
Combining Forecasts - On Why Averaging beats

Optimal Linear Weights∗.

Graham Elliott† Jie Liao ‡

May 5, 2025

Abstract

A continuing puzzle in constructing a point forecast by combining individual fore-

casts is that simple averaging often beats estimating optimal weights (the forecast

combination puzzle). Most researchers have focused on the size of estimation error

other difficulties in forecasting weights, despite this estimation procedure being a sim-

ple least squares regression. For this explanation to hold, gains from using optimal

weights must be small. This paper focuses on this complementary part of the argu-

ment - we ask how big can the gains from optimal combination be in empirically and

theoretically reasonable situations. Under these restrictions we show that gains can in-

deed be small, and that for gains to be large the best approach to forecast combination

is to discard some of the forecasts and average over the remaining ones.
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1 Introduction

We consider the situation, as in Bates and Granger (1969), where for the construction of a

forecast of an outcome we have m point forecasts available and will employ a linear combi-

nation of them into a single number to forecast the outcome. Combining makes sense (Yang

(2004)), and though Bates and Granger (1969) derived optimal weights for this forecast

combination problem, even in their paper (and a great deal of subsequent work) it has been

noticed that using the estimated optimal weights has often been outperformed by taking

simple averages of the forecasts in constructing the forecast combination. It is a surprising

result given that the estimation of the optimal weights (when they sum to one) simply re-

quires restricted OLS and the estimation of m−1 weights (Granger and Ramanathan (1984).

Linear regression is a workhorse model in statistics that generally provides very good results.

This has become known as the forecast combination puzzle1.

Indeed, it is rare in practice to favor optimal combination over simple averaging. Consen-

sus Economics, a company that collects and sells combined forecasts, uses simple averages2.

Recently in macroeconomic research there has been a renewed focus on overreaction in

expectations based on combined forecasts, where simple averages are taken (Coibion and

Gorodnichenko (2015), Bordalo et al. (2020)).

Most econometric explanations revolve around the idea that the puzzle is explained via

estimation error - optimal forecast combinations require that the combination weights be

estimated whereas under simple averaging there is no estimation error in the construction of

the weights3. These problems are obviously exacerbated when the number of forecasts and

hence weights to estimate is large relative to the sample size (Chan et al. (1999), Stock and

Watson (2004)). Methods to resolve this difficulty for moderate m attempt to use relatively

ad hoc methods that still allow the data to determine the weights but with hopefully less

estimation error.

Other approaches suggest that a reason for regression results to be poor in practice

is that the estimation error is large due to the lack of stationarity of the data used to

construct the forecast combinations. For stable enough data, regression will accurately

estimate weights, however if the optimal weights themselves are not stable over time then

regression estimates the average optimal weights rather than the optimal weights at each

forecast point. Methods to address this problem typically involve either simply using averages

(Kang (1986)) or instead using rolling averages of data (which reduce the sample size, also

increasing estimation error) or modeling the instability directly (which also can increase

estimation error as a more complicated model is required)4.

Our approach in this paper is to look at the other side of this argument. The use of

1Review articles include Timmermann (2006), Wang et al. (2020), Clemen (1989). The literature is too

vast to mention all the papers on this topic
2See Consensus Economics which reports means of forecasts, which appears to be the simple average
3See Smith and Wallis (2009), Claeskens et al. (2016)
4For example Deutsch et al. (1994) models the instability.
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estimated optimal weights results in the need to estimate m − 1 parameters via restricted

OLS. For estimation error to be the reason for which the forecast combination puzzle then a

counterpart to the explanation must be that the gains from using the optimal weights - i.e.

the potential value of optimal weights over averaging - must be small relative to the size of

the estimation error. If this difference were large the estimation error would be an unlikely

explanation for this puzzle. In this paper we characterize situations where gains are small,

and show that they are empirically and theoretically relevant.

We consider the model(
yt+1

ft,t+1

)
∼
[(

µt,t+1

µt,t+1

)
,

(
σ2
ϵ 0

0 Σ̃

)]
(1)

The model assumes that the forecasters are getting the conditional mean of yt+1 correct

(usually referred to in this literature as unbiased forecasts). However there is noise in each

of the m individual forecasts dim(Σ̃) = m) as no forecaster knows the correct model. This

is a situation where averaging or weighted averaging can possibly improve the accuracy of

providing a single forecast by reducing the variance of the forecast error.

By definition of µt,t+1 as the conditional mean (based on some joint information set) of

yt+1 we have that the unforecastable component of the outcome is uncorrelated with the noise

around the conditional mean in the forecasts. This is because if there were some correlation

between the errors of the forecasts and the outcome to be forecast we would then use that to

construct better estimates of µt,t+1 changing the meaning of this conditional mean. Note also

that in this model we do not assume stationarity of the outcomes or forecasts, but assume

that the variance covariance matrix of the forecast errors is constant across time. We agree

that there might be heteroskedasticity in practice, however we intend to show the results in

the case that is most favorable to linear regression and least favorable to simple averaging.

Defining ι to be a vector of ones (usually mx1 unless otherwise indicated) the vector

of forecast errors5 et,t+1 = yt+1ι − ft,t+1 has a variance covariance matrix that follows from

above equal to

Ω̃ = σ2
ϵ ιι

′ + Σ̃.

We are interested in a linear weighted average of the individual forecasts for use as a

combined forecast, i.e. our point forecast is ω′ft,t+1. The resulting MSE loss from such a

combined forecast is equal to

L = (1− ω′ιm)
2µ2

t,t+1 + σ2
ϵ + ω′Σ̃ω.

For much of what follows all comparisons between methods for which the weights sum to

one regards only the variance component (as the bias squared component is zero) and so

loss is σ2
ϵ + ω′Σ̃ω. This does not mean that there is not a bias-variance trade-off in general,

5The restriction to one step ahead forecasts here is without loss of generality, and simplifies the exposition

of the results.
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but following this literature we focus on this problem where it is a variance minimization

problem only.

For averaging, we have the weights ωave = m−1ι which results in a loss of σ2
ϵ +m−2ι′mΣ̃ιm.

For the optimal combination weights, we have the weights ωopt′ = (ι′mΣ̃
−1ιm)

−1ι′mΣ̃
−1 which

results in a loss of σ2
ϵ + (ι′mΣ̃

−1ιm)
−1. Note that optimal weights (provided they sum to one)

based on Ω̃ are identical6 to those based on Σ̃.

Let the space of possible variance covariance matrices of the forecast error (in population)

be denoted as MΩ̃ or MΣ̃ for Ω̃ and Σ̃ respectively. This paper aims to characterize the space

of such matrices and restrictions on these spaces to understand how large possible gains to

optimal combination can be. The general result is that gains from optimal combination are

often small for empirically relevant problems, and as such it is highly likely that estimation

error is too large to exploit these small gains. In the best case scenario for OLS estimation

of the weights, the difference in expected loss from averaging over using estimated weights

equals (
m−2ι′Σ̃ι− (ι′Σ̃−1ι)−1

)
−
(
σ2
ϵ + (ι′Σ̃−1ι)−1

)(m− 1

T

)
(2)

when there are T observations available to estimate the weights. Both terms are nonnegative,

the first term is the loss from averaging over optimal weights and the second is the term that

accounts for estimation error. So we are concerned with examining the size of the first term,

to show that it is often small.

For the figures later it is useful to consider relative loss from averaging(
m−2ι′Σ̃ι− (ι′Σ̃−1ι)−1

σ2
ϵ + (ι′Σ̃−1ι)−1

)
(3)

which can be directly compared to m−1
T

. Notice that the relative loss depends on the fore-

castability of the outcome (i.e. the magnitude of σ2
ϵ , this issue is examined in Elliott (2016)).

