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Abstract

The optimal combination of forecasts, detailed in Bates and Granger (1969), has

empirically often been overshadowed in practice by using the simple average instead.

Explanations of why averaging might in practice work better than constructing the

optimal combination have centered on estimation error and the e¤ects variations of

the data generating process have on this error. The �ip side of this explanation is that

the size of the gains must be small enough to be outweighed by the estimation error.

This paper examines the sizes of the theoretical gains to optimal combination, providing

bounds for the gains for restricted parameter spaces and also conditions under which

averaging and optimal combination are equivalent. The paper also suggests a new

method for selecting between models that appears to work well with SPF data.
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1 Introduction

In a seminal paper, Clive Granger along with Bates (Bates and Granger 1969) considered

the combination of a pair of forecasts for the purpose of constructing a better forecast. As in

portfolio optimization, the idea was to use the relative variances and covariances to construct

a weighted average of the forecasts that minimized the mean square error of the combined

forecast, improving our ability to construct forecasts. The idea readily extended to a set ofm

forecasts. Granger and Ramanathan (1984) later showed that this method, when restricting

weights to sum to one, was numerically equivalent to weights constructed from a restricted

least squares regression of the outcome variable on the forecasts.

In empirical application it has turned out that the optimal weights of Bates and Granger

(1969), when replaced with sample estimates, often does not appear to be a better method

for many sets of data than taking a simple average of the forecasters. Clemen (1989) surveys

the literature up until the time of its publication and notes that over a very large number of

papers averaging forecasts appears to be a more robust procedure in practice than optimal

combination. More recent work has only reiterated this �nding. Stock and Watson (2001)

considered 49 methods for constructing forecasts of a large number of US macro series.

Combining the methods proved to be the favored strategy, rather than using individual

models. Averaging the models, along with taking the median of the forecasts, worked best.

This somewhat surprising result has spurred a very large literature, see Timmermann

(2006) for a review. A large number of papers have made the reasonable suggestion that

estimation error in the estimated weights is the underlying problem (see Smith and Wallis

(2009) for a recent example). Approaches to the problem based on the idea that estimation

error in the weights require two pieces to their argument � �rst, that gains from optimal

combination are not too large and second that estimation error is large. By far the largest

amount of attention has been paid to the second of these pieces, whilst this paper examines

the �rst part.

Regarding the possibility that estimation error may be large, the literature has focussed

on two aspects of this problem. First, researchers have suggested alternative data generating

procedures that would make estimation error larger and hence large enough to be expected

to outweigh theoretical gains. For example Clemen and Winkler (1986) consider parameter

instability as a cause. Clements and Hendry (2004) consider situations where the data
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generating process has discrete shifts and forecasting models are misspeci�ed. Both of these

elements can increase estimation error.

A second strand of the literature has taken as given that estimation error is the problem,

and focussed attention on providing methods that might mitigate the estimation error. One

direction of attack was the realization that with estimation error other estimators of the

optimal weights could be considered. Clemen and Winkler (1986) suggested priors based on

exchangeability of the forecasts and a prior on the variance covariance which would result in

the average forecast being optimal. Diebold and Pauly (1990) suggest two empirical Bayes

shrinkage methods, where the estimates are a weighted average of the least squares estimates

for the weights and the average weights vector. The shrinkage factor here is the same for

each forecast, so the method does not allow for some weights to be shrunk di¤erently from

others. Chan, Stock and Watson (1999) suggest factor models. Many other methods, often

ad hoc, have also been suggested as attempts to exploit the data for constructing weights.

Bates and Granger (1969) suggested ignoring covariances between the forecasts; constructing

weights as the variance of that forecast error as a proportion of the sum of all the variances

of the forecast errors. Aiol� and Timmermann (2006) suggest ranking the forecast error

variances, then constructing the weights as the inverse of the rank of that forecast divided

by the sum of the inverses of the ranks of each of the forecasts (so the best forecast has weight

one divided by the sum of the inverse of the rank of the forecasts, the second has weight

equal to one divided by twice the sum of the inverse of the ranks, etc.). This method places

a very sharply declining weighting scheme even if variances are quite similar, and ignores

the possibility that correlations can be employed to reduce forecast error). Swanson and

Zheng (2001) suggest choosing estimating not only the model with all of the forecasts, but

every combination of subsets of the forecasts, choosing the preferred set to combine using

information criteria.

However it still must be the case that reasonable variance covariance matrices of forecast

errors are such that the expected gain in practice is not as large as some of the possible

parameterizations suggest. An implication of the empirical success of averaging is that it

would appear that the types of variance covariances that result in very large gains from

varying these weights are empirically unlikely and that the reasonable parameter space to

consider is much more restricted than might otherwise be considered.
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This paper seeks to improve our understanding of how large gains from optimal combi-

nation can be. We extend general results for which there is no gain. We also consider a more

restricted but yet theoretically and empirically reasonable parameter space. Considering

models where much of the error is common to all forecasts, we might expect that both the

variances of di¤erent individuals forecast errors are not too dissimilar and also that their

correlations are likely to be positive. An extensive examination of the Survey of Professional

Forecasters (SPF) data suggests that this is true. Other empirical evidence for positively

correlated forecast errors arises from the often noted fact that typically forecasters are all on

one side of the actual (clustering). With these restrictions we provide results that allow us

to better understand the bound on the size of the expected gains from optimal combination.

The theoretical results of this paper could be considered complimentary to those that argue

for a large estimation error explanation of the success of averaging, by providing results that

shed light on the �rst piece of the puzzle mentioned above.

We also present, based on the theoretical �ndings, a simple yet robust method for forecast

combination that both allows the combination method to include averaging when this method

is likely to be a good approach and also to approximate the optimal weights when they are

likely to be a much better approach than averaging. The methods are examined in Monte

Carlo experiments and applied to the SPF data.

The next section reviews the forecast combination problem and discusses the aims of this

paper and its place in the literature. We examine Survey of Professional Forecaster data to

illustrate reasonable parameter spaces for the variance covariance matrix of forecast errors.

Section 3 presents the main results of the paper, along with deriving a set of methods for

practical forecast combination. The methods are analyzed both in Monte Carlo experiments

and with application to the SPF data in Section 4. A �nal section concludes.

2 Combining Forecasts

An enormous literature was spawned by the seminal ideas of Bates and Granger (1969).

This paper suggested that for situations when two forecasts were available, the covariance

structure could be employed to optimally combine them into a single forecast that would

have better properties when the forecaster has a mean square loss function. The idea readily

extends to the combination of an m vector of h step ahead forecasts ft;h of an outcome yt+h:
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De�ne the m dimensional vector of forecast errors et;h = �myt+h� ft;h where �k will denote a
vector of ones of length k. Consider a combined forecast !0 + !0ft;h where !0 is a constant

and ! is an m vector of weights. The combined forecast can be written

yt+h � !0 � !0ft;h = yt+h(!
0�m � 1)� !0 + !0(�myt+h � ft;h)

= (yt+h(!
0�m � 1) + E[(et;h)]� !0) + !0(et;h � E(et;h))

Then if E[et;h] = � and E[et;he0t;h] = � the MSE of the forecast using the combined forecast

under the restriction that the weights sum to one is

E[yt+h � !0 � !0ft;h]2 = E[(E[(et;h)]� !0) + !0(et;h � E(et;h))]2

= (�� !0)2 + !0�!:

Clearly minimizing MSE here involves setting1 !0 = � and then choosing weights to min-

imize !0�! subject to the constraint !0�m = 1: The solution to this is to set !opt =

(�0m�
�1�m)

�1�m�
�1: This is the multivariate generalization of Bates and Granger (1969).

