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In this article we consider identification and estimation of a censored nonparametric location scale-model. We first show that in the case
where the location function is strictly less than the (fixed) censoring point for all values in the support of the explanatory variables, the
location function is not identified anywhere. In contrast, when the location function is greater or equal to the censoring point with positive
probability, the location function is identified on the entire support, including the region where the location function is below the censoring
point. In the latter case we propose a simple estimation procedure based on combining conditional quantile estimators for various higher
quantiles. The new estimator is shown to converge at the optimal nonparametric rate with a limiting normal distribution. A small-scale
simulation study indicates that the proposed estimation procedure performs well in finite samples. We also present an empirical illustration
on unemployment insurance duration using administrative-level data from New Jersey.
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1. INTRODUCTION

The nonparametric location-scale model is usually of the
form

yi = µ(xi) + σ0(xi )εi , (1)

where xi is an observed d-dimensional random vector and εi is
an unobserved random variable, distributed independently of xi

and assumed to be centered around 0 in some sense. The func-
tions µ(·) and σ0(·) are unknown. This location-scale model has
received a great deal of attention in the statistics and economet-
rics literature (see, e.g., Fan and Gijbels 1996, chap. 3; Ruppert
and Wand 1994), and existing nonparametric methods, such as
kernel, local polynomial, and series estimators, can be used to
estimate µ(·) from a random sample of observations of the vec-
tor (yi,x′

i )
′.

In this article we consider extending the nonparametric
location-scale model to accommodate censored data. Semi-
parametric (fixed) censored regression models, where µ(xi) is
known up to a finite-dimensional parameter, have been studied
extensively in the econometrics literature (see Powell 1994 for
a survey). The advantage of our nonparametric approach here
is that economic theory rarely provides any guidance on func-
tional forms in relationships between variables.

Censoring occurs in many types of economic data, because
of either nonnegativity constraints or top coding. To allow for
censoring, we work within the latent dependent-variable frame-
work, as is typically done for parametric and semiparametric
models. We thus consider a model of the form

y∗
i = µ(xi) + σ0(xi )εi , (2)

yi = max(y∗
i ,0), (3)

Songnian Chen is Professor of Economics, Department of Economics,
Hong Kong University of Science and Technology, Hong Kong (E-mail:
snchen@ust.hk). Gordon B. Dahl is Associate Professor of Economics (E-mail:
dahl@troi.cc.rochester.edu) and Shakeeb Khan is Associate Professor of Eco-
nomics (E-mail: skhan@troi.cc.rochester.edu), Department of Economics, Uni-
versity of Rochester, Rochester, NY 14627. An earlier version of this article
was presented at the 2000 MEG at the University of Chicago, the 2001 CEME
at the University of Rochester, the 2001 Summer Meetings of the Econometric
Society at the University of Maryland, and the 2001 CESG at the University of
Waterloo. The authors thank D. Card, B. E. Honoré, A. Lewbel, O. B. Linton,
L. Lochner, J. L. Powell, and seminar participants at Boston College, Brown
University, Duke University, Harvard/MIT, Syracuse, and the University of
Rochester for their helpful comments. They also thank D. Card and P. Levine
for generously providing the dataset. Chen gratefully acknowledges support
from the RGC grant HKUST6070/01H, and Khan gratefully acknowledges sup-
port from the National Science Foundation through grant SES-0213621.

where y∗
i is the unobserved latent dependent variable and yi is

the observed dependent variable, which is equal to the latent
variable y∗

i when it exceeds the fixed censoring point, which we
assume, without loss of generality, to be 0. If the latent variable
does not exceed the censoring point, then the observed depen-
dent variable is equal to the censoring value. We note that in
models with fixed censoring, there is usually no need to include
a censoring indicator variable, because the latent variable y∗

i is
assumed to be continuously distributed.

We consider identification and estimation of µ(xi ) after im-
posing the location restriction that the median of εi = 0. We
emphasize that our results allow for identification of µ(xi ) on
the entire support of xi . This is in contrast to identifying and
estimating µ(xi ) only in the region where it exceeds the cen-
soring point, which could be easily done by extending Powell’s
(1984) CLAD estimator for the semiparametric censored re-
gression model to a nonparametric setting.

Our work is motivated by the fact that there are often situ-
ations where the econometrician is interested in estimating the
location function in the region where it is less than the censoring
point. One situation is when the dataset is heavily censored. In
this case, µ(xi ) will be less than the censoring point for a large
portion of the support of xi , requiring estimation at these points
sufficient to draw meaningful inference regarding its shape.

Another situation would be estimating relationships in the
presence of some sort of constraint. Of interest from, say, a pol-
icy perspective would be to estimate how an economic agent
would behave if the constraint were lifted. For example, a labor
economist would be interested in estimating how long the un-
employed would stay on unemployment insurance if the maxi-
mum time allowed were increased.

Our approach is based on a structural relationship between
the conditional median and upper quantiles that holds for ob-
servations where µ(xi ) ≥ 0. This relationship can be used to
motivate an estimator for µ(xi) in the region where it is nega-
tive. Our results are thus based on the condition

PX
(
xi :µ(xi) ≥ 0

)
> 0, (4)

where PX(·) denotes the probability measure of the random
variable xi .
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Variations of censored nonparametric models have been stud-
ied elsewhere in the literature. Lewbel and Linton (2002) esti-
mated a nonparametric censored regression model with a fixed
censoring point based on a mean restriction on the disturbance
term. Their approach does not require the heteroscedasticity
to have the multiplicative structure imposed here, but gener-
ally requires it to satisfy some sort of exclusion restriction.
Van Keilegom and Akritas (1999) estimated a nonparametric
conditional distribution function in a censored model without
imposing a location restriction, and consequently estimate a
general conditional location functional. An estimator of µ(x)

can be naturally recovered from their estimator by using the
identification conditions established in this article. In contrast,
the estimator proposed here makes explicit use of this identifi-
cation condition to directly identify and estimate the parameter
of interest µ(x).

