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Abstract

This paper considers various measures of persistence in the (relative) forecasting
performance of linear and nonlinear time-series models applied to a large cross-section
of economic variables in the G7 countries. We find strong evidence of persistence among
top and bottom forecasting models, but also systematic evidence of ‘crossings’ - where
a previously good (poor) forecasting model delivers poor (good) future forecasting
performance - among the linear models. Persistence in forecasting performance is
related to the possibility of improving performance through forecast combinations.
We propose a new four-stage conditional model combination method that first sorts
models into clusters based on their past performance, then pools forecasts within each
cluster, followed by estimation of the optimal forecast combination weights for these
clusters and shrinkage towards equal weights. These methods are shown to work well

empirically in out-of-sample forecasting experiments.
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1 Introduction

Forecasts are of considerable importance to decision makers throughout economics and fi-
nance and are routinely used by private enterprises, government institutions and professional
economists. It is therefore not surprising that much effort has gone into developing forecast-
ing models ranging from simple, autoregressive specifications to complicated non-linear mod-
els and models with time-varying parameters. A multitude of forecasting models is typically
considered because the true data generating process underlying a particular series of interest
is unknown. Even the most complicated model is likely to be misspecified and can, at best,
provide a reasonable ‘local’ approximation to the process driving the target variable.!

Model instability is a source of misspecification that is likely to be particularly relevant
in practice, c.f. Stock and Watson (1996). In its presence, it is highly unlikely that a single
model will dominate uniformly across time and the identity of the best local approximation
is likely to change over time. If the identity of the best local model is time-varying, it is
implausible that a forecasting strategy that, at each point in time, attempts to select the
best current model will work well. Most obviously, if (ex-ante) the identity of the best model
varies in a purely random way from period to period, it will not be possible to identify this
model by considering past forecasting performance across models. Similarly, if a single best
model exists but it only outperforms other models by a margin that is small relative to
random sampling variation, it becomes difficult to identify this model by means of statistical
methods based on past performance. Even if the single best model could be identified in
this situation, it is likely that diversification gains from combining across a set of forecasting
models with similar performance will dominate the strategy of only using a single forecasting
model.

In practice, the factors that give rise to long-lasting changes in the ranking of different
forecasting models - e.g., major oil price shocks, policy changes, institutional shifts or mar-

ket participants’ learning behavior - can either take the form of discrete shocks or gradually

!Conditions under which the true model is selected asymptotically are quite strict, c.f. White (1990)
and Sin and White (1996), and are unlikely to be empirically relevant in situations characterized by a large

cross-section of forecasting models and a short time-series dimension.



evolving shifts and one may expect the relative performance of forecasting models to display
moderate degrees of persistence. How much persistence is a question of great practical rele-
vance. Indeed, the popular strategy of assigning equal weights to the individual forecasting
models (e.g., Clemen (1989)) becomes an optimal strategy if there is no ex-ante indication
of the individual models’ prospective out-of-sample forecasting performance, either because
the models are of similar quality or because their (relative) performance is unstable over
time.

Unfortunately, little is known about persistence in forecasting performance, so the first
part of our paper considers this question, establishing ‘stylized facts’ by studying empirically
a large cross-section of economic variables and forecasting methods.? We find systematic ev-
idence of persistence among both top and bottom forecasting models, but also find evidence
of ‘crossings’ - where a previously good (poor) forecasting model delivers poor (good) fore-
casting performance out-of-sample - among linear models.

In the presence of model misspecification of unknown form and moderate degrees of
persistence in the relative performance of different forecasting models, no single economet-
ric model can be expected to outperform all others and an attractive option is to combine
forecasts from several models. In their seminal paper on forecast combinations, Bates and
Granger (1969) already pointed to the importance of changes in models’ relative performance
over time as a determinant of the scope for combining forecasts. Key questions that arise
when forecast combinations are considered is how wide a set of models to include (or, sim-
ilarly, how many models to exclude), whether to estimate the combination weights, use a
simple combination scheme such as equal-weighting or apply shrinkage methods. The answer
to such questions depends on the distribution of (relative) forecasting performance across
models and the degree of persistence and is hence closely linked to the first part of our analy-
sis. We address these issues in the second part of the paper by comparing a wide range of
combination schemes that differ along these dimensions, including a new set of conditional

combination strategies.

2Stock and Watson (1999) consider combination methods based on expanding and rolling window es-
timators, two approaches that are usually associated with a stable and unstable data generating process,

respectively.



The contributions of our paper are three-fold. First, we analyze the persistence in the
relative forecasting performance of a range of linear and nonlinear models using a large
international data set. Second, we propose a new four-stage approach for model combination
that (i) sorts models into clusters based on their past performance; (ii) pools forecasts within
each cluster; (iii) estimates the optimal forecast combination weights for these clusters;
and (iv) shrinks the least squares combination weights towards equal weights. Third, we
investigate empirically the out-of-sample forecasting performance of this new combination
method and compares it with existing ones. We find that our approach improves upon
existing combination methods using a range of economic variables in the G7 countries.