In this case MSE is equal to (�0m�
�1�m)

�1:

The problem could also be set up to minimize the mean square error employing the

forecasts ft;h as data, in which case the weights could be constructed by considering the

regression of yt+h on a constant and ft;h subject to the restriction that the sum of the

coe¢ cients on the regressors ft;h sum to one. As shown by Granger and Ramanathan (1984),

the population restricted least squares estimator combination weights are identical to the

Bates and Granger (1969) optimal combination weights. Hence the result for !opt can be

considered an alternative expression for the restricted least squares estimator. However the

above form of the expression will be useful in section 3 below.

Whilst the result given above yields the optimal combination for the population problem,

in practice we still need estimates from the data to make the methods operational. Typically

a plug-in estimator such as estimating �̂ = (T � k)�1
PT

t=1 et;he
0
t;h and �̂ = T

�1P et;h are

employed. The resulting plug-in estimated weights do not have any optimality properties in

terms of minimizing MSE except in the limit. For example any consistent estimator for �

or consistent estimator for the restricted least squares coe¢ cients will result in a di¤erent

1In population the mean takes care of any bias in !0ft;h. Since this paper is concerned with population

results we will ignore the mean in the remainder of the paper.
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construction method with di¤erent small sample properties but the same large sample jus-

ti�cation. Hence shrinkage estimators (where the shrinkage disappears asymptotically) will

also yield estimators that have the same asymptotic justi�cation but may well improve over

standard restricted least squares methods or standard estimators for �̂:

Clemen (1989) summarizes the performance in practice up to 1989 but with results still

relevant today. It is by now a general folklore result that simply averaging the forecasts

(perhaps with still estimating the constant term to take into account biases) turns out to

work better than using the above plug-in estimators for the optimal combination when we

look at out of sample performance. The average forecast is �0mft;h and hence involves no

estimation. MSE for this method of combination is given by m�2�0m��m: Thus whilst it is

always true that (�0m�
�1�m)

�1 � m�2�0m��m, for out of sample situations it is often the case

that when �̂in uses an �in sample�set of observations for estimation of the combining weights

that the out of sample loss is (�0m�̂
�1
in �m)

�2�0m�̂
�1
in �out�̂

�1
in �m � m�2�0m�out�m when �out is the

variance covariance of the out of sample forecast errors.

This can be demonstrated from examining forecast data from the Survey of Professional

Forecasters database. This is a set of quarterly forecasts that have been provided by a

revolving set of forecasters. Forecasts are provided for a variety of macroeconomic variables,

for the purposes of this paper we restrict attention to forecasts of real GDP, using forecasts

from the �rst quarter of 1980. The panel of forecasts is an extremely unbalanced panel, with

forecasters dropping in and out of the sample and often missing some quarters. Forecasters

active early in the sample disappear for good, others active now were not participants earlier

in the sample. For both panels in Figure 1 I have, for each triplet of forecasters in the

survey, constructed a series of forecast errors for all of the periods for which each of the three

forecasters provided forecasts, dropping all triplets of forecasters for which we have less than

15 observations. Of the 256 forecasters that have provided forecasts over the sample, this

leaves 9015 groups of three forecasters. For each of these, I have set the �in sample�period

to be the �rst two thirds of each sample, leaving one third of the observations for the out

of sample evaluation. De�ne the percentage loss of averaging over the optimal combination

using a plug-in estimator as described above to be the estimated relative loss. Figure 1

reports a histogram of estimated average loss over all triplets in the SPF sample. The �rst

panel shows results for in sample estimated weights. As must be true, averaging performs
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worse than the optimal combination, often by quite a large percentage2. The second panel

repeats this exercise with the same estimates for the weights but now evaluated on the out

of sample data, the result is dramatically di¤erent. For more than half of the triplets, loss

from averaging outperforms the optimal combination. This gain is often quite large.

Figure 1: Percentage Loss from Averaging with respect to that from Optimal Combination.

Note: First panel shows in sample results, the second panel shows out of sample results.

An issue to be examined to understand for the argument that it is the problem with

estimation error that is the reason that averaging tends to work better in practice than

estimating optimal weights is that, given the relationship with restricted least squares, we

expect this error asymptotically to be of the order of (m � 1)=T percent. In out of sample
calculations it will possibly be larger. For instability of the weights, this error could also

be larger. But for modest m, this can only be the explanation if the population relative

loss from averaging over optimal combination m�2�0m��m(�
0
m�

�1�m)
�1�1 is quite large. The

next section presents various results on the size of this expression. We �rst show a number

of results for which this relative loss is zero. We then turn to examining the potential size

of this relative loss under restrictions that are motivated by stylized facts for forecasts.

Before examining the theoretical results, we �rst present these stylized facts in forecast

combination. A �rst point is that forecasts often tend to track each other, which is to

say that they are closer to each other than they are to the outcome in most forecasting

2For the purposes of readability of the graph, I have dropped a few combinations of forecasters where the

relative gains were larger than 3.5 (33 in the �rst panel, 9 in the second).
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situations. Such a result arises naturally since the unforecastable shock is common to all

forecast errors. It is also likely that di¤erent forecasters are observing similar information.

However this leads to positively correlated forecast errors, which results in implications for

reasonable speci�cations for �: This can be demonstrated in the SPF data by examining the

correlations of all possible pairs of forecasters in the sample.

Figure 2: Correlations and Variances of Pairs of Forecast Errors

Note: The �rst panel shows the correlations between each pair of forecasters. The second panel is

a scatterplot of the variances of each of the forecasters in each pair.

The �rst panel of Figure 2 shows the correlations between all pairs of forecasters over the

sample. The data was constructed using the same method as for Figure 1 however considering

pairs rather than triplets. Clearly, the majority of the forecast errors are strongly positively

correlated. Indeed the mode is close to one, whereas there are few forecast errors that have

correlations less than 0.4. Only a single forecast error of the 1229 pairs of forecasts has an

estimated negative correlation.