The article is organized as follows. The next section explains
the key identification condition, and motivates a way to esti-
mate the function µ(·) at each point in the support of xi . Sec-
tion 3 introduces the new estimation procedure and establishes
the asymptotic properties of this estimator when the identifica-
tion condition is satisfied. Section 4 explores the finite-sample
properties of the estimator through the results of a simulation
study. Section 5 presents an empirical illustration on unemploy-
ment insurance duration. Section 6 concludes by summarizing
results and discussing extensions for future research. An Ap-
pendix presents proofs of the theorems.

2. IDENTIFICATION OF THE LOCATION FUNCTION

In this section we consider conditions necessary for identify-
ing µ(·) on X , the support of xi . Our identification results are
based on the following assumptions:

I1. The disturbance term εi is distributed independently of xi

and has a density function with respect to Lebesgue mea-
sure that is positive on R.

I2. εi has median 0.
I3. X is a subset of R

d , and the components of xi may be
discretely or continuously distributed. Without loss of
generality, we assume that the vector xi can be parti-
tioned as xi = (x(ds)

i ,x(c)
i ), where x(ds)

i is discretely dis-

tributed and x(c)
i is continuously distributed.

I4. The scale function σ0(·) is continuous in x(c)
i for all pos-

sible values of x(ds)
i , strictly positive and bounded on

every bounded subset of X .
I5. The location function µ(·) is continuous in x(c)

i for

all possible values of x(ds)
i , and |µ(·)| < ∞ on every

bounded subset of X .

The main result of this article establishes the sufficiency
of (4) for identification of µ(·) on every point in X . The proof
of the theorem suggests a natural estimator of µ(·), so it is in-
cluded in the main text.

Theorem 1 (Sufficiency). Suppose assumptions I1–I5 hold,
and condition (4) holds. Then µ(·) is identified for all x ∈X .

Proof. We show identification sequentially. We first show
identification for all points where µ(·) is nonnegative. We

then show how identification of µ in this range of the sup-
port of xi can be used to identify µ where it is negative. To
show identification in the nonnegative region, we let x0 be any
point that satisfies µ(x0) ≥ 0. Suppose first that µ(x0) = 0.
We show that µ̃(x0) < 0 or µ̃(x0) > 0 leads to a contradic-
tion. If µ̃(x0) = −δ < 0, then let σ̃ (x0) be a positive, finite
number. Let cα denote the αth quantile of εi , and let qα(·) de-
note the α conditional quantile of yi as a function of xi . We
note by assumption I1 that cα , when viewed as a function
of α, is continuous on [0,1] and has bounded derivative on
any compact subset of (0,1). Thus if we let ε̃i denote an al-
ternative error term, then, by assumption I2, it must follow
that c̃.5 = 0 and 0 < c̃α < δ/σ̃ (x0) for α ∈ (.5, .5 + ε), where
δ = −µ̃(x0) and ε is an arbitrarily small positive constant. Not-
ing that cα > 0 for α ∈ (.5, .5 + ε), we have for α ∈ (.5, .5 + ε),
qα(x0) = max(µ(x0) + cασ0(x0),0) = max(cασ0(x0),0) > 0.
Alternatively, we have

q̃α(x0) = max
(
µ̃(x0) + σ̃ (x0)c̃α,0

)
(5)

< max(−δ + δ,0) = 0. (6)

Thus we have found quantiles where qα(x0) �= q̃α(x0), which
shows that µ(x0) = 0 is distinguishable from negative al-
ternatives. A similar argument can be used to show that it
is distinguishable from positive alternatives, establishing its
identification. It is even simpler to show that points x where
µ(x) > 0 are identified. If µ(x0) > 0 and µ̃(x0) �= µ(x0), then
q.5(x0) = µ(x0) and q̃.5(x0) = max(µ̃(x0),0) �= µ(x0).

We next show how to identify µ(x) when µ(x) < 0 given that
we have identified µ(x0) for µ(x0) ≥ 0. We first note that µ(x)

and σ0(x) are finite by assumptions I5 and I4, and by assump-
tion I1 there exists quantiles α1 < α2 < 1 such that

qα1(x) = µ(x) + cα1σ0(x) > 0 (7)

and

qα2(x) = µ(x) + cα2σ0(x) > 0. (8)

Note that because qα1(x), qα2(x) are observable, we can iden-
tify the values of µ(x) and σ0(x) from the values of cα1 and
cα2 by solving the foregoing system of equations. These values
are unknown, but we use the identification of µ(x0) to identify
their values.

Before illustrating how to do this, we note that the distri-
bution of εi is identified only up to scale, because σ0(xi) is
unknown. For ease of exposition, we impose the scale normal-
ization cα1 ≡ 1, so we need solve only for cα2 .

We combine the following values of the conditional quantile
function evaluated at the three distinct quantiles .5, α1, and α2,
at the regressor value x0:

q.5(x0) = µ(x0), (9)

qα1(x0) = µ(x0) + cα1σ0(x0), (10)

and

qα2(x0) = µ(x0) + cα2σ0(x0). (11)

This enables us to identify cα2 as

cα2 = qα2(x0) − q.5(x0)

qα1(x0) − q.5(x0)
, (12)
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which immediately translates into identification of µ(x) and
σ0(x) from the relationships

qα�(x) = µ(x) + cα�σ0(x), � = 1,2, (13)

by solving the two-equation system for the two unknowns. This
completes the proof of the theorem.

Remark 1. Although the foregoing theorem establishes the
sufficiency of (4), it can also be shown that this condition is
necessary for identification. That is, identification of µ(·) is
impossible anywhere on the support of xi if µ(·) is negative
everywhere on X .

Remark 2. The (unbounded) support condition on εi in as-
sumption I1 is not always necessary. In the proof it was used
only to ensure that the quantile function exceeded the censor-
ing point for a large enough quantile. Therefore, given the as-
sumptions on µ(·) and σ0(·) (I4 and I5), εi can have a bounded
support if the support of xi is bounded.

Remark 3. Identification of µ(·) where it is negative involves
identification of the quantiles of the homoscedastic component
of the disturbance term. Thus an additional consequence of con-
dition (4) being satisfied is that the quantiles of εi are identi-
fied for all α ≥ α0 ≡ inf{α : supx∈X qα(x) > 0}. [We note that
α0 ≤ .5 when condition (4) holds.] This result can be used to
estimate and construct hypothesis tests regarding the distrib-
ution of εi , and we consider this when we estimate µ(·) and
σ0(·). We also note that if the econometrician were to impose
a distributional form on εi , then the (known) values of cα1 and
cα2 could be used to identify and estimate the location and scale
functions, without requiring condition (4).