The paper is organized as follows. Section 2 studies the persistence of forecasting per-
formance across a range of linear and nonlinear time-series models. Section 3 introduces
the forecast combination problem and studies the out-of-sample forecasting performance of
a range of standard combination methods proposed in the literature as well as our new

four-stage combination method. Section 4 concludes.

2 Persistence in Forecasting Performance

2.1 Data Set

The seven-country data set that we use is the same as that used in Stock and Watson (2003).
It consists of up to 43 quarterly time series for each of the G7 economies (Canada, France,
Germany, Italy, Japan, UK, and the US) over the period 1959.1 — 1999.1V, although some
series are available only for a shorter period. The 43 series comprise a range of asset prices
(including returns, interest rates and spreads); measures of real economic activity; wages

and prices; and various measures of the money stock.?> In many cases we use more than

3Following Stock and Watson (2004) the variables were subject to the following transformations. First, in
a few cases the series contained a large outlier—such as spikes associated with strikes—and these outliers were
replaced by interpolated values. Second, series that showed significant seasonal variation were seasonally
adjusted using a linear approximation to X11 in order to avoid problems with non-linearities, c.f. Ghysels,
Granger and Siklos (1996). Third, data series available on a monthly basis were aggregated to get quarterly

observations.



one transformation of a given series. For example, interest rates are used both in levels and
in first differences. Counting all the constructed variables (such as spreads) and different
transformations of the same variable, the maximum number of time series per country is 75.
Because the full data set contains some series that are available for short subsamples, for
each country we select a balanced panel subset of the full data set that includes between 46

and 71 series per country.

2.2 Forecasting Models and Methods

h-step ahead forecasts of the conditional mean of the target variable, Y, are generated by

time-series models of the form

Yirn = fi (X5050) + €14n - (1)

Here 7 is an index for the forecasting model, 8; j, is a vector of unknown parameters, ;. ; is
an h—step error term and X; is a vector of predictor variables that are known at time ¢ and
may include y;. In general, individual forecasting models only use a subset of the elements
of x;. All forecasts are computed recursively out-of-sample, so the forecast of 1., by the
1th model is computed as f; (xt;éi,h,t), where 9i7h7t is the estimate of ;) given period-t
information.

Following the analysis of Stock and Watson (1999), we consider both linear and non-
linear forecasting models. The class of linear models comprises simple autoregressions with
lag lengths selected recursively using the Bayes information criterion (BIC), including up to

four lags:

Yern = ¢+ A (L) ye + €s4n. (2)

We also consider bivariate autoregressive models that include a single additional regressor,

2y, which is an element of x; :
Yorn = c+ A(L) ye + B (L) m + €y (3)

Lag lengths are again selected recursively using the BIC with between 1 and 4 lags of

xy and between 0 and 4 lags of y;. The average number of linear model specifications varies
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across series and countries. For example, it ranges from 36 for France, 38 for Italy, 43 for
the UK, 44 for Canada and Germany, 51 for Japan to 67 for the US.

The class of non-linear forecasting models includes many of the models considered in
Terasvirta, Tjostheim and Granger (1994). It includes 18 Artificial Neural Network (ANN)
models with one and two hidden layers and different numbers of lags, p. Single layer feed-

forward neural network models take the form

n1
Yorn = B+ Z Y159 (B1:€0) + €vsns (4)
i=1
Ct = (Lytayt—la'“ayt—p—l)a b= 172737
where g (z) = 5 jez is the logistic function. Neural network models with two hidden layers

take the form

N
Yorn = BoC, + Z V259 + €tn (5)
j=1

Z Bajig (B1:¢1)
i=1

Our choice of design parameters for the single hidden layer ANN models are n; = 1,2,3 and
p = 1,2, 3, giving a total of nine basic models. Our choice for the ANN models with two
hidden layers are ny = 2,n, = 1,2,3 and p = 1,2, 3, producing nine basic models. These
choices cover many of the basic neural net designs, c.f. Swanson and White (1995, 1997).1

We also consider 15 Logistic Smooth Transition Autoregression (LSTAR) models:

Yern = oC+diB'¢,+ €ryn (6)

d 1
t = )
L+ exp (79 + 71&:)

Ct = (Lytvyt—la“'vyt—p—l) p:17273

& € Ay Y2, Vs, Ay, AQ?/tfl},

where the scalar &, is selected from the set in (6). LSTAR models differ by the variable used
to define the transition and by the lag length p, c.f. Granger and Terasvirta (1993).