The second panel of Figure 2 presents a scatterplot of the variances of the forecast errors

for each of the forecasters in each pair. By and large these lie very close to the 45o line,

indicating that the variance of forecast errors is relatively similar across forecasters. This too

makes sense � forecasters who are very poor are likely to not continue sending in forecasts

to the SPF (or more generally poor forecasters are likely to be weeded out of any sample,

poor forecast methods are also likely to be ignored if they are substantially inferior to other

methods). Hence we might expect that there is very little di¤erence in the MSE of di¤erent

forecasters.
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3 Relative Gains from Optimal Weights

This section provides theoretical results on speci�cations of � that either mean that relative

loss is small or zero and alternatively results where relative loss is large. For restricted

spaces of models we are able to bound the di¤erence in loss between the best case optimal

weights loss and the loss that would arise if we averaged over the forecasts. We �rst present

some general results for which the average of the forecasts is the optimal combination, then

present results for speci�c (but empirically reasonable) subcases to understand istuations

where averaging will be a poor approach.

3.1 Equivalences between averaging and optimal weights

A �rst result on optimal results being equivalent to averaging over the forecasts is to note

that if the unit vector lies in the eigen space of � then averaging is optimal. This follows as

when ��m = ��m for a scalar � then ��1�m = �
�1�m and

!opt = (�0m�
�1�m)

�1��1�m

= (��1�0m�m)
�1��1�m

= m�1�m:

This gives some indication as to the types of � that will result in equal weights being optimal

� they are situations in which the row sums of � are equal to each other. Special cases have

been noted in the literature � for example when � has all variances equal to each other

and all covariances equal to a constant (Capistran and Timmermann (2007), Hsiao and Wan

(2010)). In the case of m > 4 the result is richer than the previous example even when the

covariances are all equal. For example the following two matrices in the m = 4 case yield

equal weights with nonequal covariances;

� =

0BBBBB@
1 r1 r2 r1

r1 1 r1 r2

r2 r1 1 r1

r1 r2 r1 1

1CCCCCA or =

0BBBBB@
1 r1 r1 r2

r1 1 r2 r1

r1 r2 1 r1

r2 r1 r1 1

1CCCCCA (1)

(the second of these is a permutation of the �rst where the third and fourth forecasters are

swapped with each other). However the set of data generating processes (speci�cations of
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�) for which averaging is optimal is quite large. Averaging is optimal if and only if the row

sums of � are equal for each row, thus for a great many speci�cations of �. A point to take

from this result is that there are very many points in the space generated by � for which

losses are equivalent for both optimal and averaging. One expects by continuity of the loss

function as a function of the elements of � that gains from optimal combination near these

points are small and easily outweighed by estimation error.

The result that the averaging vector lies in the eigen space of � for the optimal combi-

nation weights to equal the averaging weights is a necessary condition � the only optimal

combination that is also an eigen vector of � is the averaging weights. To see this, note

that we require that �!opt = �!opt for � scalar for the optimal vector to be an eigen vector.

However �!opt = (�0m�
�1�m)

�1���1�m = (�0m�
�1�m)

�1�m and �!opt = �(�m��1�m)�1��1�m

so on equating and dividing both sides by �(�m��1�m)�1 we have �
�1�m = ��1�m, so for

!opt to be an eigen vector �m must be an eigen vector. From the result above this means

averaging must be optimal.

Results showing that optimal weights and averaging lead to similar losses under MSE are

also available for forecast combination situations where m is large and there is a common

component to the forecast errors, which is likely in practice. Consider a model where there is a

common component to the forecast error as well as an idiosyncratic one, so et;h = �m"t+h+vt+h

where "t+h is a univariate forecast error common to all forecasters and vt+h is the mx1 vector

of idiosyncratic forecast errors. Then � = �2"�m�
0
m + �

2
"
~� where �2e is the variance of the

common component of the forecast error. If the idiosyncratic component is such that the

largest eigen vector of its variance covariance matrix is bounded above, then for large m loss

from optimal combination and loss from averaging is the same.

Proposition 1 Let �i; i=1,...,m be the eigen values of ~�, and assume that �max = maxi=1;:::;m �i <

K for some �nite K: Then

(i) lim
m!1

m�2�0m��m = �2"

(ii) lim
m!1

(�0m�
�1�m)

�1 = �2"

and so MSE loss from both methods is the same for large m:

This result suggests that when there is idiosyncratic error where there is no common

factor in this error, then with enough forecasts to combine averaging is likely to do as well
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as the optimal combination in population3. Hence when estimation error is added to the

problem, we might well expect estimated optimal combinations to perform worse than simple

averaging.

3.2 Limits to gains from Optimal Combination

For �xed m, it is still the case that there exist models (choices of �) for which the gains to

optimal combination can be theoretically large. For example two forecasters with perfectly

negatively correlated forecast errors can be combined to obtain a combination forecast that

is perfect, with no estimation error. Thus for placing reasonable bounds on the size of the

gains from optimal combination over averaging it will be useful to restrict the space of � to

regions that are theoretically and empirically reasonable.

One restriction that follows from the good empirical performance of the averaging method

is to constrain � such that weights are nonnegative. This could be thought of as a loose prior

that places weight only on models for which forecasters are not so di¤erently informed that

the optimal combination would result in o¤setting weights. Alternatively we can directly

think of this as a loose prior that says that the weights can deviate from equal weights but not

so far that any can be negative. Secondly, motivated by the empirical results of the previous

section that the variances of forecast errors across forecasters are very similar and that the

correlations between forecast errors are rarely negative we �rst restrict the diagonal elements

of � to be equivalent to each other so that � is a scaled correlation matrix and secondly

restrict the correlations to be nonnegative. Theoretical considerations suggested that this

would be the likely outcome for the forecast combination problem in most situations.

Since the MSE loss from averaging is given by m�2�0m��m and the MSE loss from opti-

mal combination is (�0m�
�1�m)

�1, the relative (percentage) gain from optimal weights over

averaging is given by4 m�2(�0m��m)(!
opt0�!opt)�1 � 1: Since scale multiples of � result in

3This result is similar in spirit to the Grenander and Rosenblatt (1957) result of the equivalence of GLS

and OLS under conditions on the variance covariance structure in time series models. Here optimal weights

is GLS for the mean and average weights is OLS for the mean, however we have no obvious structure for the

variance covariance matrix since the model is spatial (a time series assumption would be that more distant

observations are less related). I thank Peter Phillips for pointing this out.
4Odinarily !opt0�!opt = (�0m�

�1�m)
�1, however this notation requires � to be nonsingular. We write in

the more general form here to allow for speci�cations of � such that subblocks �a are nonsingular, in which
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equivalent values for this expression, without loss of generality we consider only correlation

matrices for � for the remainder of this section. Subject to the above constraints, we are

interested in characterizing both the speci�cations of � and the optimal weights that would

arise from these speci�cations that make this percentage gain as large as possible.

The general Lagrangian to be solved is

L = (�0m��m)(!opt0�!opt)�1 +
mX

i;j=1;i6=j

�ijrij +

mX
i;j=1;i6=j

ij(1� rij) +
mX
i=1

�iu
0
i�
�1�m (2)

where �0s and 0s are such that they are nonnegative, �ijrij = ij(1� rij) = �iu0i��1�m = 0
for any (i; j) = 1; :::;m; i > j and the restrictions hold. Here ui is an mx1 vector of zeros

with a value of unity at the ith row.

