26

6 -0.021 0.751 0.128 0.21

7 -0.025 0.751 0.129 0.18
Notes: rl is average relative loss, Estimated weights are averages of out of sample estimated

weights averaged across Monte Carlo simulations, Rej. Freq. is the proportion of MC

replications where we reject the null hypothesis of equal weights at a 5% test using the full

sample.

of estimation error on the optimal forecast combination estimation.

Second, the third and fourth columns make clear that the estimated weights are, as

noted in the �rst proposition, una¤ected by the size of the unforecastable component. The

proposition makes clear that the population values are una¤ected, and consistency of the

parameter estimates ensures that this property �ows through to the estimated quantities. In

each column the parameter estimates are on average very close to their population values.

So we can have an equivalence of optimal combination methods and averaging even when

the optimal weights are far from the average weights.

Finally, we see that the equivalence of optimal combination and averaging is not a conse-

quence of sampling error in the parameter estimates. Tests for equal weights still have non

trivial power to reject equal weights even when the associated losses are basically equiva-

lent. Hence rejection of even weights is not necessarily an indication that equal weights will

perform poorly.

Variations in the design of ~� will change the results in a quantitative way but not a

qualitative way so long as the optimal weights related to ~� are not equal to 1/3. If they are

then clearly there is no di¤erence in the models.
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4 Demonstration with US Macro Data

The results of section 2 suggest that � without estimation error and when the variance

covariance matrix of the heterogenous component of forecast errors stays the same � that

in situations where the outcome is more di¢ cult to forecast then we might expect that loss

from averaging and use of the optimal forecasts would be closer to one than for variables

that are easier to forecast (all else held constant). In this section we construct forecasts from

three models for various macroeconomic data series at di¤erent horizons illustrate this point.

It is the comparison across di¤erent horizons that yields a situation where we expect

the unobservable component of the forecast error to change. Consider the AR(1) model

yt = �yt�1 + ut where � is known and ut � (0; � 2) and serially independent: Then for a one
step ahead forecast we have an expected MSE of �2, for a two step ahead forecast this is

�2(1 + �2) and for a four step ahead forecast �2(1 + �2 + �4 + �6): For � di¤erent from zero,

it is clear that as the forecast horizon increases the size of the unforecastable component

increases. This merely corresponds to the greater uncertainty of forecasting further into

the future. Given the results above, we would expect then that it would be less likely that

optimally weighted combined forecasts would perform better than the average of the forecasts

as the horizon increases. Of course this is one e¤ect � it may well be that for data with

little serial correlation that there is little e¤ect here (say in the above example when � = 0),

and it may also be the case that the covariance of the forecasts changes at di¤erent horizons

(our theoretical results hold this �xed).

The macroeconomic series we examine are GDP (real gross domestic product, id GDPC96),

Investment (real gross private domestic investment, id GPDIC96), Consumption (real per-

sonal consumption expenditures, id PCECC96), Government Spending (real government

consumption expenditures and gross investment, id GCE96), Imports (real imports of goods

and services, id IMPGSC96), unemployment (id LNS14000), and the GDP de�ator (gross

domestic product implicit price de�ator index, id GDPDEF). For the in�ation data the index

is transformed into annualized in�ation rates, for all other series except unemployment we

take natural logarithms of the data. All data is quarterly, from the Federal Reserve Database

(except unemployment, which is from the Bureau of Labor Studies).

We employ three methods for constructing forecasts of each of these series, chosen to be

similar enough so that we obtain the common e¤ect of forecast clustering but distinct enough

11



that combination is not trivially an average of the forecasts (which happens if the forecasts

are nearly identical). The methods are the random walk forecast (adjusted by a constant),

an autoregressive model and a double exponential smoothing model2. In each case forecasts

are constructed recursively with an initial portion of the data used solely for estimation,

then all data up to each time period used to construct one quarter ahead, 2 quarter ahead

and 4 quarter ahead forecasts. In each case forecasts are constructed for all but the �rst

25% of the data available for each series.