We conclude this section by noting that our identification
result involved only the identification of one additional distur-
bance quantile. Identification of further quantiles would overi-
dentify the parameters of interest and will be incorporated in
the estimation procedure to improve efficiency.

3. ESTIMATION PROCEDURE
AND ASYMPTOTIC PROPERTIES

3.1 Estimation Procedure

In this section we consider estimation of the functions µ(·)
and σ0(·). Our procedure is based on our identification results
in the previous section, but modified to incorporate more in-
formation in the model. Identification is shown through the use
of two quantiles corresponding to quantile functions exceed-
ing the censoring point. The estimation procedure uses several
quantiles to improve the efficiency of estimating the functions,
as was alluded to at the end of the previous section.

Our procedure involves nonparametric quantile regression at
different quantiles and different points in the support of the re-
gressors. Our asymptotic arguments are based on the local poly-
nomial estimator for conditional quantile functions introduced
by Chaudhuri (1991a,b). For expositional ease, we describe this
nonparametric estimator only for a polynomial of degree 0 (see
Chaudhuri 1991a,b; Chaudhuri, Doksum, and Samarov 1997,
Chen and Khan 2000, 2001; Khan 2001; Khan and Powell 2001
for the additional notation involved for polynomials of arbitrary
degree).

First, recall that we assumed that the regressor vector xi can
be partitioned as (x(ds)

i ,x(c)
i ), where the dds-dimensional vec-

tor x(ds)
i is discretely distributed and the dc-dimensional vec-

tor x(c)
i is continuously distributed. We let Cn(xi) denote the

cell of observation xi and let hn denote the sequence of band-
widths that govern the size of the cell. For some observation
xj , j �= i , we let xj ∈ Cn(xi) denote that x(ds)

j = x(ds)
i , and

x(c)
j lies in the dc-dimensional cube centered at x(c)

i with side
length hn.

Let I [·] be an indicator function, taking the value 1 if its argu-
ment is true and 0 otherwise. Our estimator of the conditional
αth quantile function at a point xi for any α ∈ (0,1) involves
αth quantile regression (see Koenker and Bassett 1978) on ob-
servations that lie in the defined cells of xi . Specifically, let
θ̂ minimize

n∑

j=1

I [xj ∈ Cn(xi )]ρα(yj − θ), (14)

where ρα(·) ≡ α| · | + (2α − 1)(·)I [· < 0].
Our estimation procedure is based on a random sample of

n observations of the vector (yi,x′
i )

′ and involves applying the
local polynomial estimator at three stages. As we explain, each
of the stages is analogous to a step in the identification proof
in the previous section. Throughout our description of the three
stages, “ ·̂ ” denotes estimated values.

Stage 1. Local Constant Estimation of the Conditional Me-
dian Function. In the first stage, we estimate the conditional
median at each point in the sample, using a polynomial of de-
gree 0. We let h1n denote the bandwidth sequence used in this
stage. Following the terminology of Fan (1992), we refer to this
as a local constant estimator, and denote the estimated values
by q̂.5(xi ). These estimated values enable us to determine the
observation(s) whose median exceeds the censoring value, anal-
ogous to x0 in the proof of Theorem 1.

Stage 2. Weighted Average Estimation of the Disturbance
Quantiles. The second stage is the estimation analog of (12).
We generalize the results from the previous section in two ways,
by using several quantiles (as opposed to two), and by using all
of the observations whose median exceeds the censoring point.
These extensions serve to improve the precision of the estima-
tor.

Specifically, for α1 < α2 < · · · < αN , we estimate the un-
known disturbance quantiles cα� , � = 1,2, . . . ,N . To impose a
scale normalization that is invariant to quantiles on the grid, we
select a quantile, αs > .5, which need not be on the grid, and
set cαs ≡ 1 and estimate cα� up to scale by a weighted average
of local polynomial estimators. The estimator is based on (12).
In this stage we use a polynomial of degree k, and denote the
second-stage bandwidth sequence by h2n. We use the super-
script (p) to distinguish the estimator of the median function
in this stage from that in the first stage. Letting ĉα� denote the
estimators of the unknown constants cα� , we define them as

ĉα� = 1

n

n∑

i=1

τ (xi )w
(
q̂.5(xi )

)

× (q̂α�(xi ) − q̂
(p)

.5 (xi))

(q̂αs (xi ) − q̂
(p)

.5 (xi ))

/
1

n

n∑

i=1

τ (xi )w
(
q̂.5(xi )

)
, (15)
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where τ (xi) is a trimming function whose support, denoted
by Xτ , is a compact set that lies strictly in the interior of X .
The trimming function serves to eliminate “boundary effects”
that arise in nonparametric estimation. The function w(·) “se-
lects” the observations whose median is positive. We detail its
properties in the regularity conditions in the next section.

Stage 3. Local Polynomial Estimation at the Point of Interest.
The third stage is an estimation analog of (13) generalized to
allow for more than two quantiles. We can extend (13) to

qα�(x) = µ(x) + cα�σ0(x), (16)

which now holds true for any α� such that qα�(x) > 0. Let-
ting x denote the point at which the functions µ(·) and σ0(·)
are to be estimated, we combine the local polynomial estima-
tor (with polynomial order k and bandwidth sequence h3n) of
the conditional quantile function at x using quantiles α�, along
with the estimator of the unknown disturbance quantiles, ĉα� to
yield the estimator of µ(x), σ0(x). Let θ0(x) denote the vector
(µ(x), σ0(x)), and let θ̂ (x) denote its estimator, which we define
as the least squares estimator based on the N “observations,”
which treat q̂α�(x) as “dependent variables,” and ĉα� as “inde-
pendent variables.” Specifically, letting ĉα� denote the vector

(1, ĉα�) and ˆ̃
dα� denote the indicator I [q̂α�(x) ≥ ε], where ε > 0

is a small constant, we can define the estimator as

θ̂ (x) =
( N∑

�=1

ˆ̃
dα� ĉα� ĉ′

α�

)−1( N∑

�=1

ˆ̃
dα� ĉα� q̂α�(x)

)

. (17)

Remark 4. We note that the asymptotic results in this article
can be obtained using any nonparametric procedure for estimat-
ing conditional quantiles of the observed dependent variable in
the various stages. Examples of such procedures include those
proposed by Beran (1981), Dabrowska (1987, 1992), and Fan
and Gijbels (1994, 1996). These procedures have the advantage
of accommodating models with random censoring, which often
occurs in biostatistics. However, under their assumptions, mod-
els with fixed censoring are ruled out because they assume that
the censoring variable is continuously distributed. Nonetheless,
the identification results in this article carry over to randomly
censored models, and implementation would require replacing
the local polynomial estimator used here with one of these esti-
mators.