The optimization problem is di¢ cult because, as can be seen from the results of the

previous subsection, the objective function is non convex and hence all solutions of the

Lagrangian that arises from the constrained optimization must be checked to ensure a global

solution. Despite this, we can make a few general points before presenting explicit results.

First, the optimal solution must be a corner solution. This can be seen through ignoring

the restrictions and from the derivative of L with no restrictions with respect to element rij
of �. From this derivative we have that

0 = 2(�0m�
�1�m)� (�0m��m)(�0m��1(uiu0j + uju0i)��1�m)

= 2(�0m�
�1�m)� 2(�0m��m)(�m��1�m)2!i!j

= 1� (�0m��m)(�m��1�m)!i!j:

where !k is the kth optimal forecast weight (kth element of !). Since there are numerous

results of this type for each (i; j), then we have

(�0m�
�1�m)!i!j = (�m�

�1�m)!i!k

for j; k = 1; :::;m; not i and so !j = !k: Hence solving the �rst order conditions of the

unconstrained problem results in a minimum, not a maximum. Any maximum will be a

corner solution.

A second result that can be shown is that speci�cations of � such that, in block form,

� =

0@ �a �ab

�0ab �b

1A
case some of the weights are zero and !opt0�!opt = (�0a�

�1
a �a)

�1:
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for some integer a < m; that when not all weights are nonzero a local maximum occurs with

�a = Ia so the �rst a forecast errors are uncorrelated, and all of the remaining forecasts are

perfectly correlated with each other. In this case the optimal weights are to average over

the �rst a forecasts and give zero weight to the remaining ones. This result holds for all

1 < a < (m+ 2)=2: This result is presented in lemma 1 of the appendix.

This result provides some understanding of the types of speci�cations for � that will result

in averaging being a poor forecast combination method relative to optimal combination. As

we have seen with the SPF data, typically correlations between forecast errors are large

and positive. In situations where there are a few lesser correlated forecasts, it is likely to

be better to concentrate weights on these forecasts and ignore to a great extent the highly

positively correlated forecasts.

Table 1: Relative Loss at each (m,a) pair

m=3 4 5 6 7 8 9 10

a=2 0.1111 0.2500 0.3600 0.4444 0.5102 0.5625 0.6049 0.6400

3 0.1250 0.3200 0.5000 0.6531 0.7813 0.8889 0.9800

4 0.1200 0.3333 0.5510 0.7500 0.9259 1.0800

5 0.1111 0.3265 0.5625 0.7901 1.0000

6 0.1020 0.3125 0.5556 0.8000

7 0.0938 0.2963 0.5400

8 0.0864 0.2800

9 0.0800
Notes: Relative loss at each local maxima is given by

(a� 1)�m�1(2a� 2a2) +m�2(a3 � a2)

We can also evaluate the relative loss at these local maxima. Although it is possible

that relative loss could be larger than n these values (the local maxima may not be global

maxima) this loss gives some idea of the size of possible losses from using averaging. Table

1 gives the size of the relative loss for the losses at each local maxima for each m (we also

include results for other possible values of a, which is useful in the next section). From the

table we see that the relative largest loss is quite modest for small m. As m becomes larger,

the size of the potential loss from averaging over optimal combination increases. However

such gains require more and more uncorrelated forecasts to be achieved. In practice many
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of these potential gains will outweigh estimation error, although for small m estimation

error could be large enough to outweigh the potential gains for all but the most extreme

speci�cations for �: These numbers give some indication as to the outcomes in bad case

scenarios, however to argue that they are bounds requires tedious checking of all of the other

potential solutions. For the m = 3 and m = 4 cases this is feasible, as noted in the following

proposition.

Proposition 2 The relative loss m�2(�0m��m)(!
opt0�!opt)�1 � 1 where � is a nonnegative

correlation matrix with elements constrained so that the optimal weights !opt are nonnegative

is maximized for m = 3 and m = 4 when a = 2: At this point

(a) �a = I2, !1 = !2 = 0:5, all other weights are zero

(b) �b = �m�2�0m�2 so the last (m� 2) forecast errors are perfectly correlated.
(c) The maximal relative loss is 1=9 for m = 3 and 0:25 for m = 4:

These results put an upper bound on the gain from using optimal weights over averaging

for both the m = 3 and m = 4 cases. As previously noted, if this value is small then it would

be unsurprising that estimation error in constructing the optimal weights could outweigh

the potential gains from using optimal weights. When m = 3; the maximal gain is equal to

just 11%: For iid forecast errors with a distribution near enough to normality, the relative

loss due to estimation error would be expected to be of the order (m � 1)=T where T is
the number of observations. So for small sample sizes estimation error could outweigh the

11% loss from averaging. However most designs for � will have a lower loss than 11% from

averaging, and the estimation error of this size is a best case scenario and should be thought

of as a lower bound on estimation error (fatter tails in forecast errors would for example

drive the size of the estimation error up, as would models with � time varying so we are

estimating an average of the weights). At m = 4 the maximal gain can be 25%. Again, for

most speci�cations for � this loss will be lower.

4 Best Subset Averaging Procedure

The theoretical results presented in the previous section and the numerical results presented

in Table 1 suggest that averaging over subsets of the forecasts can capture many of the

possible speci�cations for � where averaging over all the forecasts might be costly. The
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theoretical results suggest that such a model captures the best case scenario for estimating

the weights as opposed to simply averaging. This suggests a method that might lie in between

the empirically successful approach of averaging and the theoretically compelling approach

of attempting to obtain the optimal weighting combination. The �in between�method, which

we label best subset averaging, would be to examine the losses that arise on an estimation

sample from averaging every possible subset of the forecasts (ignoring subsets that include

just one forecast). The best of these is then chosen as the forecast combination on new

outcomes of the forecasts to be combined. There is a sense in which this method captures

the best of both worlds. By never having to actually estimate the weights the method is fast

and does not � for each subset considered � result in the estimation error from estimating

the weights. On the other hand as we have noted the models can pick up many models

for which simple averaging is likely to be a poor method. In contrast to Ridge, common

shrinkage and simple Bayesian approaches, this method does not involve shrinking all of the

weights towards the averaging vector but allows for models to be selected that are �far�from

this prior.

The method itself is straightforward to program and quick to run. In the case of m = 4,

the method requires consideration of the average over all four forecasts, the four possible

combinations of three of the four forecasts, and six possible combinations of two of the

forecasts. Hence it requires taking only 11 averages and a single estimation of the variance

covariance matrix to construct the estimator. The method could also be varied to favor one

of the averages (presumably the total average), by selecting not the smallest but the smallest

so long as it below the total average by some pre-set percentage. If not, the total average

would be taken. In the results below we consider the method that chooses the smallest

regardless of which model it is.