Without restrictions on Σ̃ gains from optimal combination can be very large. For example

if two forecasters provided forecasts that were perfectly negatively correlated around µt,t+1

then the optimal combination between just these two forecasts would reveal µt,t+1. This

situation is obviously unlikely in practice. One primary takeaway from this paper is that

under restrictions on Σ̃ motivated from looking at a long history of the Survey of Professional

Forecasters data for real GDP forecasts is that gains from optimal combination can be very

small. This gives credence for the explanations that the problem is estimation error because

this argument only works if the potential gains are not so large as to overcome the need for

estimation.

A second result is that under these restrictions we are able to show that the optimal

combination under the worst case scenario for averaging is to discard some forecasts and

average over the remaining forecasts. This too is a simple procedure that lays the ground

for simple estimation methods, we suggest such a method in Section 5 below.

6See for example Elliott (2016)
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Finally, we also show that for large numbers of forecasts to combine, restrictions on

the covariance matrix of forecast errors around the conditional mean suggest that for many

models averaging and optimal forecasts will give similar results in the absence of estimation

error. Thus estimating optimal weights for largem is likely to result in a forecast combination

that performs poorly.

2 Some Stylized Facts Using SPF data

In this section, we use forecast data from the Survey of Professional Dataset(SPF). This

dataset provides quarterly data for a range of macroeconomic variables from the fourth quar-

ter of 1968 until the fourth quarter of 2019. For each period, different forecasters provide

predictions for over the following four quarters. We treat this dataset as an ”experiment”

to investigate empirical facts relating to relative loss and more importantly motivate restric-

tions on Σ̃. We focus specifically on real GDP as the variable of interest. In the sample,

each forecaster in each period is considered as an independent observation. By collecting

m forecasters which have provided prediction for the same (not necessarily contiguous) t

periods, we obtain for each group a dataset that includes forecasts and outcomes only from

these m forecaster during these t periods. Once all possible such datasets are obtained, we

aggregate them to construct a new dataset, where each smaller dataset serve as generating

a single number in Figure 1 below. So each observation in Figure 1 is an estimate of MSE

for a group of forecasters that provide forecasts for the same set of periods.

We first examine the in sample and out of sample performance of simple averaging versus

optimal weights in forecast combination by examining the relative loss from averaging. In

sample, by the properties of least squares the loss from averaging weights is always greater

than the loss from optimal weights. Out of sample, estimation error increases MSE rather

than decreases MSE, so the distribution can include positive or negative relative losses.

To see the empirical properties of relative loss (an estimate of Equation 3) in sample

and out of sample, we collect all possible combinations of 3 forecasters who have provided

forecasts for more than 40 same periods in the survey, resulting in total of 6648 triplets. For

each triplet, we compute the MSE using both averaging and estimated optimal weights, and

then derive the relative loss. This process is performed for both in sample and out of sample

cases. As a result, we have two datasets for both types of relative loss, each derived from

the computed losses across all triplets.

Figure 1 presents the histograms of these relative losses. The first plot shows in sample

results for which averaging always performs worse than the estimated optimal weights, which

is necessarily true due to the property of optimal weights minimizing in sample loss. The

second plot, which shows the relative out of sample performance, exhibits a greater variability

and wider spread. Approximately half of the triplets suggest that the averaging weight

performs better than the optimal weights in out of sample.

It is often the case in forecasting that forecasters predicting similar outcome tend to align
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Figure 1: Relative loss of averaging relative to Optimal combination

closely with each other. Indeed, it is standard advice in forecast combination to trim out

forecasters who do poorly (Armstrong (2001),Timmermann (2006),Jose and Winkler (2008))

which would leave forecasters in the combination pool with similar variances. Different

forecasters tend to carry similar information when predicting the same outcome, which leads

to the highly positive correlations among forecasters. Empirically, the alignment and positive

correlation is often reflected in the similar variances and a high positive correlation between

forecast errors in Ω̃ across forecasters for the same events, where Ω̃ = σ2
ϵ ιι

′ + Σ̃. However,

the similarity may arise from the unforecastable shock ϵt that affects all forecasters equally.

To focus on the forecasters behavior excluding the influence of common shocks, we wish

to separate Σ̃ from Ω̃. Instead of directly calculating the variance and correlation of forecast

error yt+1 − ft,t+1 for each forecaster which only gives Ω̃, we aim to obtain Σ̃ by analyzing

µt,t+1 − ft,t+1. However, since µt,t+1 is unobservable, we need a model to estimate µt,t+1. To

achieve this, we estimate µt using an AR(1) model over the entire sample. These estimates

enable us to construct an estimate of the variances and covariances of µt,t+1 − ft,t+1 across

all pairs of forecasters, which provides estimates of the elements in Σ̃ instead of Ω̃.

We select all possible pairs of forecasters which provided prediction for at least 40 over-

lapping periods of real GDP in the SPF. For each pair, we compute both the variance and

covariance in Σ̃ using the described approach. Figure 2 visualizes the variance and corre-

lation for all pairs of forecasters in the sample, which provides empirical support for the

restrictions imposed on Σ̃.

The left plot in Figure 2 shows the correlations for all pairs of forecasters predicting

same periods of real GDP7. Clearly, all of the pairs exhibit the positive correlations in our

7Figure 2 using the actual forecast errors results in more extreme results, correlations are larger and
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Figure 2: Variance and Correlation between each pair of forecasters

sample. In addition, most of pairs centered around high correlations, demonstrating that

forecasters tend to rely on similar information when making predictions. The right plot

shows the scatter plot of the variance for all pairs of forecasters. Most points align closely

along the 45o line, suggesting that the forecasters are really similar in variance. Both plots

provide evidence for assuming that Σ̃ is a positive definite matrix with identical diagonal

and positive off-diagonal entries.

The empirical results from the SPF data inform possible constraints on the form of Σ̃. The

variances of the forecast errors tend to lie on the 45 degree line, suggesting that the diagonals

are all similar. We denote this value σ2
f and scale Σ̃ = σ2

fΣ where now Σ is a correlation

matrix with ones on the diagonal and correlations elsewhere. We denote the correlations

rij. The empirical results also suggest that forecast errors made by the forecasters around

the true conditional mean µt,t+1 are positively correlated. Below in Sections 3.2 and 3.3 we

restrict ourselves to the space of correlation matrices where Σ is a non-negative correlation

matrix.

3 Theoretical Results for a Fixed Number of Forecasts

Gains from combining forecasts using estimated weights require that the estimation error be

smaller than the relative gains in using average weights, which require no estimation. If the

relative gains are small, it would not be surprising that estimation error results in combined

forecasts that are outperformed by simple averaging. It is also interesting to understand the

variances closer to the 45 degree line.
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conditions under which the gains are large. We define MΣ̃ to be the space of positive definite

mxm matrices and MΣ to be the spaces of positive definite matrices under the restrictions

of Proposition 2 below.

3.1 The Space of Σ̃ when Averaging is Optimal.

Define the space Ma
Σ̃
to be the subspace of MΣ̃ for which the optimal combination weights

are equivalent to the simple average of the forecasts (hence the superscript a). This space

can be large for even moderate m. Elliott and Timmermann (2016) (p314-5) show that if

the unit vector lies in the eigen space of Σ̃, then average forecasts are optimal. This shows

that for all Σ̃ ∈ MΣ̃ that if the row sums of Σ̃ are equal, then Σ̃ ∈ Ma
Σ̃
. This can be a large

space even for moderate m.

Special cases have been noted in the literature — for example when Σ̃ has all variances

equal to each other and all covariances equal to a constant (Capistran and Timmermann

(2009), Hsiao and Wan (2014)). In the case of m > 4 the eigen value result is richer than

the previous example even when the covariances are all equal. For example the following

two matrices in the m = 4 case yield equal weights with nonequal covariances;

Σ̃ =


1 r1 r2 r1
r1 1 r1 r2
r2 r1 1 r1
r1 r2 r1 1

 or =


1 r1 r1 r2
r1 1 r2 r1
r1 r2 1 r1
r2 r1 r1 1

 (4)

(the second of these is a permutation of the first where the third and fourth forecasters are

swapped with each other). A point to take from this result is that the subset Ma
Σ̃
in MΣ̃ is

very large and spread out over MΣ̃ in a noncontiguous way so there are very many points in

MΣ̃ for which losses are equivalent for both optimal and averaging.