Remark 5. We note here that a different order polynomial
is used in the first stage than in the other two stages. The rea-
son for this is that even though the functions µ(·) and σ0(·) are
assumed to be k-times differentiable, the quantile functions in
general will not be smooth at the censoring point. Thus a lo-
cal polynomial estimator may not work well when the quantile
function is in a neighborhood of the censoring point. However,
once points in the sample that are greater than the censoring
point are “selected” in the first stage, the quantile function at
these points are sufficiently smooth for the local polynomial es-
timators to be used in the second and third stages.

Remark 6. We note that the second stage of the procedure
estimated the disturbance quantiles cα� . Interestingly, because
these estimators involve averaging quantile estimates over dif-
ferent value of xi , these estimators can converge at the para-
metric (root-n) rate, as can be proven following the arguments
in the Appendix.

3.2 Asymptotic Properties

In this section we establish the asymptotic properties of our
estimation procedure. Our results are based on the following
assumptions:

Assumption A1 (Identification). The weighting function is
positive with positive probability

PX

(
τ (xi )w

(
q.5(xi)

)
> 0

)
> 0.

Assumption A2 (Random sampling). The sequence of
(d + 1)-dimensional vectors (yi,xi ) are independent and iden-
tically distributed.

Assumption A3 (Weighting function properties). The weight-
ing function, w(·) : R → R

+ has the following properties:

A3.1. w(·) ∈ [0,1] and is continuously differentiable with
bounded derivative.

A3.2. w ≡ 0 if its argument is less than η, a small positive
constant.

Assumption A4 (Regressor distribution). We let fX(c)|X(ds)(·|
x(ds)) denote the conditional density function of x(c)

i given

x(ds)
i = x(ds), and assume that it is positive and finite on Xτ .

We let fX(ds) (·) denote the mass function of x(ds)
i , and assume

a finite number of mass points on Xτ .
Hereafter, we let fX(·) denote fX(c)|X(ds)(·|·)fX(ds)(·).
Assumption A5 (Disturbance density). The disturbance terms

εi are assumed to have a continuous distribution with density
function that is bounded, positive, and continuous on R.

Assumption A6 (Orders of smoothness). We assume the fol-
lowing smoothness conditions on the regressor density, trim-
ming, location, and scale functions:

A6.1. fX(·) and τ (·) are continuous on Xτ .
A6.2. µ(·) and σ0(·) are differentiable in x(c)

i of order p =
k + 1, with pth order derivatives being continuous
on Xτ .

Assumption A7 (Bandwidth conditions). The bandwidths
used in each of the three stages are assumed to satisfy the fol-
lowing conditions:

A7.1. h1n satisfies logn

nh
dc
1n

→ 0, h1n → 0.

A7.2. h2n satisfies logn

nh
dc
2n

→ 0, n
p

2p+dc h
p

2n → 0.

A7.3. h3n is of the form h3n = κ0n
−1

2p+dc , where κ0 is a posi-
tive constant.

Remark 7. The weighting function w(·) in Assumption A3
serves as a smooth approximation to an indicator function, se-
lecting those observations for which the estimated value of the
conditional median function is positive. For technical reasons,
we require that the weighting function assign only positive
weight to estimated conditional median values that are bounded
away from 0.

Remark 8. The bandwidth sequences h1n, h2n, and h3n in
Assumption A7 are required to satisfy different conditions. The
conditions on h1n in Assumption A7.1 ensure consistency of
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the first-stage estimator. The conditions on h2n in Assump-
tion A7.2, reflect “undersmoothing,” implying that the bias of
the nonparametric estimators used in this stage converges to 0
at a faster rate than the standard deviation. In contrast, Assump-
tion A7.3 imposes the optimal rate for h3n, so that the estimator
of θ0(·) will converge at the optimal nonparametric rate.

We now characterize the limiting distribution for the proposed
estimator of θ0(x), where x is assumed to lie in the interior of
the support of xi . Before stating the theorem, we explain the
notation that we adopt to characterize higher-order derivatives
of quantile functions that arise in the limiting distribution.

For a dc-dimensional vector of integers A, let A1,A2,

. . . ,Adc denote its individual components, whose sum we de-
note by s(A). For a regressor vector value x, denote the in-
dividual components of its continuously distributed subvector
by x1,x2, . . . ,xdc . For any quantile function of the regressors,
qα�(x), we let ∇Aqα�(x) denote the s(A)th order derivative
of qα�(x),

qα�(x) = ∂s(A)

∂x
A1
1 ∂x

A2
2 · · · ∂x

Adc

dc

qα�(x). (18)

Also, we define the constant KA as

KA =
∫

[− 1
2 , 1

2 ]dc

u
A1
1 · · ·uAdc

dc
du1 · · · dudc , (19)

where [− 1
2 , 1

2 ]dc denotes the Cartesian product of the dc inter-
vals [− 1

2 , 1
2 ].

With this notation, we can state the main theorem, which es-
tablishes that the proposed estimator converges at the optimal
nonparametric rate and has a limiting noncentered normal dis-
tribution. The proof is deferred to the Appendix.