We present some Monte Carlo results to illustrate the properties of the best subset

averaging procedure. For the design we have four possible forecasts, with the forecast error

being mean zero normal with variance covariance matrix �. All variances are set to unity,

and we consider variations in the correlations designed to capture various possibilities for the

optimal vector. Table 2 gives the values for the correlations along with the optimal weights

using the known value for �: In DGP1 we consider a situation where the correlation matrix

is of the form in (1), so averaging is optimal. The next two speci�cations of � (DGP2 and
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DGP3) are models for which relative loss from averaging over optimal combination is half

of its maximal amount de�ned in the previous section (the maximal amount for m = 4 is

25%). We include two designs to capture the situations where even though the relative loss

is not at its maximum, it is possible at this relative loss for the weights to be not too far

from averaging a subset of the forecasts as well as those for which this is less true. DGP2

captures the situation where the optimal vector is not too far from averaging the �rst two

forecasts. DGP3 has weights that are far from averaging any subset, with the �rst forecast

garnering most of the weight and the second somewhat less with all having some positive

weight. Finally, in DGP4 we present the case (close to) the models identi�ed in Proposition

2 (we make the correlation between the last two forecasts close to but not equal to one).

This last case is one where we expect the optimal and best subset averaging procedures to

do well relative to averaging since the relative loss from averaging is near its maximum.

Table 2: Monte Carlo designs

r12 r13 r23 r14 r24 r34 Weights

DGP1 0.4 0.4 0.1 0.1 0.4 0.4 (0.25,0.25,0.25,0.25)

DGP2 0.1 0.6 0.4 0.4 0.6 0.8 (0.44,0.44,0.06,0.06)

DGP3 0.066 0.2 0.7 0.4 0.5 0.8 (0.45,0.38,0.12,0.05)

DGP4 0 0.1 0.9 0.4 0.6 0.8 (0.5,0.5,0,0)

For each of the designs we generate 80 observations, using 40 observations for estimating

weights and the remaining 40 for evaluating the loss. Results are reported in Table 3.

The �rst column presents loss from estimating the optimal combination weights in the �rst

sample and applying these weights (without any updating) to the second sample. The second

column reports the loss from averaging the forecasts over the evaluation sample relative to

the loss from the �rst column of results (estimating the optimal weights out of sample). A

value greater than unity represents a larger loss from averaging. The third column reports

the out of sample loss from the best averaging procedure relative to the result of the �rst

column. The last column reports the loss from estimating the optimal combination weights

in sample rather than out of sample, and is included for comparison to the �rst column of

results. Each number reported is the average over 10000 replications.

For DGP1, where the averaging method is optimal, unsuprisingly averaging is by far the
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Table 3: Monte Carlo results
Optimal Combination Averaging Forecasts Best Subset Averaging In Sample Optimal

Relative Loss Combination

DGP1 0.4287 0.9302 0.9990 0.5021

DGP2 0.4926 1.0501 0.9751 0.5769

DGP3 0.4689 1.0508 0.9868 0.5492

DGP4 0.4526 1.1237 0.9632 0.5302

Note: The �rst and last columns are average MSE, the second and third columns are average

MSE relative to the �rst column.

best performer. Notice that the improvement over estimating the weighting vector is about

7.5%, precisely what we would expect from an asymptotic approximation to the e¤ect of

estimation error (which is (m � 1)=T = 3=40 = 0:075): The best subset averaging method
does not with probability one choose averaging over all of the forecasts, however still does

as well as estimation. For the remaining DGP�s, we expect that estimating weights will

do better than averaging since the models have been chosen so that the relative loss from

averaging is not insigni�cant (it is 12.5% for DGP2 and DGP3 and 20% for DGP4). In all

cases averaging does indeed become the least successful method. DGP2 was chosen so that

the weights are close to one of the models considered by the best subset averaging methods,

and indeed this method performs well. It is here that we can see how there can be gains

by searching over a smaller subset of models rather than estimating the weights � there

is a considerable gain for the best subset averaging procedure over estimating the optimal

weights. When the optimal weights are however quite far from any of the models considered

by the best subset averaging procedure, there are costs. For DGP3 the best subset averaging

method still performs better than estimated weights, however is only slightly better. For the

�nal DGP, in which averaging over the �rst two forecasts is optimal and averaging over all

of them is far from optimal, the best subset averaging procedure does very well in capturing

the possibility that averaging is not a good approach but does so in a way that is far better

than directly estimating the weights. Overall, the argument for the best subset averaging

procedure is that it works well when averaging is a better approach than estimating the

optimal combination weights (which appears to be the most empirically relevant situation)

and also does well for a host of possible situations for which averaging is likely to turn out to
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be a poor estimation technique, doing either very well for the multitude of models for which

the optimal weights are not so far from averaging over a subset and still much better than

averaging when it is not.

We can also examine the method with the SPF data. We repeat the exercise of section

2 but now compare the best subset averaging procedure with both the estimated optimal

weights (in panel 1) and the average weights (in panel 2). In both cases we can see that the

best subset averaging procedure does well in practice. The �rst panel shows the relative loss

for the best subset average procedure over estimating the optimal weights. In 64.5% of the

triplets of forecasters, we have that the best subset averaging procedure provides a better

out of sample loss (relative loss is negative). This compares with the similar value of 64% for

averaging over estimating the weights (pictured in the second panel of Figure 1 in Section

2). The second panel shows the relative loss of using the best subset averaging procedure

with respect to averaging over all three forecasts. The large peak at zero shows that these

methods are the same for a large number of forecast triplets. However there are many cases

where the best subset averaging does better than simple averaging (47% of the triplets).

Figure 3: Relative loss from the Best Subset Averaging Procedure

Note: The �rst column gives the loss from the best subset averaging procedure

relative to estimated optimal weights. The second panel repeats this procedure

relative to the loss from average weights.

We also include some additional results from the same empirical analysis that generated

Figure 3. In Table 4 we show, for each of the three considered methods, the proportion of

triplets for which that method was the best performer out of sample and the proportion for
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which it was the worst out of sample performer. The results are quite striking � both the

estimated optimal weights and the averaging procedure were often the best performer, more

so that the best subset averaging procedure. However the estimated optimal combination

weights were half the time the worst performer, whilst the best subset averaging procedure

was the worst performer in only one out of every ten triplets.

Table 4: Proportion of Triplets method is best or worst

Optimal Combination Averaging Best Average

Best 0.28 0.45 0.27

Worst 0.59 0.29 0.12

Overall, the best subset averaging procedure does appear to have desirable properties.

The currently considered best approach is averaging, which is simple and often works well.

The best subset averaging method is just as simple, straightforward to apply even in un-

balanced panels of forecasts, and appears to be robust in practice. In the data we see from

Figure 3 panel 2 that they are often very similar in MSE. However in Monte Carlo results

we see situations where it can indeed help and provide a robust method either in situations

where averaging is good and where the optimal weights depart from the average weights.

The Monte Carlo results suggest that it will not do too poorly in either situation � the

results of Table 4 back this up with data where the best subset average is rarely the worst

performer of the three.

5 Conclusion

The optimal weights of Bates and Granger (1969) do not appear to work well in practice.