The result that the averaging vector lies in the eigen space of Σ̃ for the optimal combi-

nation weights to equal the averaging weights is a necessary condition.

Proposition 1. The only optimal combination that is also an eigen vector of Σ̃ is the

averaging weights.

Proofs of Propositions are in the appendix.

One way to think of this is that the eigen vector as a variance reduction approach is

implied by replacing the requirement that the weights sum to one with the requirement that

the sum of the squared weights sum to one (See Hsiao and Wan (2014), who argue for use

of the estimated eigen vector for constructing a weighted combination forecast). Such a

requirement generally results in biased combined forecasts, the only eigen vector that does

not lead to biased combined forecasts is the equal weights as an eigen vector as in the

proposition.

These results suggest that there is a large space of parameterizations of Σ̃ that will result

in averaging weights being optimal. It is also important to realize that the set of such
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matrices is not a closed space, but are instead lots of different non contiguous points in MΣ̃.

Parameterizations not too far from this space will also result in the loss of using averaging

over the known optimal weights will be small.

3.2 The Space of Σ̃ when Averaging is Worst.

Whilst the subspace Ma
Σ̃
where estimating weights does not help is large, there are possible

sets of forecasts for which the optimal weights differ considerably from the average weights.

Such situations are the best case scenario for successfully estimating the optimal weights

from the data. The best gains from optimal combination require either one forecaster or

subgroup be much better than others or that forecast errors be negatively correlated with

each other. As we have discussed in the previous section, motivated by the SPF data, in

many practical situations neither of these are true. So in this section we examine potential

gains for a restricted space of variance covariance matrices of the forecast errors.

We restrict Σ̃ = σ2
fΣ such that Σ is a correlation matrix with nonnegative correlations

rij ≥ 0. Essentially we are restricting the problem to be one where the variances of the

forecast errors are the same across forecasters, and their forecast errors are positively cor-

related. These restrictions were motivated by the empirical data in the previous section.

With the additional restriction that the optimal weights are nonnegative (Σ−1ι ≥ 0), we can

define the space of matrices M o
Σ ∈ MΣ such that the optimal weights result in the largest

deviation of loss from averaging minus the loss from using these optimal weights, i.e. we find

specifications of Σ such that we maximize

m−2(ι′Σι)− (ι′Σ−1ι)−1. (5)

These are the situations that are most advantageous to estimating weights rather than using

a simple averaging approach. To do this consider blocking Σ into two blocks of dimension

m1 and m−m1 respectively, so (
Σ11 Σ12

Σ′
12 Σ22

)
where Σ11 ∈ Rm1×m1 etc. Further, define ι1 as anm1x1 vector of ones and ι2 as an (m−m1)x1

vector of ones.

Proposition 2. Given m1 and Σ22 positive definite such that its minimum row sum exceeds
m−2m1

m1
then the set of solutions to maximizing (5) subject to both Σ−1ι ≥ 0 and rij ≥ 0 for

i, j = 1, ...,m where j > i requires Σ to satisfy

(i) Σ11 = Im1

(ii) Σ12 = m−1
1 ι1ι

′
2

It follows directly from the results of Proposition 2 that the additional loss from using

simple averaging over the optimal weights in the worst case scenario is equal to
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m−2(ι′Σι)− (ι′Σ−1ι)−1 =
1

m2
(2m−m1 + ι′2Σ22ι2)−

1

m1

. (6)

The proof of Proposition 2 shows that for the restrictions on Σ that deliver non negative

weights, having fixed bothm1 and Σ22, that the worst case scenario for using simple averaging

over the Bates-Granger optimal weights is a situation where the first m1 forecast errors are

uncorrelated and the correlation between the first m1 forecast errors and the remaining

forecast errors takes a very specific form.

It follows directly from this restriction that the optimal weights in this worst case scenario

for simple averaging is to take the simple average over the first m1 forecasts (see Lemma 1

in the appendix), i.e.

wopt =

(
(1/m1)ι1

0

)
We fix both m1 and Σ22 in the theorem, and now consider how varying these makes

choosing to average a subset of the forecasts leads to a greater advantage over averaging over

all the forecasts. Since under averaging, given the restrictions on Σ11 and Σ12 identified in

the theorem for the local maxima, we have that loss is m−2(2m−m1 + ι′2Σ22ι2), that loss is

increasing in m−m1 with the latter m−m1 forecast errors as correlated as possible whilst

retaining the positive definiteness of Σ. At the same time loss under the optimal weights is

not dependent on Σ22.

To characterize the form of Σ22, we use two steps. First, it follows directly that the

optimand is increasing in ι′2Σ22ι2. Hence it follows directly that the worst case scenario for

averaging is when the correlations in Σ22 are as large as possible. Second, we require that the

minimal eigen value of Σ is nonnegative, we wish to make the correlations as large as possible

whilst keeping the smallest eigen value nonnegative so that Σ remains positive semidefinite.

For the second step, consider Σ22 such that all of the correlations are equivalent and equal

to ρ22. From Cadima et. al (2010) we can characterize the eigen values for this matrix. We

have that (m1 − 1) of the eigen values are equal to one, (m−m1 − 1) of the eigen values are

equal to 1− ρ22. The remaining two eigen values are given by the formula

1

2

(
2 + ρ22(m−m1 − 1)±

√
4(
m−m1

m1

) + ρ222(m−m1 − 1)2
)
.

From these results we can examine the range of ρ22 for which Σ is positive definite given

the solution of the optimization problem. We require that

1

2

(
2 + ρ22(m−m1 − 1)−

√
4(
m−m1

m1

) + ρ222(m−m1 − 1)2
)

> 0

for some 0 < ρ22 < 1. Rearranging this and solving for a bound on ρ22 the inequality requires

that

ρ22 >
m− 2m1

m1(m−m1 − 1)
.
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For a solution we need that this holds for some 0 < ρ22 < 1. Thus

ρ22 ∈
(

m− 2m1

m1(m−m1 − 1)
, 1

)
.

For the case where m1 ≥ m/2 then the lower eigen vector does not depend on ρ22 so is valid

for the entire range, i.e. 0 < ρ22 < 1. For m1 = 1 there is no ρ22 for which this holds, as for

all m we would need ρ22 ≥ 1.

These results suggest that the worst case scenario for averaging over using optimal weights

is when Σ22 has off diagonal values that are equal to each other and as close to one as

possible. This means that the ’dropped’ forecasters are basically giving the same forecast as

each other. Note that this result also has the effect that for smaller m1, so m−m1 is larger,

the additional losses from averaging over all the forecasters will be larger. In the numerical

work that follows we choose ρ22 = 0.99.

Figure 3: Relative Losses for Σ following from the results of Proposition 2 for m = 3 to

m = 10. Curves further to the right are for larger m. We set σ2
ϵ = σ2

f = 1.

The numerical results in Figure 3 show values from Equation 6 divided by the optimal

loss (here σ2
ϵ + 1/m1 with σ2

ϵ and σ2
f = 1) to give relative losses from using averaging over

the most extreme parameterization of Σ. Results are shown for each possible m1 for m = 3

to m = 10, with successive curves to the right being for larger m. We see that the relative

loss can be large for these extreme situations where the optimal weighting is to drop m−m1

of the forecasts and average over the rest when this is large. But even for this extremal case

there are many potential m1 for any m for which the gains are likely small relative to the

estimation error which is of order (m− 1)/T . For example with T = 100 and m = 6 we have

that for m1 > 4 the gain is smaller than expected estimation error.
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In some sense these results are artificial - with large m we can have situations where there

m − m1 is large but this means that the dimensions of Σ22 is large and can be populated

with large correlations making the difference between averaging and optimal weights large.