Theorem 2. If Assumptions A1–A7 hold, then

n
p

2p+dc
(
θ̂ (x) − θ0(x)

) ⇒ N(C−1B,C−1VC−1), (20)

where

C =
N∑

�=1

d̃α�cα�c′
α�

(21)

and

V =
N∑

�=1

d̃α�cα�c′
α�

κ
−dc

0 fY |X
(
qα�(x)|x)−2

α�(1 − α�)

+
∑

α�1 <α�2

(
2d̃α�1

d̃α�2
cα�1

c′
α�2

κ
−dc

0 fY |X
(
qα�1

(x)|x)−1

× fY |X
(
qα�2

(x)|x)−1
α�1(1 − α�2)

)
, (22)

with d̃α� denoting the indicator based on true quantile function
values, fY |X(·) denoting the conditional density function of yi ,
and

∑
α�1<α�2

denoting the sum of pairs of quantiles on the grid
satisfying α�1 < α�2 .

The limiting bias of the proposed estimator of θ0(x) is a
weighted sum of limiting biases associated with each quantile,

B =
N∑

�=1

d̃α�cα�Bα�, (23)

where the limiting bias of each local polynomial quantile func-
tion estimator is of the form

Bα� = κ
p

0

p!
∑

A : s(A)=p

KA∇Aqα�(x). (24)

For conducting inference, one approach would be to con-
sistently estimate the components of the variance matrix with
consistent estimators of its components C and V. A simple es-
timator of C replaces unknown values cα� and d̃α� with their
estimators,

Ĉ =
N∑

�=1

ˆ̃
dα� ĉα� ĉ′

α�
. (25)

Estimating V is more difficult due to the presence of the con-
ditional density functions fY |X(·|·). To estimate this, we pro-
pose a Nadaraya–Watson estimator,

f̂Y |X
(
q̂α�(x)|x) =

1
n�

d+1
n

∑n
i=1 k1(

xi−x
�n

)k2(
yi−q̂α�

(x)

�n
)

1
n�d

n

∑n
i=1 k1(

xi−x
�n

)
,

where k1(·) and k2(·) are kernel functions that are continuously
differentiable with compact supports and �n is a bandwidth se-
quence. Our estimator of V is

V̂ =
N∑

�=1

ˆ̃
dα� ĉα� ĉ′

α�
f̂Y |X

(
q̂α�(x)|x)−2

α�(1 − α�)

+
∑

α�1<α�2

(
2 ˆ̃
dα�1

ˆ̃
dα�2

ĉα�1
ĉ′
α�2

f̂Y |X
(
q̂α�1

(x)|x)−1

× f̂Y |X
(
q̂α�2

(x)|x)−1
α�1

(
1 − α�2

))
.

The following theorem establishes the consistency of the pro-
posed estimator. Its proof is deferred to the Appendix.

Theorem 3. If Assumptions A1–A7 hold, and �n satisfies
�n → 0, n�

dc+1
n → ∞ and np/(2p+dc)�n → ∞, then

Ĉ−1V̂Ĉ−1 p→ C−1VC−1.

We conclude this section with a brief discussion on the struc-
ture of the asymptotic variance of the proposed estimator, and
how efficiency may be improved. The ordinary least squares
structure of the third stage of our estimator results in a “sand-
wich” form of the limiting variance matrix. Efficiency can be
improved by a generalized least squares approach, which would
weight the data in accordance with the structure of the variance
matrix. Feasibly implementing this procedure would require es-
timates of the conditional density of the dependent variable at
the selected quantiles. The choice of such weights would make
our procedure loosely analogous to that proposed by Newey and
Powell (1990).

Finally, we note that Theorem 2 provides only the limiting
distribution for a single point, x. However, this will suffice
for deriving the joint limiting distribution for several distinct
points. This is because the joint distribution of a local polyno-
mial estimator at various points exhibits asymptotic indepen-
dence across points, because the rate at which the bandwidth
converges to 0 ensures that distinct observations are used for
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the different points, analogous to results found in theorem 2.2.3
of Bierens (1987).

4. MONTE CARLO RESULTS

In this section we explore the finite-sample properties of the
proposed estimator by way of a small-scale simulation study.
We simulated from designs of the form

yi = max
(
µ(xi) + σ0(xi)εi,0

)
,

where xi is a random variable distributed uniformly between
−1 and 1, εi is distributed standard normal, and the scale func-
tion σ0(xi) is set to e.15xi . We considered four different func-
tional forms for µ(xi) in our study:

1. µ(x) = x

2. µ(x) = x2 − .35
3. µ(x) = x3

4. µ(x) = ex − 1.05.

Here we chose the constants .35 and 1.05 in the second and
fourth designs so that the censoring level was 50%, as it was
for the other two designs.

To implement the estimator, we used a grid of 25 quantiles
from .5 to .98. For the quantile estimators, we fitted a local con-
stant used in the first stage, using a bandwidth of n−1/5, and
used a local linear estimator in the second and third stages, us-
ing a bandwidth of the form κ0n

−1/5. We selected the constant
κ0 using the “rule of thumb” approach detailed Fan and Gijbels
(1996, p. 202).

The results, given in Figure 1, are based on sample sizes of
n = 100 and n = 400, with 401 replications. The function µ(·)
was estimated at 100 equispaced points, and the figure plots
the average value of the estimated function, denoted by m1(x).
Also reported is an analogous plot for results obtained from
implementing the Van Keilegom and Arkritis (1999) estima-
tor, referred to hereafter as the VK estimator, and on the figure
as m2(x). Because the VK estimator imposed no location re-
striction on εi , we impose a median 0 condition and extend the
identification results in this article to modify the VK estimator
accordingly to identify µ(·). The VK estimator involves im-
plementing the conditional Kaplan–Meier estimator of Beran
(1981), and to do so we used a Gaussian kernel function and
a bandwidth sequence of s1n

−1/5, where we determined the
constant s1 using the rule-of-thumb approach for density es-
timation introduced by Silverman (1986). We chose the rate of
n−1/5 to coincide with the rate used by Van Keilegom, Arkritis,
and Veraverbeke (2001), who conducted a thorough simulation
study of the performance of the VK estimator. Plots of mean
values for each of the estimators are presented alongside the
true function, denoted in the figure by µ(x). Also reported (in
parentheses) is the average mean squared error (AMSE) for
each estimator.

As indicated by the figure, for n = 100, our estimator per-
forms very well at points where µ(x) ≥ 0, and is further away
from the truth the further µ(x), in its negative range, is from 0.
We note that the VK estimator generally exhibits a larger bias
than our estimator, and this is especially true for the quadratic
function. Both estimators perform better for n = 400, where
they are on average closer to the true function value on its en-
tire support. We note that although neither estimator dominates

Figure 1. Simulation Results.

in terms of AMSE at n = 400, the VK estimator has a smaller
AMSE for n = 100. This may be due to the fact that the local
linear estimator estimates an additional parameter.