Finally, we consider time-varying autoregressions (7 VARs) whose parameters are allowed

4For all ANN models, coefficients were estimated by recursive non-linear least squares, minimizing the

objective function by an ad-hoc algorithm developed by Stock and Watson.



to evolve according to a multivariate random walk:

Yern = 0,,& +ciqn
0., = 01+, (7)
uy, ~ iid (0,2\%0%Q).

Here 0%Q is the variance of u;;,. We consider seven different values of A in the set {0.00,
0.0025, 0.005, 0.0075, 0.010, 0.015, 0.020} and up to three lags for a total of 21 TVAR
models, all of which are estimated by the Kalman filter.

To avoid extreme forecasts—a problem often associated with highly non-linear models—we
implement the following trimming scheme. Forecasts exceeding four recursive standard de-
viations of the target variable are replaced by a recursive estimate of the unconditional mean

of the dependent variable computed at the time of the forecast.

2.3 Sorting Windows

We implement an automatic procedure to control for missing values and outliers to produce
a balanced panel of forecasts. Let Ty be the point at which the first forecast is computed
and let T" be the final period. For each variable and forecast horizon, h, we produce a

((I' = h — Ty + 1) x N;) panel of forecasts

[ 2 (N;)
@\(T7)ilh @\(T7)ilh e yTJJLh
1 2 (N;)
% - @\gle,T—h—l %Zl,T—hq cee yT—Jl,T—h—l
To+hT — . . . . ’
~(1) ~2) ~(Nj)
| YTo+h10 Y1o+n,10 o Yninm

where Qﬁlt) 1 18 the h-step ahead forecast computed under the ith model at time ¢t. The

superscript, ¢, tracks the model, 7 = 1, ..., N;, and N, is the number of models for country or
forecasting method j.°

The h—period performance of the ith forecasting model at time ¢ is measured through
(%)

. _ (i) : : :
the loss function, L, /), , = L (th, Yiiny ). In line with common practice, we assume mean

5For each country some series are available only for shorter subsamples so instead of dropping these series

from the panel we trade off the time-series and cross-sectional dimension. Given a T' x N panel we minimize
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squared forecast error (MSFE) loss:

) 2
L(yt+h;§/\t+h,t,z’) = (eghﬂg) s (8)

where eﬁgh’t = Yith — @ﬁ)m is the h—step forecast error associated with the ith model’s
prediction at time ¢t. We track the historical forecasting performance over a window of the
last win periods by computing S\ = (1/win) 3! LY

T=t—win+1 ~“7,7—h"

To study how persistent
forecasting performance is through time, we consider three different tracking or ‘sorting’

windows used to rank the forecasting models based on their historical performance:
: e O B O NS
1. Short window: win =1 : 5; €on) i
. . 2
2. Rolling window: win = 20 : St(l) = (1/win) Zi:t—wmﬂ (egi)Tfh) ;

() t O
3. Expanding window: S;” = (1/(t —h—To + 1)) > (e ! )

T=To+h T,T—h

O]

Future out-of-sample performance at time ¢ is based on the h-period loss, L;/,, ,.

For each model, i, we record its rank at time t, R;; = f(St(l), s St(Nj)). The model with
the best MSFE forecasting performance, gets a rank of 1, the second best a rank of 2 and
so on. Using these rank orders, we sort the models into quartiles and use 4 x 4 contingency

tables to cross-tabulate the forecasting models’ sorting-period performance against their

out-of-sample performance.

2.4 Empirical Evidence

Tables 1-4 report empirical evidence on persistence in forecasting performance for the three

sorting windows using linear (Tables 1 and 2) or nonlinear (Tables 3 and 4) models and

A

forecast horizons of h = 1,2,4,8 quarters. Transition probability estimates, F,;, in these

Y E)

the following loss function with respect to
o =argmin L (a) = (T — T ())* + (N — N (a))2.

If a time series has more than T missing values we drop it. This gives us a T (a*) X N (a*) panel of

forecasts.



tables give the probability of moving from quartile i (based on historical performance up to
time t) to quartile j (based on future performance, e;1+, t = Tp, ..., T — h). We show only
the top corners of the tables (i.e., ]511, ]514, ]541, ]544) since these effectively convey information
about persistence or ‘anti-persistence’ in forecasting performance.

Under the null of no forecasting persistence, we have P;; = 0.25 for all ¢, j since the
probability of good (or bad) future performance should be unaffected by past performance.
Persistent forecasting performance would lead to estimates of P;; and P4 above 0.25, while
Py, and Pj; (the probability that a historically good model becomes a poor future model
or vice versa) should be well below 0.25. Conversely, anti-persistence corresponds to small
values of P;; and Py and large values of P4 and Py;. A chi-squared test statistic can easily
be constructed for the estimated transition probabilities when h = 1. However, at longer
horizons (h > 2) the data is overlapping so the performance statistics are serially correlated.
To assess the statistical significance in this situation, we therefore use a bootstrap procedure
to construct confidence intervals for the transition probability estimates, ]5” The proportion
of transition probability estimates exceeding 0.25 with a p-value below 5% is reported in
Tables 2 and 4 for linear and nonlinear models, respectively.