However what this means in practice is that one has very many almost identical forecasts

that are ’padding’ the set of forecasts. Practically one might ignore these forecasts if they

are almost identical. This suggests that reasonable worst case Σ would have m1 closer to m

and hence less of an available difference in the losses.

The result does remain that there are possible empirically relevant cases where averaging

is not a particularly good approach, and we would be better off choosing a subset of forecasts

to average over.

3.3 Gains from Optimal Combination over the Space of Σ.

The results of Proposition 2 show the worst case scenarios for using the averages of the

forecasts to construct combinations relative to using the optimal combination in population.

However the precise nature of Σ for this worst case is quite extreme - a subset of uncorrelated

forecast errors as well as another subset of highly correlated forecast errors that have a very

precise correlation with the first set (the restriction on Σ12 in Proposition 2). Obviously it

is more likely that the variance covariance matrix results in a set of optimal weights and

a difference in losses that lies between no gain and these upper bounds on the gains. This

section considers the distribution of such gains whilst retaining the conditions of Proposition

2.

So what these calculations do not do is show where the ’mass’ of relative gains from

optimal combination lie over possible correlations between forecasts. For most such parame-

terizations, the gain in population from using optimal combinations lies well below the worst

case scenario.

In Figure 4 we show the distribution of relative gains from using optimal weights over

averaging for randomly drawn Σ that satisfy the assumptions of Proposition 2 for m = 4

to m = 8 (higher peaks are larger m). We scale Equation 2 by σ2
ϵ + (ι′mΣιm)

−1 (setting

σ2
f = σ2

ϵ = 1) so that we report the percentage loss from using average weights over optimal

weights. These values on the x-axis can be compared directly to (m− 1)/T .

The point to note is that in comparison with the results in Figure 3, the mass of draws

of Σ in MΣ have gains from using optimal weights that are very far from the potentially

worst case scenario gains derived in the previous section. For all of these cases the vast

majority of losses from using averaging over optimal weights are below 5%, which is a small

gain when one must estimate the weights unless sample sizes are quite large. This indicates

that we might very much expect that estimation error vastly outweighs the potential gains

from optimal combinations for variance covariance matrices that lie in MΣ.

These gains can be compared directly to the expected loss from estimation, which in

the best case scenario would be to compare these results to (m − 1)/T where we have T

observations for estimating the weights. It is notable that as m gets larger, the distributions
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Figure 4: Relative Losses across Parameterizations of Σ for m = 4, 5, 6, 7. Curves further to

the right are for larger m.

of gains is not moving much to the right, so for larger m we have a larger effect from

estimation error without there being much expected gain from estimation.

For example consider the case where m = 7, as shown in Figure 5. Here the vertical

lines show the expected losses from estimation for T = 200 and T = 100, both relatively

large sample sizes for forecast combination exercises. For a sample size of T = 100 nearly

all of the gains from optimal combination are smaller than the expected sampling error. At

T = 200 still 90% of them are.

4 Results when the Number of Forecasts is Large.

When the number of forecasts becomes larger, we might expect that averaging outperforms

estimated optimal combinations because the number of weights needed for estimation be-

comes larger, making the estimation error component larger. Whilst this is true, there are

also implications for the space of Σ̃ for which optimal weights have relatively smaller or

larger gains which can make gains from optimal combination more difficult to obtain even

when we do not factor in estimation error.

The following result shows that for a general Σ̃ (without the restrictions of Proposition

2) then if the largest eigen value of Σ̃ is bounded as m becomes large, then averaging and

optimal weights yield the same loss.

In the fixed m case we saw that there was a wide set of possible Σ̃ for which average

weights are optimal, here we see that the space of such matrices when m is large is itself

13



Figure 5: Relative Losses across Parameterizations of Σ for m = 7. The orange vertical line

shows the expected loss from estimation with T = 100 and the red line with T = 200.

large. Thus even without estimation error we might expect that averaging performs as well

as using optimal combinations. Such a result also suggests that the approach of Consensus

Economics is justified theoretically.

Proposition 3. Let λi, i=1,...,m be the eigen values of Σ̃, and assume that λmax = maxi=1,...,m λi <

K for some finite K. Then

(i) m−2ι′mΣ̃ιm = o(m−1)

(ii) (ι′mΣ̃
−1ιm)

−1 = o(m−1)

and so MSE loss from both methods is the same for large m.

Bounding the largest eigen value of the variance covariance matrix of forecast errors

essentially says that no single eigen vector can completely explain the variance of the forecast

error. As a result addition linear combinations of the forecasts will have some ability to

explain the forecast error. As the number of forecasts increases, we expect the weights from

both averaging and optimal weights to give similar losses.

An example is a Toeplitz structure for the variance covariance matrix. Here

Σ =


1 ρ 0 ... 0

ρ 1 ρ 0 ...
...

...
... ...

...

0 ... 0 ρ 1


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We do not have equal weights for this case, although many of the weights (m−2 of them)

are close to even weights. The row sums are not the same because of the first and last rows.

The eigen values are bounded over m, between zero and 1 + 2ρ so this matrix satisfies the

assumptions of Proposition 3. The loss from averaging is

1

m2
ι′Σι =

m+ 2ρ(m− 1)

m2

which asymptotes to zero at rate m as m → ∞.

For the specification of Σ in Proposition 2, we know that for all m the optimal forecast

combination is to average over a subset of the forecasts providing a gain over averaging.

Since this remains true for any m, it must be true as m gets large. Thus we expect that

the largest eigen value for that special case must be diverging. This is indeed the case. The

worst case (for averaging) matrix Σ is now(
Σ11 Σ12

Σ′
12 Σ22

)
=

(
Im1

1
m1

ι1ι
′
2

1
m1

ι2ι
′
1 Σ22

)
with off diagonals of Σ22 fixed for a large correlation, write as ρ22.

From Cadima et al. (2010) we have that the largest eigen value of Σ is given by

1

2

(
2 + ρ22(m−m1 − 1) +

√
4(
m−m1

m1

) + ρ222(m−m1 − 1)2
)

For a fixed m1 the largest eigen value diverges as m → ∞. As expected (since loss for the

optimal case is 1
m1

for each m) this violates the conditions where a bounded eigen value

means that the two approaches yield the same loss for large m.

For the worst case scenario from Proposition 2 we can evaluate the relative loss from

averaging as m gets large. Consider allowing both m → ∞ and m1 → ∞ such that m1

m
→ c.

Relative loss normalized by m is then (from Equation 6)

(
m−2(ι′Σι)− (ι′Σ−1ι)−1

σ2
ϵ + (ι′Σ−1ι)−1

)
=

1
m2 (2m−m1 + (m−m1) + ((m−m1)

2 − (m−m1))ρ22)− 1/m1

σ2
ϵ +

1
m1

→ σ−2
ϵ ρ22(1− c)2

as m → ∞.

A few observations follow from this result. First, the worst case relative loss from using

averaging (under the conditions of Proposition 2) is for any m1 growing with rate m, which is

the same rate as which estimation error grows with m. Hence they are of the same order, we

would then expect that trade-off’s between these exist for all m, even m large. Second, the

term in the numerator that dominates is due to the correlations in Σ22, which means there

are a fraction of the forecasters that are nearly perfectly correlated. As in the fixed m case

we would argue that this is unlikely, and that a larger m1 relative to m is more reasonable

(so c is relatively large).
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We can examine this numerically. In Figure 6 we examine the relative loss as in the above

equation. In the left panel we set c = 4/5 and vary m, in the right panel we set m = 200 and

vary c. In the left panel we see that over all m, the limit relative loss is quite low. As in the

equation above, as the number of forecasts gets large but the relative number of forecasts we

average over in the worst case also gets large, there is not a great difference asymptotically

(in m) between averaging and optimal weights. Here the maximal gain is about 4% which

for large m would be very small relative to estimation error.