Although our results are very encouraging in general, we
would expect a worse finite-sample performance when more
regressors are present, because the rate of convergence would
be slower.

5. ILLUSTRATION

The estimation procedure developed in this article applies to
a variety of statistical problems with censoring. To illustrate
how the method might be implemented in practice, we consider
the example of unemployment insurance (UI) receipt. Previous
research has focused on the responses of individuals who col-
lect UI benefits for less than the time limit and generally based
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predictions on strong parametric or functional form assump-
tions (Card and Levine 2000; Ham and Rea 1987; Katz and
Meyer 1990; Meyer 1990; Moffit and Nicholson 1982; Moffit
1985; Woodbury and Murray 1997).

We model the log of the number of weeks that an individual
would like to collect UI benefits (i.e., log failure time) in the
general framework described in Section 1. The censoring point
is fixed at the time limit of 26 weeks; the latent number of weeks
a claimant would like to collect benefits is observed only when a
claimant collects benefits for less than 26 weeks. Our approach
allows estimation of the location function µ(x) without para-
metric and structural assumptions. We caution, however, that
the estimators developed in this article do not necessarily pre-
dict what will happen if maximum durations increase, because
both censored and uncensored individuals may exhibit a behav-
ioral response to a longer time limit. A conservative interpreta-
tion of our results is that our estimates represent lower bounds
on the effect of increasing the UI time limit. This interpretation
makes sense, because time limit increases should not shorten
spell lengths.

The data are taken from individual-level administrative
records for New Jersey’s UI program in 1996 and 1997. (De-
tails on New Jersey’s UI system are given in Card and Levine
2000.) For the purpose of illustration, we restrict our sample to
claimants who are male, white, are not in a union, are between
age 20 and 65, have 6–18 years of completed education, and are
eligible for 26 weeks of UI receipt. This results in a dataset con-
taining 56,938 individuals, 38% of whom are censored because
they exhaust their 26-week benefit eligibility. After restricting
the sample, the two remaining characteristics that we hypoth-
esize might influence median spell length are age and educa-
tion. Following Chamberlain (1994), we use age and education,
both measured in years, to partition the sample into 598 age–
education cells. This represents the complete interaction of age
(46 different years) with education (13 different years). We then
discard cells with fewer than 30 observations, leaving 282 cells
and reducing the sample size to 53,373 observations.

Estimation follows the stages described in Section 3. Be-
cause the data are discrete, local polynomials of degree 0
(i.e., constant terms) are used in all stages. In the first stage,
for each cell with less than 50% censoring, cell medians are
calculated. In the second stage, estimates of the unknown
disturbance quantiles are estimated up to scale. We first ob-
tain cell-level estimates for quantiles below the median. We
use a grid of 25 quantiles evenly spaced between .02 and .50.
The scale normalization that we chose was to set c.3 ≡ 1 (i.e.,
αs = .3); other choices do not alter the general findings. Esti-
mates of the cα� ’s are then formed by taking the weighted av-
erage defined in (15). The third stage regresses the estimated
quantiles q̂α�(x) on the estimated constants ĉα� and a vector
of ones, as described in (16). Standard errors for µ̂(x) are cal-
culated using the results from Theorems 2 and 3. To estimate
the conditional density functions fY |X(qα�(x)|x) that appear
in (19), we use a normal kernel and Silverman’s (1986) normal
bandwidth reference rule.

To illustrate how median spell length varies with age, con-
sider the group of claimants with exactly 16 years of education
(i.e., roughly a college degree). This subset of the data com-
prises 13,070 individuals. Before discussing the location func-

Figure 2. Estimated Median UI Spell Length by Age, for Claimants
With 16 Years of Education. Spell length is measured in log weeks. The
horizontal line indicates the censoring value, and the dashed lines indi-
cate pointwise 95% confidence intervals.

tion estimates, we note that the estimated σ0(x)’s for this group
exhibit a U-shaped pattern in age. This suggests the presence
of conditional heteroscedasticity, a possibility allowed for by
our estimator. Figure 2 displays the estimated location function
(measured in log weeks) by age, for individuals with exactly
16 years of education. The horizontal line in the figure marks
the censoring value. Pointwise 95% confidence intervals based
on asymptotic normality are included in the graph as well. The
figure reveals that the estimated median spell length generally
increases with age. The impact of age does not appear to be lin-
ear, however, with the estimated median rising faster with age
for older claimants. The change in slope with age occurs near
the point when the median is estimated to be past the censor-
ing point, illustrating the importance of a flexible estimation
approach.

6. CONCLUSIONS

In this article we have established conditions for nonparamet-
ric identification of the location and scale functions in a cen-
sored regression model. An estimation procedure was proposed
and was shown to have desirable asymptotic properties. The
procedure is simple to implement, because it is based on var-
ious quantiles of the conditional distribution of the dependent
variable, and can be computed by linear programming meth-
ods. A Monte Carlo study indicates that the estimator performs
well in finite samples. In an empirical illustration using UI spell
data, we estimate the effects of extending benefits beyond the
current 26-week maximum in New Jersey.