This �nding has been reiterated in many studies with data across many decades. This

paper attempts to shed some light on the possibility that the problem is in estimation

error. For estimation error to be the reason why estimating optimal weights does not work

out of sample, it must be that the di¤erence in the population losses between the optimal

weights and the loss from averaging are small enough that estimation error overwhelms the

potential gain. To this end, this paper examines situations where gains might be small and

characterizes potential bounds on the size of such gains.
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We �rst extended results on speci�cations of the variance covariance matrix of forecast

errors that lead to averaging being optimal. It is known that when this matrix is a scale

multiple of a correlation matrix with all correlations equal to each other that this result

holds. This is a special case of a more general result. We show that if and only if the unit

vector is a scalar multiple of an eigen vector of this variance covariance matrix then using

average weights is optimal. This means that whenever the rows of this variance covariance

matrix sum to the same value, averaging will be optimal. Obviously when these rows are

close to equivalent it will be near optimal. This is a large space of possible speci�cations

for the variance covariance matrix, and hence we might expect that for a very large set of

speci�cations of this matrix that potential, gains from optimal weights are small.

We also derive the worst case scenario for averaging when combining three or four fore-

casts under the empirically relevant constraints that the variance covariance matrix is a

correlation matrix with nonnegative correlations and when weights are constrained to be

nonnegative. We show that the maximal relative loss is 11% for combining three forecasts

and 25% for combining four forecasts. The worst case scenario for averaging is when two

of the forecast errors are uncorrelated and the remaining ones are correlated with the �rst

two in such a way that the optimal combination is to take the average of the �rst two

forecasts only. From the results with the SPF data, it seems unlikely that we might have

two uncorrelated forecast errors in practice. If we allow the �rst two to be correlated, the

(maximal) gain of optimal weights over averaging declines precipitously. For example if the

correlations remain such that the optimal combination is to average over the �rst two fore-

casts, the relative loss as a function of the correlation of the �rst two forecast errors (r12) is

(2=9)�(5+4r12)=(1+r12)�1 which is under 6% at r12 = 0:3 and under 5% at r12 = 0:4 (from
the SPF data, these are values for which most of the estimated correlations were larger).

Hence we expect that with these restrictions it might be common that estimation error is

larger than the potential gain.

We also examined results for when we have a larger number of forecasts to combine.

Conditions were derived for which when there are many forecasts averaging and optimal

combination might be expected to be similar. We also found models for which averaging

might work poorly, and showed that for large numbers of forecasts the gains from optimal

combination could be quite large even with the restrictions mentioned in the previous para-
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graph. However these situations could be considered somewhat unlikely, although when they

happen averaging might be a poor approach.

Finally, we presented what we called the best subset averaging method. Since the largest

gains occur (under the restrictions on the speci�cation mentioned above) when averaging

over a subset of the forecasts is optimal, we suggest a procedure that examines averages of

all possible subsets of the forecasts (which for even a moderately large number of forecasts

is a small set of averages) and chooses the model with the smallest MSE. This method has

the nice property that it can mimic both the averaging procedure when it is good and the

optimal combination when it is much better than averaging across all forecasts. It is shown

to be a robust method in Monte Carlo and when applied to forecasting real GDP using the

SPF data.

6 Proofs

Proof. (Proposition 1)

For any symmetric non-negative de�nite matrix � we have that there exist matrices C

and � such that C�C 0 = � where � has zeros in the o¤ diagonals and the eigen values of

� for diagonal elements. The matrix C has columns ci equal to the eigen vectors associated

with the eigen values which are orthonormal so C 0C = CC 0 = I: Note that

� = C�C 0 =
mX
i=1

�icic
0
i:

Consider �rst the term from the sample average, i.e

E[(yT+h � faT )2] = �2" + �2"m�2�0m
~��m:

Examining the second term, we have

m�2�0m ~��m = m�2�0m

 
mX
i=1

�icic
0
i

!
�m

� m�2�max�
0
m

 
mX
i=1

cic
0
i

!
�m

= m�2�max�
0
m�m

=
�max
m

! 0:
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Note that we used Im = CC 0 =
mP
i=1

cic
0
i in the third line.

Now consider the result from the optimally combined forecast method.

(�0m�
�1�m)

�1 = (�0m

h
�2"�m�

0
m + �

2
"
~�
i�1

�m)
�1

= �2"(�
0
m

h
�m�

0
m +

~�
i�1

�m)
�1:

To solve this, note that for G nonsingular and H rank 1 that (G + H)�1 = G�1 � (1 +
tr(HG�1))�1(G�1HG�1) (see Miller (1981) for example): For our problem �m�0m is rank one,

tr
�
�m�

0
m
~��1
�
= �0m

~��1�m and hence

(�m�
0
m +

~�)�1 = ~��1 � (1 + �0m ~��1�m)�1 ~��1�m�0m ~��1

and

(�0m�
�1�m)

�1 = �2"(�
0
m

h
�m�

0
m +

~�
i�1

�m)
�1

= �2"

�
�0m
~��1�m � (1 + �0m ~��1�m)�1(�0m ~��1�m)2

��1
= �2"

 
�0m
~��1�m

1 + �0m ~�
�1�m

!�1
= �2" + �

2
"

�
�0m
~��1�m

��1
:

Hence for the result we require that limm!1

�
�0m ~�

�1�m

��1
= 0: This follows as

�0m
~��1�m = �0m

 
mX
i=1

��1i cic
0
i

!
�m

� ��1max�
0
m

 
mX
i=1

cic
0
i

!
�m

=
m

�max

and so
�
�0m
~��1�m

��1
� m�1�max ! 0 if the largest eigen value is bounded.

Lemma 1 For the problem in (2) then there exist local maxima such that

(a) for any integer a � (m+ 2)=2 we have �a = Ia and �b = �m�a�0m�a
(b) locally optimal weights are 1=a for the �rst a forecasts and zero for the remaining

forecasts.

(c) locally optimal relative loss is (a� 1)�m�1(2a� 2a2) +m�2(a3 � a2):
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Proof. We rewrite the Lagrangian

L = (�0m��m)(�0a��1a �a)+
mX

i;j=1;i6=j

�ijrij+
mX

i;j=1;i6=j

ij(1�rij)+
aX
i=1

�iu
0
i�
�1
a �a+�

0
r(�m�a��0ab��1a �a)

to allow for singular �. The Lagrange multipliers �ij refer to the nonnegativity constraint on

rij, the ij refer to the constraints that rij � 1, �i refer to the nonnegativity of the weights
(for which the numerators are u0i�

�1
a �a, the denominators are positive and nonzero) and �r

is a vector of constraints on the condition required so that the weights on the remaining

forecasts are zero.

For the result we require that at �a = Ia that the equality constraint holds (�r nonzero)

and the remaining multipliers are positive.