The average combined forecast from the three models is then constructed (without a

constant adjustment). For the Bates Granger combined forecast, we again need to set aside

some data for estimation of the weights. Hence our evaluation sample covers the second

half of the sample, with the second quarter of the sample used to construct the �rst set of

weights (estimated by restricted least squares, which is numerically identical to the formulas

given above), then the weights are recursively updated through the sample at each time

period. We then examine the average MSE�s for each of the combining methods at each of

the forecast horizons.

Figure 1 shows that the three forecasting methods provide one year ahead forecasts for

GDP that �herd�, as is often seen in forecasts available for combination. When one forecast

has an error below or above zero, for the most part they all do. It is precisely this e¤ect that

suggests a large �2", as there is a common shock that all of the methods fail to pick up. The

e¤ects on forecasting of the great moderation (which may impact stability of the matrix �)

are also clear.
2For all series except in�ation we use a smoothing parameter of 0.96 for the levels and 0.2 for the

di¤erences, for in�ation the latter parameter is set to zero.
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Table 2 presents the main results. We report the relative loss from averaging (5) where

the population estimates of the MSE�s are replaced by those estimated as in the previous

paragraph. In brackets under each reported relative loss we report the t statistic testing

the null that the squared forecast errors are equivalent (Diebold and Mariano (1995) DM

test using MSE loss functions). These t statistics have an asymptotic normal distribution3.

A statistically signi�cant di¤erence suggests that the deviation of relative loss from zero is

not due to randomness. A positive value indicates that the average loss has a smaller MSE

than the optimal weight combination loss, a negative value the reverse (so relative loss is

positive when the statistic is negative). The last two columns report average out of sample

MSE (over each set of out of sample observations and over all MC replications) at the one

and two quarter horizons as a proportion of the same value at the four quarter horizon. A

number less than one indicates that the MSE is smaller for the shorter horizons.

It is indeed the case in our sample that MSE loss is increasing in the forecast horizon, so

it appears that the comparison across quarters is reasonable. For example for real GDP the

average MSE for the one quarter ahead forecast is just 10% of the average MSE for the one

year ahead forecast. The two quarter ahead forecast to one year ahead ratio is 30%. Results

are qualitatively and for the most part quantitatively similar for all of the series apart from

3Whilst not formally justi�ed here, it is expected that this approximation is likely to be reasonable. First,

so long as the optimal weights are not the average weights the two combined forecast models will not have

a degenerate spectral density at frequency zero (so issues of nested models do not arise). Second, we have

used the same loss function (squared loss) in the forecast combination as the evaluation.
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the in�ation rate, where the one quarter ahead average MSE is 73% of the one year ahead

average MSE (and for the two quarter ahead forecast this ratio is 85%).

Table 2: Relative Loss for Macroeconomic Series

Relative Loss From Averaging Forecastability

1qtr rl 2 qtr rl 4 qtr rl MSE 1qtr MSE 2 qtrs

GDP �0:002(0:02) �0:045(1:49) �0:127(1:70) 0:10 0:30

Investment �0:039(1:29) �0:083(1:30) �0:101(0:85) 0:13 0:36

Consumption �0:035(2:02) �0:049(1:54) �0:264(1:65) 0:18 0:37

Government Spending 0:003(�0:10) �0:009(0:15) �0:089(0:78) 0:26 0:52

Imports �0:019(0:73) �0:011(0:21) 0:009(�0:09) 0:13 0:38

Unemployment 0:141(�1:15) 0:122(�1:33) 0:026(�0:42) 0:09 0:29

In�ation 0:073(�1:51) 0:062(�1:23) �0:041(0:323) 0:73 0:85

Notes: Relative loss from averaging is the ratio of estimated average out of sample loss

from averaging to optimal weights minus one. Forecastability measures are the average

MSE from averaging at one and two quarter horizons relative to the four quarter horizon.

The results reinforce the strong performance of taking the simple average. In nearly all

cases this is from a statistical perspective as good as optimal combination. This does not

mean that in population there might not be in some cases some gain from optimal combina-

tion that is wiped out by sampling error in the estimation of the weights. However, despite

this, the results of the paper do appear in a number of the series. In the majority of cases, we

see that indeed the optimal combination is less useful relative to averaging in combining the

forecasts at longer forecast horizons. The point estimates for GDP, investment, Government

spending and unemployment indicate that the optimal combination forecast performs better

at the shorter horizon than the longer horizon � a pattern expected from Proposition 2.