The results in this article suggest areas for future research.
The estimator introduced here suggest testing parametric forms
of the regression function against nonparametric alternatives in
the censored regression model, as has been done in standard
regression models (Bierens and Ploberger 1997; Horowitz and
Spokoiny 2001). Also, following Remark 4, another important
extension would be to allow for randomly censored datasets,
as given by Buckley and James (1979), Koul, Suslara, and
Van Ryzin (1981), Ying, Jung, and Wei (1995), and Honoré,
Khan, and Powell (2002) for semiparametric models and by
Van Keilegom and Akritas (1999) for nonparametric models.
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APPENDIX: PROOFS

A.1 Proof of Theorem 2

In this section we prove the limiting distribution results stated in
Theorem 2. Throughout this section, we adopt new notation. Here we
let τi , σi , wi , ŵi , q̂0i , q̂�i , q̂si , q0i , q�i , qsi , q̂0, q̂�, q̂s , q0, q�, qs , Cni ,
Cn, and Nni denote τ(xi ), σ0(xi ), w(q.5(xi )), w(q̂.5(xi )), q̂.5(xi ),
q̂α� (xi ), q̂αs (xi ), q.5(xi ), qα� (xi ), qαs (xi ), q̂.5(x), q̂α� (x), q̂αs (x),
q.5(x), qα� (x), qαs (x), Cn(xi ), Cn(x), and

∑
j �=i I [xj ∈ Cn(xi )]. Not-

ing that the conditional median function is estimated in both the first
and second stages, we let q̂

(p)
0i

denote the second-stage local polyno-
mial estimator, to distinguish it from the first-stage local constant es-
timator. Also, we let µ̂ and µ denote µ̂(x) and µ(x). For a matrix A,
with elements {aij }, we let ‖A‖ denote (

∑
i,j a2

ij )1/2.
We note that because we aim to prove that the estimator converges at

the optimal nonparametric rate of Op(n−p/(2p+dc)), we use the term
“asymptotically negligible” when referring to remainder terms which
are op(n−p/(2p+dc)). Our proof relies rely heavily on three previously
established properties of the nonparametric conditional quantile esti-
mator used. The first property is a uniform rate of convergence of the
local constant estimator used in the first stage. The rate is uniform over
regressor values for which the conditional median function is bounded
away from the censoring point. We denote this set of regressor values
by Xη ≡ {xi ∈ Xτ :q0i ≥ η}.

Lemma A.1 (From Chaudhuri et al. 1997, lemma 4.3a). Under As-
sumptions A2, A4–A6, and A7.1,

sup
xi∈Xη

|q̂0i − q0i | = op(1). (A.1)

The second previously established property is an exponential bound
for the local constant and local polynomial estimators for regressor
values in a neighborhood of the censoring point.

Lemma A.2 (From lemma 2 in Chen and Khan 2000). Let X c
η/2 de-

note the set {xi ∈ Xτ , q0i ≤ η/2}, and let An denote the event
{q̂0i ≥ η for all xi ∈X c

η/2}, then under Assumptions A2, A4–A6,
and A7.1, there exists constants C1 and C2 such that P(An) ≤
C1e

−C2nh
dc
1n .

The third property of the conditional quantile estimator is the
local Bahadur representation developed by Chaudhuri (1991a) and
Chaudhuri et al. (1997).

Lemma A.3 (From lemmas 4.1 and 4.2 in Chaudhuri et al. 1997).
Let q∗

α(xi ,x) denote the kth-order Taylor polynomial approximation
of qα(xi ) for xi close to x. Under Assumptions A2, A4–A6, and A7.2,
A7.3, for all α ≥ .5, x :q.5(x) ≥ η, we have the following linear rep-
resentation for the local polynomial estimator used in the second and
third stages:

q̂α(x) − qα(x)

= 1

nh
dc

(2,3)n
fY,X(qα(x),x)

×
n∑

i=1

{(
I [yi ≤ q∗

α(xi ,x)] − α
)
I [xi ∈ Cn(x)]} + Rn(x), (A.2)

where h(2,3)n denotes the bandwidth used either in the second or third
stages and the remainder term satisfies.

sup
x∈Xη

Rn(x) = op

(
n−p/(2p+dc)

)
. (A.3)

The main step in the proof is to show that the difference between
the constants cα� , � = 1,2, . . . ,N , and their estimators ĉα� , � =

1,2, . . . ,N , are asymptotically negligible. We let βi denote q�i−q0i
qsi−q0i

and let β̂i denote its estimated value, obtained by replacing quantile
functions with their local polynomial estimators.

We adopt the convention 0/0 = 0, and define

c†
α�

=
∑n

i=1 τi ŵicα�∑n
i=1 τi ŵi

, (A.4)

and we note that it can be easily be shown that

P
(
c†
α�

�= cα�

) → 0 (A.5)

by Assumptions A1 and A3 and Lemma A.1. Thus it will suffice to
show that ĉα� − c

†
α�

is asymptotically negligible. This difference is of
the form

ĉα� − c†
α�

=
1
n

∑n
i=1 τiŵi (β̂i − cα� )

1
n

∑n
i=1 τi ŵi

. (A.6)

The following lemma shows that the denominator of the above expres-
sion converges in probability to a positive constant.

Lemma A.4. Under Assumptions A1, A3–A6, and A7.1,

1

n

n∑

i=1

τiŵi
p→ E[τiwi ]. (A.7)

Proof. A mean value expansion of ŵi around wi yields

1

n

n∑

i=1

τi ŵi = 1

n

n∑

i=1

τiwi + 1

n

n∑

i=1

τiw
′∗
i (q̂0i − q0i ), (A.8)

where τiw
′∗
i

denotes the derivative of the weighting function evaluated
at an intermediate value. We can decompose the summation involving
this intermediate value as:

1

n

n∑

i=1

τiw
′∗
i (q̂0i − q0i )I [q0i ≥ η/2] (A.9)

+ 1

n

n∑

i=1

τiw
′∗
i (q̂0i − q0i )I [q0i < η/2]. (A.10)

It follows by the bound on the derivative of the weighting function
and Lemmas A.1 and A.2 that each of these terms is op(1). The LLN

implies that 1
n

∑n
i=1 τiwi

p→ E[τiwi ].
Thus it will suffice to show the numerator term in (A.6) is

op(n−p/(2p+dc)). To do so, we take a mean value expansion of ŵi

around wi , yielding the terms

1

n

n∑

i=1

τiwi(β̂i − cα� ) + 1

n

n∑

i=1

τiw
∗′
i (q̂0i − q0i )(β̂i − cα� ), (A.11)

where τiw
∗′
i again denotes the derivative of the weighting function

evaluated at an intermediate value. The following lemma establishes
the asymptotic negligibility of the first part of (A.11).