In the right hand panel of Figure 6 we can see the effect of varying c. For c much smaller,

the gain can be much larger (at c = 1/5 it is near 60%, which still might not be enough to

offset estimation error if m is large relative to the number of observations). Overall we might

then expect that averaging is likely to work much better for larger m, given that these gains

are upper bounds given the empirically motivated restrictions on Σ.

(a) c=4/5 (b) m=200.

Figure 6: Relative loss when m1

m
→ c.

Hence again for large m we might expect that averaging performs better than estimating

weights.

5 How well do methods work?

In this section we propose a new method for estimating the combination weights, and com-

pare in a number of Monte Carlo experiments how this method and standard methods

perform.

5.1 A subset Averaging Approach

The additional method we suggest follows from the results of Section 3.2. For the worst

case scenario we have shown that the optimal weights are to average over a subset of the

forecasts. This suggests considering looking for the best subset to average over. By refining
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the set of models we examine in the estimation procedure, the hope is that estimation error

is smaller for this procedure as it does not look at models that are likely to only provide

small gains.

Our subset average weights are constructed by looking for each m1 = 3, ...,m every

possible permutation of m1 forecasts. The subset with the smallest in sample MSE is chosen

to be the set of forecasts to average over. Even for values of m large from the perspective of

actual applications, this method is very fast. This is because only sample averages need be

estimated, no matrices are inverted, and so the search procedure is quick. After computing

all of the sample averages, the models are simply ordered and the best one chosen. We

include the full sample average over all of the forecasts in the procedure, so it is possible

that the full average is chosen.

This method introduces estimation error into the construction of the weights because of

the search across models will due to sampling choose the model that is not best in population

on occasion. However by searching over a sparse set of models it is expected that the sampling

error would likely be smaller than many other approaches, and that a subset average close

enough to the population optimal weights will be chosen with a high probability.

5.2 Other Methods

As we noted in the introduction, even in Bates and Granger (1969) it was understood that

estimating weights did not necessarily result in better performance. The expected loss for

restricted OLS when we include estimation error is (σ2
ϵ +σ2

fω
′Σω)(1+ m−1

T
) when there are T

observations available for estimating the weights. This can be greater than the expected loss

under averaging because of the additional m−1
T

term. The literature broadly has suggested

a number of methods that reduce the need for estimation and hence result hopefully in

better performance. We examine restricted OLS and simple averaging. The two additional

methods we include are weights based on the inverse of the individual in sample MSE’s

and weights based on ranks of these MSE’s. For our Monte Carlo designs, because the

population value of the individual MSE’s are equivalent, the estimated weights based on

inverse MSE’s will converge to the average weights, so for large enough sample sizes the

methods will perform similarly. Weights based on ranks however will be somewhat random

and this method cannot replicate the average weights (it is designed for situations where

there are more and less dominant forecasters), so would be expected to perform poorly for

these simulations.

We examine in the Monte Carlo results the performance of a number of combination

methods in addition to the one proposed in this paper,

• Restricted OLS so that weights sum to one, without imposing non negative weights;

• Average Weights;

• Shrinkage Weights (the first method with shrinkage towards the second listed method)

(Diebold and Pauly (1990),Stock and Watson (2004)), denoted Shrink;
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• Weights based on the inverse of the individual MSE’s (denoted MSE);

• Weights based in the rankings of the individual MSE’s (Aolfi and Timmermann (2006)),

denoted Rank.

5.3 Monte Carlo Results

The Monte Carlo results of this section explore the results of Sections 3 and 4. For the fixedm

relatively small we consider three designs for the variance covariance matrix of the forecasts

(around their conditional mean). The first accords to Section 3.2 results, where Σ̃ = σ2
fΣ

and Σ is of the form that accords with the results of Proposition 2 so the optimal weights

are the average of a subset of the forecasters. The second design chooses Σ randomly (with

correlations uniformly distributed on [0, 1]) such that Σ is positive definite and is of the form

for the conditions of Proposition 2 (so has unit variances and is a correlation matrix with

nonzero elements, and the optimal weights are nonnegative). The third design is the same as

the second design but we drop the binding constraint that the weights are nonnegative, which

allows for larger differences between the expected loss using optimal weights over averaging.

This third design explores the importance of this constraint numerically.

For each of the tables the Monte Carlo results reported are constructed using T = 100 to

estimate the weights for any of the estimation methods. All results are numerically equivalent

for any parameterization of µt,t+1. Reported are the losses averaged over Monte Carlo draws

where for each estimated set of weights we draw 1000 out of sample values for evaluation

and we average over 10000 estimates of the weights. Panels are for different values of σ2
f .

A larger value for this parameter can be interpreted as the outcome being relatively more

forecastable, and so the differences between methods is on average stronger.

For each of the combination methods, the out of sample loss depends on the sample size,

σ2
ϵ , σ

2
f and Σ. We fix the estimation sample size at T=100, set σ2

ϵ = 1 as a normalization,

and vary σ2
f . Recall that a smaller σ2

f means that yt+1 is less forecastable, which mutes the

relative differences between methods (Elliott (2016)). Results reported are from using the

estimated weights to predict 1000 times for each estimated set of weights. For averaging

there is no estimation error, and the estimated MSE is close to the population MSE for each

m. For optimal weights there is estimation error, on average it results in estimated losses

that are larger than simple averaging.

For the optimal combination via restricted OLS, we report the asymptotic (T → ∞
with m fixed) loss σ2

ϵ + σ2
f/(ι

′
mΣ

−1ιm) in the first column and the expected loss from this

method with estimation error in the second column. The expected loss under averaging

σ2
ϵ +

σ2
f

m2 (ι
′
mΣιm) is in the fourth column. The first column numbers are always at least as

good if not better than the fourth, given the optimality of the weights in the first column.

However adjusted for estimation error (the second column) typically this ranking is reversed.

Results in Table 1 examine the procedures when Σ ∈ M o
Σ with a scaling coefficient σ2

f as

noted in the each panel of the table. We set σϵ = 1 as a normalization. We have different
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m m1
Optimal Weights Average Weights