The di¤erences between the forecasts are not signi�cantly di¤erent from one another by the

DM test. At the longer horizons for each of these variables it appears that both optimal

combination and averaging provide similarly useful forecast combination methods.

The anomalies are imports and in�ation. For in�ation, it seems that there is very little

actual change in the size of the unforecastable component (the average MSE�s across horizons

increase but only slightly as the horizon increases). Hence this variable makes for a poor

example of the feature discussed in this paper. For imports, it seems that at all horizons
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averaging and optimal combination yield essentially the same forecast. For the two and four

quarter horizons the di¤erence between the squared forecast errors is not only insigni�cant

but the t statistics are close to zero.

Overall, the expected e¤ect from the theoretical results appears in this data for most of

the series in terms of the point estimates.

5 Conclusion

We show above that when there is a large unforecastable component of the outcome (or

at least the available forecast models cannot capture a large common component of the

outcome) then even though the optimal weights are not equal to the averaging weights, and

can be su¢ ciently precisely estimated so that tests of equal weights would be rejected, it

can still be the case that average weights result in MSE loss that is similar to the MSE loss

that would arise through using optimal weights.

There are a number of implications that arise from the results. First, rejection of even

weights does not in general imply that the optimal methods will do better than averaging the

forecasts to provide a combination forecast. This is somewhat counterintuitive, so should

help forecasters in thinking about what such pretests mean for their forecasting exercise.

It also suggests that there are situations where methods such as pretesting for non equal

weights to decide between optimal combination and averaging might not result in any gains

at all. These would also be situations in which shrinkage methods are unlikely to provide

any gain over simple averaging.

Second, in situations where it is clear that forecast models only capture a small amount of

the variation in the outcome variable, it is likely that averaging the forecasts will yield close

to all of the available gains in forecast combination. There are many forecasting situations

such as this. Forecasting long horizons, or forecasting variables that are known to be highly

variable such as exchange rates or oil prices, are examples of such situations.

Finally, from a theoretical perspective the results provide yet another situation in which

averaging is likely to perform well. It is known that there exist many parameterizations

of � for which averaging weights are indeed equivalent to optimal weights. Elliott (2010)

shows that under restrictions on � (equal variances, nonnegative covariances and nonnegative

weights) that the largest gains even when optimal weights are not even can be modest. The
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result here adds a realistic situation in which gains will be modest at best.

A number of authors have made the link between the forecast combination problem and

mean-variance portfolio construction. So the results here have implications for this literature

as well.

6 Appendix

Proof. (Proposition 1) We generalize slightly from the proposition, where above b = 1:

From matrix inverse laws

��1 =
�
a��0 + b~�

��1
= b�1

�
~��1 � ab�1

1 + ab�1(�0 ~��1�)
~��1��0 ~��1

�
:

By direct calculation we have

�0��1� = b�1(�0 ~��1�)

�
1

1 + ab�1(�0 ~��1�)

�
and

��1� = b�1(~��1�)

�
1

1 + ab�1(�0 ~��1�)

�
so

!opt = (�0��1�)�1��1�

=
b�1(~��1�)

�
1

1+ab�1(�0 ~��1�)

�
b�1(�0 ~��1�)

�
1

1+ab�1(�0 ~��1�)

�
= (�0 ~��1�)�1 ~��1�

yielding the result.

Proof. (Proposition 2). When the optimal weights are equivalent to the averaging

weights, i.e. (�0��)�1�0� = m�1�0 then rl = 0 and is independent of �2": If not we have by
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taking derivatives with respect to �2" that

@rl

@�2"
=

1

�2" +
�
�0 ~��1�

��1 � �2" +m
�2(�0 ~��)�

�2" +
�
�0 ~��1�

��1�2

=

�
�0 ~��1�

��1
�m�2(�0 ~��)�

�2" +
�
�0 ~��1�

��1�2
� 0

and the equality sign only holds in the case we are in the situation of (a).
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