Lemma A.5. Under Assumptions A3–A6 and A7.2,

1

n

n∑

i=1

τiwi

(
β̂i − cα�

) = op

(
n−p/(2p+dc)

)
. (A.12)

Proof. Note that τiwicα� = τiwiβi . We linearize β̂i − βi . Here we
let �q�i and �qsi denote q�i − q0i and qsi − q0i . �q̂�i and �q̂si de-
note corresponding differences of (local polynomial) estimated quan-
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tile functions,

1

n

n∑

i=1

τiwi(β̂i − βi) = 1

n

n∑

i=1

τiwi�q−1
si

(�q̂�i − �q1i ) (A.13)

− 1

n

n∑

i=1

τiwi
�q�i

(�qsi)
2
(�q̂i − �qi) (A.14)

+ Rn,

where

Rn = Op

(
1

n

n∑

i=1

τiwi(�q̂�i − �q�i)(�q̂si − �qsi)

)

. (A.15)

It follows by lemma 4.1 of Chaudhuri et al. (1997) (after using the
Cauchy–Schwartz inequality) that

Rn = Op

((√
logn

nh
dc

2n

+ h
p
2n

)2)
, (A.16)

and thus is asymptotically negligible by Assumption A7.2. The expres-
sions in (A.13) and (A.14) are sample averages of differences of un-
dersmoothed conditional quantile estimators. We thus only show that

1

n

n∑

i=1

τiwi(q̂�i − q�i) = op

(
n−p/(2p+dc)

)
, (A.17)

because similar arguments may used for the other terms. Equa-
tion (A.17) follows from the same arguments used in lemma 2 of Chen
and Khan (2000). The only difference is in that lemma, the smoothness
and bandwidth conditions implied that the bias term was op(n−1/2),
whereas in this case, using Assumptions A6 and A7.2, the bias term
is op(n−p/(2p+dc)).

The following lemma shows that the second piece in (A.11) is also
asymptotically negligible.

Lemma A.6. Under Assumptions A3–A6, A7.1, and A7.2,

1

n

n∑

i=1

τiw
′∗
i (q̂0i − q0i )

(
β̂i − cα�

) = op

(
n−p/(2p+dc)

)
. (A.18)

Proof. We multiply the left side of the foregoing expression by
I [q0i ≥ η/2] + I [q0i < η/2] to separate the terms where the me-
dian function is bounded away from 0 from the terms where it is not.
Terms where q0i < η/2 are asymptotically negligible by Lemma A.2,
because τiw

′∗
i

> 0 ⇒ q̂0i ≥ η. For the terms where q0i ≥ η/2, note
that cα� = βi , and we can apply the uniform rates of convergence of
Chaudhuri (1991a,b) and Chaudhuri et al. (1997) after linearizing the
difference β̂i − βi as before. We note that the uniform rates for the
local constant estimator and the local polynomial estimator are differ-
ent, but it will follow by Assumptions A7.1, A7.2, and A6 that their
product will be asymptotically negligible. To make this argument pre-
cise, we note from the arguments used in lemma 4.1 of Chaudhuri et al.
(1997) that the uniform rate for the local constant and local polynomial
estimators are

Op

(√
logn

nh
dc

1n

+ h1n

)
and Op

(√
logn

nh
dc

2n

+ h
p
2n

)
. (A.19)

Letting ‖ · ‖∞ denote max1≤i≤n | · |, we note that 1
n

∑n
i=1 τiw

′∗
i

×
I [q0i ≥ η/2](q̂0i − q0i )(β̂i − βi) is of order

‖q̂0i − q0i‖∞‖q̂�i − q�i‖∞ + ‖q̂0i − q0i‖∞‖q̂si − qsi‖∞

+ ‖q̂0i − q0i‖∞
∥
∥q̂

(p)
0i

− q0i

∥
∥∞,

which, by the stated uniform rates, is

Op

((√
logn

nh
dc

1n

+ h1n

)(√
logn

nh
dc

2n

+ h
p
2n

))

which is op(n−p/(2p+dc)) by Assumptions A6, A7.1, and A7.2.

Combining all of our results, we can now replace the estimated con-
stants ĉα� , � = 1,2, . . . ,N , with their true values; furthermore, from

Lemma A.2, we can replace ˆ̃
dα� with d̃α� without affecting the limit-

ing distribution. Thus we have

θ̂ (x) =
( N∑

�=1

d̃α�cα�c′
α�

)−1( N∑

�=1

d̃α�cα� q̂α� (x)

)

+op

(
n−p/(2p+dc)

)

(A.20)
Noting that for d̃α� = 1 and qα� (x) = µ(x) + cα�σ0(x), we have

θ̂ (x) − θ0(x)

=
( N∑

�=1

d̃α�cα�c′
α�

)−1( N∑

�=1

d̃α�cα�

(
q̂α� (x) − qα� (x)

)
)

+ op

(
n−p/(2p+dc)

)
. (A.21)

The limiting distribution of the estimator follows from (A.2) and the
Lindeberg theorem.

A.2 Proof of Theorem 3

We note the consistency of Ĉ follows from the previously estab-

lished results that ˆ̃
dα� and ĉα� converge in probability to d̃α� and cα� .

To show consistency of V̂ , given previous results, we need only show
that

f̂Y |X
(
q̂α� (x)|x) p→ fY |X

(
qα� (x)|x)

. (A.22)

A mean value expansion of k2(
yi−q̂α�

(x)

�n
) around k2(

yi−qα�
(x)

�n
)

yields a remainder term of

�
−1
n k′

2

(
yi − q∗

α�
(x)

�n

)
(
q̂α� (x) − qα� (x)

)
,

where q∗
α�

(x) denotes an intermediate value and k′
2(·) denotes the

derivative of k2(·). This remainder term is op(1) because k′
2(·) is

bounded and
(q̂α�

(x)−qα�
(x))

�n
is op(1) by Theorem 2 and the condi-

tions assumed on �n . Thus, defining f̃Y |X(qα� (x)|x) as

1
n�

d+1
n

∑n
i=1 k1(

xi−x
�n

)k2(
yi−qα�

(x)

�n
)

1
n�d

n

∑n
i=1 k1(

xi−x
�n

)
, (A.23)

(A.22) follows from showing that

f̃Y |X
(
qα� (x)|x) p→ fY |X

(
qα� (x)|x)

. (A.24)

The foregoing result follows from standard results on nonparametric
density estimation (see, e.g. Härdle and Linton 1994; and Newey and
McFadden 1994).

[Received August 2002. Revised April 2004.]
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