Subset Shrink MSE Rank
Pop E(Est) Est Pop Est

σ2
f = 0.75

3.000 2.000 1.375 1.403 1.404 1.417 1.417 1.390 1.416 1.419 1.454

4.000 3.000 1.250 1.288 1.288 1.281 1.281 1.281 1.279 1.282 1.328

5.000 2.000 1.375 1.430 1.431 1.492 1.491 1.395 1.482 1.491 1.507

5.000 4.000 1.188 1.235 1.237 1.210 1.210 1.233 1.209 1.212 1.264

6.000 2.000 1.375 1.444 1.448 1.517 1.516 1.400 1.502 1.517 1.527

6.000 5.000 1.150 1.208 1.211 1.167 1.167 1.204 1.165 1.168 1.223

7.000 2.000 1.375 1.458 1.464 1.536 1.536 1.402 1.516 1.536 1.538

7.000 5.000 1.150 1.219 1.224 1.196 1.195 1.206 1.190 1.196 1.245

7.000 6.000 1.125 1.193 1.197 1.138 1.137 1.185 1.136 1.139 1.195

8.000 2.000 1.375 1.471 1.480 1.551 1.552 1.405 1.527 1.552 1.549

8.000 5.000 1.150 1.230 1.237 1.227 1.228 1.208 1.217 1.228 1.269

8.000 7.000 1.107 1.185 1.191 1.117 1.117 1.171 1.116 1.118 1.175

σ2
f = 1

3.000 2.000 1.500 1.530 1.530 1.556 1.555 1.513 1.553 1.557 1.603

4.000 3.000 1.333 1.373 1.375 1.375 1.375 1.365 1.373 1.377 1.439

5.000 2.000 1.500 1.560 1.563 1.656 1.655 1.522 1.642 1.655 1.678

5.000 4.000 1.250 1.300 1.301 1.280 1.278 1.295 1.276 1.280 1.349

6.000 2.000 1.500 1.575 1.578 1.689 1.687 1.525 1.668 1.687 1.699

6.000 5.000 1.200 1.260 1.265 1.222 1.223 1.258 1.221 1.224 1.298

7.000 2.000 1.500 1.590 1.596 1.714 1.715 1.528 1.689 1.715 1.717

7.000 4.000 1.250 1.325 1.330 1.376 1.375 1.302 1.360 1.376 1.422

7.000 5.000 1.200 1.272 1.278 1.261 1.261 1.260 1.254 1.263 1.329

7.000 6.000 1.167 1.237 1.242 1.184 1.183 1.232 1.181 1.185 1.260

8.000 2.000 1.500 1.605 1.614 1.734 1.735 1.530 1.702 1.735 1.731

8.000 5.000 1.200 1.284 1.293 1.303 1.304 1.263 1.289 1.305 1.358

8.000 7.000 1.143 1.223 1.230 1.156 1.156 1.214 1.155 1.158 1.235

σ2
f = 1.25

3.000 2.000 1.625 1.657 1.659 1.694 1.694 1.639 1.691 1.697 1.754

4.000 3.000 1.417 1.459 1.462 1.469 1.469 1.448 1.466 1.472 1.548

5.000 2.000 1.625 1.690 1.693 1.820 1.820 1.648 1.804 1.820 1.849

5.000 4.000 1.312 1.365 1.367 1.350 1.350 1.359 1.347 1.352 1.439

6.000 2.000 1.625 1.706 1.710 1.861 1.861 1.651 1.837 1.860 1.875

6.000 5.000 1.250 1.312 1.316 1.278 1.277 1.309 1.274 1.280 1.372

7.000 2.000 1.625 1.723 1.729 1.893 1.893 1.654 1.860 1.893 1.899

7.000 5.000 1.250 1.325 1.330 1.327 1.326 1.312 1.317 1.328 1.411

7.000 6.000 1.208 1.281 1.286 1.230 1.230 1.278 1.227 1.232 1.326

8.000 2.000 1.625 1.739 1.749 1.918 1.918 1.656 1.876 1.918 1.914

8.000 5.000 1.250 1.338 1.345 1.379 1.380 1.316 1.361 1.381 1.448

8.000 7.000 1.179 1.261 1.268 1.195 1.195 1.254 1.193 1.197 1.293

Table 1: Results for Pop are σ2
ϵ + σ2

fω
′Σ̃ω for Optimal and Average weights, For E(Est) this

is augmented by 1+(m−1)/T. Other columns are averages over using T = 100 to construct

weight estimates and the average MSE is reported.
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values for Σ for each m,m1 pair, some pairs are omitted for table readability. The optimal

weights here then are to average over the firstm1 forecasts and ignore the remaining forecasts.

Comparing the population MSE (Pop) from combination for optimal weights vs average

weights shows the size of the gains from ignoring the remaining m−m1 forecasts. They are

larger for larger σ2
f , as the forecastability of the outcome becomes better. When restricted

OLS is used to estimate the weights (without knowledge of their form, just imposing that

they sum to one) then the expected estimation error increases the expected MSE, which is

given in the E(Est) column. This may be larger or smaller than using average weights -

the basic point that estimation error can outweigh the gains from optimal combination over

averaging.

Comparing estimated to average weights, it is still the case that averaging can be better

despite this being the largest deviation between optimal and average weights under the

conditions of Proposition 2. The difference in the average weights to optimal weights for

forecasts that have nonzero weights is (m1 − m)/(m1m). For models where m1 is close to

m, this will be smaller. The results in the Table (comparing the out of sample MSE’s for

Average vs. Optimal) show that in such cases averaging still outperforms estimating the

optimal weights. As we noted in discussing this result, values with m1 much smaller than

m are unlikely models where a large number of the forecasters have essentially the same

forecast. When m1 is small relative to m the difference between the optimal weights and

averaging weights is much larger, as are the population MSE’s, and here estimating the

weights can outperform averaging, even substantially.

This is the best case scenario for the subset approach to estimation, which has the same

population expected MSE but the search procedure introduces estimation error. For a larger

Σ2
f and a larger m−m1 the subset approach outperforms other methods. Not only does it

have the advantage that it is ’looking in the right direction’, these are situations where it

is relatively better to get the model correct and the best weights are often zero which is a

corner solution for other estimators.

The MSE method is basically equivalent to the averaging approach because the variances

are all equal here in the Monte Carlo design, so in population the MSE approach will produce

weights that are consistent for the average weights. Hence the only difference is estimation

error in computing the individual MSE’s. In contrast the rank method cannot produce

even weights by design, and is best suited to situations where some forecasting methods

outperform others consistently, which is not the design of this Monte Carlo. Hence the

method is generally the poorest for these results. This intuition for the results extends to

the following tables as well.

Next consider the problem in Section 3.3 where the restrictions on the space for Σ are

as in Proposition 2 and drawn randomly rather than having the worst case solution occur.

Table 2 gives the results for the average out of sample MSE.

The results in Table 2 show the results from drawing random correlation matrices Σ.

Since we are drawing different Σ for each Monte Carlo round, the optimal weights for each

MC draw are different. The theoretical values for Pop and E(Est) for the optimal weights
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Random Draws from Σ

m
Optimal Weights Average Weights

Subset Shrink MSE Rank
Pop E(Est) Est Pop Est

σ2
f = 0.5

4.000 1.256 1.294 1.295 1.267 1.267 1.285 1.267 1.268 1.292

5.000 1.232 1.281 1.283 1.243 1.243 1.267 1.243 1.244 1.271

6.000 1.215 1.276 1.280 1.227 1.227 1.255 1.227 1.227 1.256

7.000 1.202 1.274 1.280 1.214 1.213 1.245 1.213 1.214 1.244

8.000 1.193 1.276 1.283 1.204 1.203 1.237 1.203 1.203 1.235

σ2
f = 0.75

4.000 1.384 1.426 1.427 1.401 1.401 1.419 1.401 1.402 1.438

5.000 1.347 1.401 1.404 1.365 1.365 1.390 1.365 1.366 1.407

6.000 1.322 1.388 1.393 1.340 1.340 1.371 1.340 1.341 1.384

7.000 1.303 1.381 1.387 1.320 1.320 1.355 1.320 1.321 1.366

8.000 1.193 1.276 1.283 1.204 1.203 1.237 1.203 1.203 1.235

σ2
f = 1

4.000 1.512 1.557 1.559 1.535 1.534 1.553 1.534 1.536 1.585

5.000 1.463 1.522 1.525 1.487 1.487 1.513 1.486 1.488 1.542

6.000 1.430 1.501 1.506 1.453 1.454 1.486 1.453 1.455 1.512

7.000 1.404 1.489 1.495 1.427 1.427 1.464 1.426 1.428 1.488

8.000 1.385 1.482 1.490 1.407 1.407 1.448 1.406 1.408 1.469

σ2
f = 1.25

4.000 1.640 1.689 1.691 1.668 1.668 1.687 1.668 1.670 1.731

5.000 1.579 1.642 1.645 1.609 1.608 1.635 1.608 1.610 1.677

6.000 1.537 1.614 1.620 1.567 1.567 1.600 1.566 1.569 1.640

7.000 1.505 1.596 1.603 1.534 1.534 1.573 1.533 1.536 1.610

8.000 1.481 1.585 1.594 1.509 1.508 1.553 1.507 1.510 1.587

Table 2: for Pop are σ2
ϵ + σ2

fω
′Σ̃ω for Optimal and Average weights, For E(Est) this is

augmented by 1 + (m− 1)/T. Other columns are averages over using T = 100 to construct

weight estimates and the average MSE is reported.
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and Pop for the average weights then are different for each MC draw, the number reported

for loss is the average across the draws. The remaining columns are averages of the out of

sample performance as discussed above.