The �rst order conditions for i = 1; :::a; j = i+ 1; :::; a can be written as

0 = 2(�0a�
�1
a �a)� 2(�0m��m)(�0a��1a �a)2!i!j + �ij � ij

�(�0a��1a �a)
aX
k=1

�k
�
u0k�

�1
a ui!j + u

0
k�

�1
a uj!i

�
+(�0a�

�1
a �a)�

0
r

�
�0ab�

�1
a ui!j + �

0
ab�

�1
a uj!i

�
:

For i = 1; :::; a, j = a+ 1; :::;m we have

0 = 2(�0a�
�1
a �a) + �ij � ij � (�0a��1a �a)!i�0rum�aj

where um�aj is an (m� a)x1 vector of zeros with a value of unity in the jth column.
For i = a+ 1;...,m and j = i+ 1; :::;m we have that

0 = 2(�0a�
�1
a �a) + �ij � ij: (3)

The last constraint can only be satis�ed if rij = 1 (so ij = 2(�
0
a�

�1
a �a) > 0): This result

makes sense since (�0m��m)(�
0
m�

�1�m) = (�
0
a�a�a+ �

0
b�b�b+2�

0
a�ab�b)(�

0
a�

�1
a �a) which is strictly

increasing in rij in �b: Hence the optimal solution when not all weights are nonzero is when

all of the remaining forecast errors are perfectly correlated. At �a = Ia the weights !i are

all equal to 1=a and (�0a�
�1
a �a) = a: Since u

0
i�
�1
a �a = 1 > 0 then �i = 0 and so these terms

drop. At rij = 0 for i = 1; ::a; j = i + a; :::; a then ij = 0 for these terms. We can now

rewrite the �rst two sets of FOC as

0 = 2a� 2(�0m��m) + �ij + �0r (�0abui + �0abuj)

0 = 2a+ �ij � ij � �0rum�aj :
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Consider an internal solution for rij, i=1,..,a and j = a + 1; :::;m: Then each element

of �r is equal to 2a 6= 0 so the constraint holds and �r = 2a�b: It follows from the perfect

correlation between the last (m� a) forecasts that �ab = ra 
 �0b where ra is any row of �ab.
So the �rst FOC becomes

0 = 2a� 2(�0m��m) + �ij + 2a(m� a) (ri;a+1 + rj;a+1) :

So we have a local max so long as for all (i = 1; :::; a; j = i+ 1; :::; a) that

�ij = 2(�
0
m��m)� 2a� 2a(m� a) (ri;a+1 + rj;a+1) � 0:

For this solution

(�0m��m) = a+ (m� a)2 + 2(m� a)r0a�ma

= a+ (m� a)2 + 2(m� a)

and so we require

2(�0m��m)� 2a� 2a(m� a) (ri;a+1 + rj;a+1) = 2(m� a)[m� a+ 2� a (ri;a+1 + rj;a+1) � 0

so (m+2) � a(1+ ri;a+1+ rj;a+1): Since r0a�ma = 1 then a(1+ ri;a+1+ rj;a+1) � 2 so the result
holds for all a such that a � (m+ 2)=2:
Relative loss at these local optima is equal to

m�2(�0m��m)(�
0
a�

�1
a �a)� 1 = m�2 �a+ (m� a)2 + 2(m� a)� a� 1 (4)

= a� 1 +m�1(2a� 2a2) +m�2(a3 � a2):

Proof. Proposition 2.

There are a large number of possible corner solutions, since there are a large number

of correlations. Further, just as shown above that there are many sets of correlations that

lead to the averaging weights being optimal there are many combinations that lead to the

weights and loss being the same (�at spots on the surface to be optimized). We reduce the

problem slightly without loss of generality by setting r12 to be the smallest correlation. One

of the possible cases for maxima can be ruled out for the general case, so we begin with this.
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For any model with some weights zero, we have the situation of Lemma 2. For any m and a

we cannot have a solution where ra = 0 (so �ab is a matrix of zeros) as r0a�
�1
a �a = 1 for the

constraint that the remaining (m � a) weights are zero, so cannot hold at this point. We

have also shown earlier that the unconstrained problem results in a minima, not a maximum.

Remaining cases need to be examined one by one for both the m = 3 and m = 4 cases.

m = 3 case:

For them = 3 we �rst consider the a = 2 case. Here �b = 1 and so we only have elements

in �ab = ra and �a which contains only the element r12: The solution is most easily found

directly since there are only three correlations to examine. From lemma 2 we know that

the stated solution is a local maximum. At this point we have that relative loss from (4) is

10=9 � 1 � 0:11%: We need to show that other local maxima yield smaller relative losses.

Setting a = 2 we have that the constraint 1 = �0ab�
�1
a �a simpli�es to r13 + r23 = 1 + r12 for

�a nonsingular. For r12 < 1 we have that !1 = !2 (since the rows of � sum to the same

number). At this point (�0m��m) = 2(1 + r12 + 1 + 2(r13 + r23)) = 4(1 + r12) + 1 and so the

function to be optimized does not depend on r13 or r23. Substituting in for (�0m��m)(�
0
a�

�1
a �a)

results in an optimand tha has no internal solution for r12, the function is maximized at the

boundary point r12 = 0 which is the claimed restricted maximum. For r12 = 1, the �rst two

forecasts are perfectly correlated and so r13 = r23, the relative loss is [(5+4r13)=9]� 1 which
is no larger than zero.

For the case of a = 3 (so �a = �) we have already ruled out the unrestricted case. In

general FOC for this problem are of the form

0 = 2(�0m�
�1�m)� 2(�0m��m)(�0m��1�m)2!i!j + �ij � ij

for each (i; j) = (1; 2); (1; 3) and (2; 3). For the model where a single correlation is zero and

the remainder are interior (say r12 = 0 with r13 and r23 interior) we have that !1 = !2 and

hence by direct calculation the constraint r13+r23 = 1+r12 holds. Hence in this case we are in

the situation of the previous paragraph, where all results have been ruled out apart from the

claimed optimal solution. For r12 = r13 = 0 we have that from the FOC for r23 (interior) that

!3 = 1=(!2(�
0
m��m)(�

0
m�

�1�m)) and from the FOC for r12 then �12 = 2(�0m�
�1�m)(!1 � 1):

For a nonnegative result this requires that !1 = 1 and the remaining forecasts have zero

weight. For this case relative loss is below the claimed maxima for any r23: This also rules

out the case of r12 = r23 = 0 by rearranging the forecasts. For r12 and r13 interior and the r23
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on its bound we have that !2 = !3 and hence we would have the case where there are only

weights on the last two forecasts (which is the same as the case of the previous paragraph

after rearranging the forecasts).

Finally, we need to rule out cases where some are interior and some correlations are unity.

If all three correlations are perfectly correlated, then the optimal solution is to take one of

them, averaging over all of them leads to a relative loss of zero (since the average is equal

to any one of the forecasts). If two are perfectly correlated, then we are at the point of

combining two forecasts which means even weights on the two forecasts. Averaging then

leads to a relative loss that is at most zero.

m = 4 case:

For the m = 4 problem, there are a much larger set of possibilities to rule out. We need

to rule out all of the other possibilities when a = 2 and all of the possibilities when a = 3:

First note that relative loss for the claimed optimum is from plugging into (4) equal to 0.25.