With random draws of Σ the optimal weights often result in losses that are not that

much better than averaging, as we discussed in Section 3.3. This can be seen by comparing

the columns for Pop for both the optimal and averaged weights. Further, when we (on

average) include estimation error (compare E(Est) with Pop for averaging) then averaging

has a smaller loss. This is indicating that for the majority of Σ that satisfy the empirical

restrictions motivated by the SPF data, that the gains from using optimal weights over

averaging is outweighed by estimation error. The out of sample MC results show that the

theoretical results are indicative of what happens in practice. As above the MSE method

approximates averaging because of the MC design, whereas the rank method is not suited to

this MC design. Subset averaging, which includes averaging over the whole set of forecasts

as a possible outcome, often does better than simply estimating the weights but is inferior

to averaging. However the additional losses from estimation here are small and suggest it

might be a worthwhile estimation approach.

We can using the same experiment as in Table 2 examine the outcomes from in and out

of sample estimation versus averaging, as we did in the empirical section in Figure 1. For

all of the rows in Table 2, the MSE for the averaging method outperforms the estimation of

weights in a range of just above 50% ranging up to about 54%. In Figure 7 we have chosen

m = 4 and σ2
f = 1 (which is one of the rows in the table) although for other values for m

results are similar. The same shapes as we saw from the data are apparent here as well for

models drawn from Σ as in the table. The main exception is that for the out of sample

results we see that the distribution is a little more skewed towards using estimated weights

- here T = 100 so estimates are more precise than we might expect in the data.

Figure 7: Relative Losses for in and out of sample evaluation
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Random Draws from Σ without positive weights

m
Optimal Weights Average Weights

Subset Shrink MSE Rank
Pop E(Est) Est Pop Est

σ2
f = 0.5

4.000 1.237 1.274 1.275 1.289 1.289 1.288 1.288 1.290 1.312

5.000 1.202 1.250 1.253 1.266 1.266 1.270 1.265 1.267 1.291

6.000 1.176 1.235 1.239 1.249 1.249 1.256 1.247 1.249 1.275

7.000 1.157 1.226 1.231 1.235 1.235 1.246 1.232 1.235 1.262

σ2
f = 0.75

4.000 1.355 1.396 1.397 1.434 1.434 1.425 1.433 1.435 1.468

5.000 1.303 1.355 1.358 1.399 1.399 1.394 1.397 1.400 1.436

6.000 1.265 1.328 1.332 1.373 1.373 1.373 1.370 1.374 1.413

7.000 1.235 1.309 1.315 1.352 1.352 1.356 1.348 1.353 1.394

σ2
f = 1

4.000 1.474 1.518 1.520 1.578 1.578 1.561 1.577 1.580 1.623

5.000 1.404 1.460 1.463 1.532 1.532 1.519 1.530 1.533 1.582

6.000 1.353 1.420 1.425 1.497 1.497 1.488 1.493 1.498 1.550

7.000 1.313 1.392 1.398 1.469 1.469 1.465 1.464 1.470 1.525

σ2
f = 1.25

4.000 1.592 1.640 1.642 1.723 1.723 1.697 1.721 1.725 1.779

5.000 1.505 1.565 1.568 1.665 1.665 1.642 1.662 1.667 1.727

6.000 1.441 1.513 1.518 1.621 1.621 1.603 1.617 1.623 1.688

7.000 1.392 1.475 1.482 1.586 1.586 1.573 1.580 1.588 1.656

Table 3: for Pop are σ2
ϵ + σ2

fω
′Σ̃ω for Optimal and Average weights, For E(Est) this is

augmented by 1 + (m− 1)/T. Other columns are averages over using T = 100 to construct

weight estimates and the average MSE is reported.
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For the third design, Table 3 shows the results where Σ is a correlation matrix but we

relax the requirement that the optimal combination weights are all nonnegative. Since this

was the binding constraint in Proposition 2, we expect that the differences between the losses

for the optimal and averaging weights to be larger. And this is clearly the case, comparing

Pop for the two methods. Now even with estimation error, it is often the case that estimating

the weights will be superior to averaging.

There are a number of takeaways from these results. First, there is a large space for

Σ̃, in combination with large enough sample sizes, for which the estimation error argument

for why averaging outperforms restricted OLS cannot be the correct argument. As we have

argued in this paper, empirically reasonable assumptions on Σ̃ flip this result. It is also the

case that sample sizes matter and can flip the result back towards averaging. It is often very

difficult to obtain a coherent long time series of forecasts for which to estimated the weights.

A direct implication of our results is that under these empirically relevant assumptions on

Σ̃, the best gains are going to be equal to (or perhaps close to) weights that are an average

on a subset of the forecasts. The subset method we introduce in this section works well

for the Monte Carlo results presented. When the optimal method does result in averaging

over a subset, the method works better than either averaging or estimating the weights with

restricted OLS. For the restricted versions of Σ, it is still performing quite well.

6 Conclusion

The forecast combination puzzle is that simple averaging of forecasts typically beats estimat-

ing optimal weights via restricted OLS. Optimal combination weights in population must

always lead (weakly) to a smaller loss than averaging by definition, however estimation error

can reverse this ranking. Such a reversal can really only happen if the gains from optimality

are small relative to the estimation error.

It is clearly the case that there exist possible correlation structures in the forecasts such

that gains from optimality can be large. For example two forecasters who have forecast

errors around the true conditional mean that are negatively correlated allows major gains

from optimal combination. One forecaster that is much better than the others can be

upweighted, resulting in large gains from optimal combination. In this paper, motivated by

empirical results using the Survey of Professional Forecasters and their forecasts of real GNP,

we show that the types of reasonable restrictions on the variance covariance of the forecast

errors are such that for the most part, gains are small. When the number of forecasts to

be combined is large, the space of possible covariance matrices that deliver large gains from

optimal combinations can be shown to be small under some restrictions on the eigen values

of the covariance matrix.

We characterize within these restrictions the worst case for averaging, and find that the

result is to average over a subset of the forecasts. This motivates a method for estimating

weights that appears in Monte Carlo to work well and reduce estimation error through
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searching over a smaller number of models.
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7 Appendix - Proofs of Results

Proof of Proposition 1.

Proof. To see this, we want to show that if wopt ̸= m−1ιm, then wopt is not an eigenvec-

tor of Σ. Suppose, to the contrary, that there is λ such that λwopt = Σwopt. We have

Σwopt = (ι′mΣ
−1ιm)

−1ΣΣ−1ιm and λwopt = λ(ιmΣ
−1ιm)

−1Σ−1ιm. Equating these two equa-

tions and dividing both sides by λ(ιmΣ
−1ιm)

−1, we have λ−1ιm = Σ−1ιm. Then wopt =

(ι′mΣ
−1ιm)

−1Σ−1ιm = (ι′mλ
−1ιm)

−1λ−1ιm = m−1ιm, a contradiction to wopt ̸= m−1ιm.

Results and proof of Proposition 2.

Consider the following optimization problem

max
rij∈R

m−2(ι′mΣιm)− (ι′mΣ
−1ιm)

−1

subject to

u′
kΣ

−1ιm ≥ 0, k = 1, ...,m.

rij ≥ 0, i = 1, . . . ,m, j = i+ 1, . . . ,m

where uk is a m × 1 vector of zeros with one in the kth row. The space R is such that Σ is

positive definite.

Then fix m1, we can block the matrix Σ such that it equal to(
Σ11 Σ12

Σ′
12 Σ22

)
where Σ11 ∈ Rm1×m1 .

Lemma 1. For Σ with Σ11 = Im1 and Σ12 = m−1
1 ι1ι

′
2, we have Σ−1ιm =

(
ι1
0

)
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Proof. From the usual inverse formula for block diagonal matrices we have

(
Σ11 Σ12

Σ′
12 Σ22

)−1

=

(
Σ−1

11 + Σ−1
11 Σ12Σ

−1
2.1Σ

′
12Σ

−1
11 −Σ−1

11 Σ12Σ
−1
2.1

−Σ−1
2.1Σ

′
12Σ

−1
11 Σ−1

2.1

)
, where Σ2.1 = Σ22−Σ′

12Σ12.

So we have

Σ−1ιm =

(
Σ−1

11 ι1 + Σ−1
11 Σ12Σ

−1
2.1Σ

′
12Σ

−1
11 ι1 − Σ−1

11 Σ12Σ
−1
2.1ι2

−Σ−1
2.1Σ

′
12Σ

−1
11 ι1 + Σ−1

2.1ι2

)
=

(
ι1 +m−1

1 Σ−1
11 Σ12Σ

−1
2.1ι2ι

′
1ι1 − Σ−1

11 Σ12Σ
−1
2.1ι2

−m−1
1 Σ−1

2.1ι2ι
′
1ι1 + Σ−1

2.1ι2

)
=

(
ι1 + Σ−1

11 Σ12Σ
−1
2.1ι2 − Σ−1

11 Σ12Σ
−1
2.1ι2

−Σ−1
2.1ι2 + Σ−1

2.1ι2

)
=

(
ι1
0

)
.

It follows directly that (ι′mΣ
−1ιm) = m1 and so the corresponding optimal weights are

wopt =

(
(1/m1)ι1

0

)

Proof of Proposition 2.

Proof. The Lagrangian function of the optimization problem is

L = m−2ι′Σι− (ι′Σ−1ι)−1 +
m∑
k=1

λkukΣ
−1ι+

m1∑
i=1

m∑
j=i+1

λijrij

where λk and λij are the Lagrangian multipliers associated with constraints.

By optimality condition, if for Σ with rij satisfying the following:

1. ∂L
∂rij

= 0, ∂L
∂λk

≥ 0, ∂L
∂λij

≥ 0

2. λk, λij ≥ 0

3. λkukΣ
−1ιm = 0, λijrij = 0

then Σ is the optimal solution.

To show our proposed Σ satisfying these conditions, we firstly compute the partial derivatives

of the Lagrangian function:

∂L

∂rij
= m−2ι′

∂Σ

∂rij
ι− (ι′Σ−1ι)−2(ι′Σ−1 ∂Σ

∂rij
Σ−1ι)−

m∑
k=1

λkukΣ
−1 ∂Σ

∂rij
Σ−1ι+ λij
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= 2m−2 − ((ι′Σ−1ι)−1ι′Σ−1)(uiu
′
j + uju

′
i)((ι

′Σ−1ι)−1Σ−1ι)

−
m∑
k=1

λkukΣ
−1(uiu

′
j + uju

′
i)Σ

−1ι+ λij

= 2m−2 − wopt′(uiu
′
j + uju

′
i)w

opt −
m∑
k=1

λkukΣ
−1(uiu

′
j + uju

′
i)Σ

−1ι+ λij

= 2m−2 − 2wopt
i wopt

j −
m∑
k=1

λkukΣ
−1(uiu

′
j + uju

′
i)Σ

−1ι+ λij

∂L

∂λk

= ukΣ
−1ι

∂L

∂λij

= rij

Note that wopt = ((1/m1)ι1 0)′ by Lemma 1. Then, by optimality condition, we let λk = 0

as ukΣ
−1ιm > 0, for k = 1, . . . ,m1.

Now, consider rij in (1,2) block, where i = 1, . . . ,m1, j = m1 + 1, . . . ,m.

For the same reason, we let λij = 0 as rij > 0 in this block.

Then we need to determine if there exist λk > 0 for k = m1+1, . . . ,m such that the following

equality holds:

∂L

∂rij
= 2m−2 − 2 ·m−1

1 · 0−
m∑

k=m1+1

λkukΣ
−1(uiu

′
j + uju

′
i)

(
ι1
0

)

= 2m−2 − 2 ·m−1
1 · 0−

m∑
k=m1+1

λkukΣ
−1uj

= 2m−2 −
m∑

k=m1+1

λkΣ
−1
kj

= 0,∀i = 1, . . . ,m1, j = m1 + 1, . . . ,m, where Σ−1
kj is the (k,j) entry of Σ−1

First note that for each j we have the same set of simultaneous equations over j = m1 + 1

to m. We can write the set of equations as
λm1+1Σm1+1,m1+1 + ...+ λmΣm,m1+1

λm1+1Σm1+1,m1+2 + ...+ λmΣm,m1+2

...

λm1+1Σm1+1,m + ...+ λmΣm,m

 = Σ−1
2.1λ

So

2m−2ι2 − Σ−1
2.1λ = 0

where λ = (λm1+1, λm1+2, ..., λm)
′. This solves to

λ =
2

m2
Σ2.1ι2.
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For a subspace of Σ22 satisfying that the minimum row sum of Σ2.1 > 0, it follows that

λk ≥ 0 for k = m1 + 1, . . . ,m, and the optimality conditions hold in (1,2) block.

Now, consider rij in (1,1) block where i = 1, . . . ,m1, j = i+ 1, . . . ,m1.

Let li be a m1 × 1 vector of zeros with one in ith row.

We can substitute λk that we obtained from (1,2) block, and then we need to determine

whether λij ≥ 0 for i, j in (1,1) block such that the following equality holds:

∂L

∂rij
= 2m−2 − 2 ·m−1

1 ·m−1
1 −

m∑
k=m1+1

λkukΣ
−1(uiu

′
j + uju

′
i)

(
ι1
0

)
+ λij

= 2m−2 − 2m−2
1 −

m∑
k=m1+1

λk(Σ
−1
ki + Σ−1

kj ) + λij

= 2m−2 − 2m−2
1 + λ′Σ−1

2.1Σ
′
12(li + lj) + λij

= 2m−2 − 2m−2
1 + 2m−2ι′2Σ2.1Σ

−1
2.1Σ

′
12(li + lj) + λij

= 2m−2 − 2m−2
1 + 2m−1

1 m−2ι′2ι2ι
′
1(li + lj) + λij

= 2m−2 − 2m−2
1 + 4m2m

−1
1 m−2 + λij

= 0

Solving the equation, we get

λij = 2m−2
1 − 2m−2 − 4m2m

−1
1 m−2

= 2m−2
1 − 2m−2 − 4(m−m1)m

−1
1 m−2

= 2m−2
1 m−2(m2 −m2

1 − 2m1(m−m1))

= 2m−2
1 m−2(m−m1)

2 ≥ 0,

for all i ∈ {1, . . . ,m1}, j ∈ {i+ 1, . . . ,m1}
Thus, for Σ22 in the specified space, we have that the optimality condition holds.

Proof of Proposition 3.

Proof. For any symmetric non-negative definite matrix Σ we have that there exist matrices

C and Λ such that CΛC ′ = Σ where Λ has zeros in the off diagonals and the eigen values of

Σ for diagonal elements. The matrix C has columns ci equal to the eigen vectors associated

with the eigen values which are orthonormal so C ′C = CC ′ = I. Note that

1

m2
ι′mCΛC ′ιm =

1

m2

m∑
i=1

λiι
′
mcic

′
iιm

≤ λmax

m2
ι′mCC ′ιm

=
λmax

m
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which goes to zero for λmax bounded above. For the inverse of optimal loss (ι′mΣ
−1ιm) we

have that this is equal to

ι′mCΛ−1C ′ιm ≥ 1

λmax

ι′mCC ′ιm =
m

λmax

and so the inverse of this (optimal loss) is converging to zero. More elegantly we could just

say that the first result is sufficient since if average weights are optimal the result holds by

direct equality, if not then loss from averaging is greater than optimal loss so since it is going

to zero, so is the optimal result.
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