For the problem when a = 2, we have that !1 = !2 (this is true for any correlation) and

so !opt0�!opt = (�0a�a�a)=4 = (1+ r12)=2: From lemma 2 we have that r34 = 1 at the optimal

solution (this follows from FOC of the form in (3). From lemma 2 we have that �0ab = �2
r0a
where ra has two elements (the �rst is r13 = r23 and the second is r14 = r24): Hence the

restriction for the last two weights zero is r0a�
�1
a �a = 1 which from the m = 3 case we have

seen is r0a�2 = 1 + r12: At this solution

(�0m��m)(�
0
a�

�1
a �a) =

�
2

1 + r12

�
(2(1 + r12) + 4 + 4r

0
a�a)

= 4 +
2(4 + 4(1 + r12))

1 + r12
= 4 + 8 + 8=(1 + r12):

Here the optimal choice is r12 = 0 and hence (�0m��m)(�
0
a�

�1
a �a) = 20 and is at the stated

optimal solution..

For the problem at a = 3; if ra = �a then the restriction �0a�
�1
a �a = 1 hence loss is unity.

Then (�0a�a�a + 1 + 2r
0
a�a) < 12 and so this cannot be a global minimum. Also, �a = I3

results in a loss of 3(3+1+2r0a�a) = 3(4+2) = 18 < 20 so this cannot be a global maximum.

Similarly, if �a were singular due to all of the �rst three forecast errors being perfectly

correlated then the weights are anything that sums to one, and optimal loss !0a�!a = 1 so

loss is at most 1(1+ 1+ 2�0ara) � 8 < 20 so again this is not a global max. What remains to
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be shown is that there are no internal solutions or partial internal solutions, which is more

di¢ cult.

The FOC are of the form (where the tilda refers to that variable multipled by (�0a�
�1
a �a)

�1)

0 = 1� wiwjL+ ~�ij � ~ij � ~�r(r0a��1a uiwj + r0a��1a ujwi) rij in �a

0 = 1 + ~�ij � ~ij + ~�rwi rij i=1,2,3; j = 4: (5)

If all of the ri4 are interior, then ~�r = �1=wi for i = 1; 2; 3 and hence the weights are

equal. For this to be true, we know that r12 = r13 = r23 = r and hence

��1a =
1� r

1� 3r2 + 2r3

0BB@
1 + r �r �r
�r 1 + r �r
�r �r 1 + r

1CCA :
Since r0a�

�1
a �a = 1 =

�
(1�r)2

1�3r2+2r3

�
r0a�a then we have the result for r

0
a�ma: Further (�

0
a�

�1
a �a) =

3(1� r)2=(1� 3r2 + 2r3), so relative loss is

L =
3(1� r)2

1� 3r2 + 2r3

"
3 + 6r + 1 + 2

�
(1� r)2

1� 3r2 + 2r3

��1#

=
3(4� 2r � 8r2 + 6r3)

1� 3r2 + 2r3 + 6:

At r = 0, this is 18<20 and hence not a solution. In the limit as r approaches one (by

iterating l�hopital) we have a limit of 16<20 and hence not a solution. Could also just show

that this is decreasing in r:

A further possibility is that one of the elements of ri4 are zero. Setting the �rst to zero,

with the remaining two interior results in the FOC

0 = 1 + ~�rwi i=2,3; j = 4:

0 = 1 + ~�ij + ~�rwi (i; j) =(1; 4):

For this solution ~�r = �1=!2 = �1=!3 so !2 = !3: Further, ~�14 = (!1=!2) � 1 � 0 so
!1 � !2: For equalty of the weights u02��1a �a = u03��1a �a which results in the expression

(r13 � r12)(1 + r23 � r12 � r13) = 0:

At the solution (1 + r23 � r12 � r13) = 0 then w1 = 0 and since !1 � !2 = !3 this cannot be
a solution for the FOC. For the solution r12 = r13;the problem is slightly simpli�ed. From
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r0a�
�1
a �a = 1 we have that r24 = (u

0
2�

�1
a �a)

�1 � r34 so r0a�a = (u02��1a �a)�1: The problem can

now be stated as

max
r12;r23

�
3 + r23 � 4r12
1 + r23 � 2r212

�
(4 + 4r12 + 2r23) + 2

(1 + r23 � 4r12)
1� r12

:

With the constraint that r12 � r23 this is maximized as r23 ! 1 and r12 ! 0; which is the

case where the second and third forecast errors are perfectly correlated and is the maximal

solution given above where we give weight equal to one half on the �rst forecast and a quarter

to each of the identical second and third forecasts.

The next possibility to check is that only one of the elements of ra is nonzero. In this

case, we have that

(�0m��m)(�
0
a�

�1
a �a) = (�0a�a�a)(�

0
a�

�1
a �a) + (1 + 2r34)(�

0
a�

�1
a �a)

� 10 + 3(�0a�
�1
a �a)

� 10 + 3 � 3

= 19

which is less than the worst case for the solution above.

Finally, with ra elements interior consider some elements of �a as corner solutions. With

two zero correlations, set r12 = r13 = 0: In this case by direct calculation we have

(�0m��m)(�
0
a�

�1
a �a) =

�
1 + 2(1 + r23)

2

(3 + r23)2

�
(4 + 2r23 + 2(r14 + r24 + r34)):

The restriction r0a�
�1
a �a = 1 yields r14 = 1� (r24 + r34)=(1� r23): Substituting this into the

above expression yields

(�0m��m)(�
0
a�

�1
a �a) =

�
1 + 2(1 + r23)

2

(3 + r23)2

��
6 + 2r23 � 2(r24 + r34)

�
r23

1� r23

��
:

The FOC for the derivative with respect to either r24 or r34 yields

0 = �2
�
1 + 2(1 + r23)

2

(3 + r23)2

��
r23

1� r23

�
:

For 0 < r23 < 1 there is no solution so this cannot be a maximum. As r23 ! 1 both the

second and third forecast errors become perfectly correlated and hence the loss is identical

to the result where we combine the �rst two forecasts (where here we can have any weights

on the second and third such that they sum to one half, with one half weight on the �rst).
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With a single zero correlation (set r12 = 0) we follow the same strategy as above. The

restriction r0a�
�1
a �a = 1 which yields

r34 =
r14(1� r23)(1 + r23 � r13) + r24(1� r13)(1 + r13 � r23)

(1� r13 � r23)

where r13 + r23 < 1 (if these are equal we have the optimal result of weights of one half

on the �rst and second forecasts as above): Substituting this into (�0m��m)(�
0
a�

�1
a �a) with

direct calculation for (�0a�
�1
a �a) yields an expression for (�

0
m��m)(�

0
a�

�1
a �a) that depends on

{r13; r23; r14; r24g: From the �rst order condition with respect to r14 and calculation results in
an expression involving both r13 and r23, which cannot be satis�ed for a real solution ruling

out this possibility as an optimal solution.
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