Several interesting results emerge from the tables. First, there is robust evidence of
persistence among the linear forecasting models (Table 1). Across all sorting windows,
forecast horizons and countries the average estimate of P;; is 0.30 with 76% of the estimates
exceeding 25% at a statistically significant margin. Similar numbers are obtained for the
worst performing models where the average estimate of P, - averaged across countries,
forecast horizons and sorting windows - is 0.30 with 73% of the estimates exceeding 0.25 at
the 5% significance level.

The average estimate of P4 is 0.29 with 75% of the estimates being significantly greater
than 0.25, suggesting that there is also a high chance that the historically best performing
models become the future worst models. There is clearly a smaller chance of the reverse
happening - i.e., that the historically worst models become the best future models - as the
average estimate of Py is 0.27 and only 52% of these estimates exceed 0.25 at the 5% critical

level.



There is also considerable variation in the results across sorting windows. Persistence is
systematically weaker the longer the sorting window, consistent with what one would expect
under model instability. Going from an expanding via a rolling to a short sorting window,
the average estimate of Py; rises from 0.29 to 0.30 and 0.31 with 60%, 76% and 91% of these
estimates being significantly greater than 0.25. A similar pattern is observed in the average
estimate of Py, which rises from 0.28 to 0.30 and 0.33 (with 49%, 72% and 98% of these
estimates being significantly greater than 0.25 at the 5% level) and in the estimates of Py
and Py; with the former rising from 0.29 to 0.31 and the latter rising from 0.26 to 0.29 as
the sorting window is shortened.

Results are largely invariant with respect to the forecast horizons () where both Pj; and
Py, are close to 0.30 irrespective of the value of h.% Between 73% and 78% of the Py —values
and between 69% and 76% of the Pi4—values are significant at the 5% critical level.

Disaggregating the results by country, many interesting variations are observed in our
data. The mean estimate of Pj; (averaged across series, sorting windows and forecast hori-
zons) is 0.30 for all countries, with the estimates for Japan and the US taking the smallest
values. Among the worst models, the smallest persistence, measured by the average value
of Py, is 0.28 for the US while the largest value is 0.32, recorded for Japan. This suggests
that the weakest persistence is generally found in US time series. Large variations across
sorting windows are also observed. For example, for the US forecasts at the shortest horizon
(h = 1) the proportion of estimates of P4 that is significant at the 5% critical level increases
from 8% to 68% and 97% as we move from the expanding via the rolling to the short sorting
window.

Turning to the nonlinear models (Tables 3 and 4), there is generally a lower probability
of ‘crossings’ and fewer of the off-diagonal transition probability estimates exceed 0.25, the
average value of Py and Py being 0.22 and 0.25, respectively. Only 15% and 35% of these
estimates are significant at the 5% critical level. Overall, persistence among top models is
reduced to 0.26 with only 39% (compared with 76% in the case of the linear models) of the

Py —values being significantly greater than 0.25. There is stronger persistence among the

6To save space, disaggregated results are not reported here, but these results are available on request

from the authors.



worst nonlinear models than was found for the linear models, however: the average estimate
of Py, is 0.33 and 85% of the estimates of P4 from the nonlinear models exceed 0.25 at the
5% critical level (compared to 73% for the linear models).

To verify the robustness of our results we also partitioned the forecasting models into
groups of three based on their previous forecasting performance. We found very similar
results with persistence in the top and bottom models’ forecasting performance, stronger
persistence among the worst linear forecasting models the shorter the sorting window and
stronger persistence among the worst models for the nonlinear forecasts than for the linear
forecasts.

We conclude the following from these findings. First, there is systematic evidence of
persistence in forecasting performance both at the top end and at the bottom end of the
rankings. Second, there is unfortunately also a strong tendency for the previous best linear
models to become future underperformers. Third, there is in general stronger persistence in
the forecasting performance of the worst non-linear models and a much lower probability of

crossings in these models’ forecasting performance than was observed for the linear models.

3 Forecast Combinations

The empirical evidence reported in Section 2 suggests that there is systematic persistence in
the relative forecasting performance of standard time-series models. The extent to which this
evidence can be translated into improved out-of-sample forecasting performance is still an
open question, however. The moderate (albeit statistically significant) degree of persistence
observed among top and bottom models suggests that a strategy of using a single ‘top’
model is unlikely to work well and that averaging across models could improve forecasting
performance. As argued earlier, persistence in forecasting performance is likely to be a key
determinant of the optimal degree of averaging across models, with less averaging being
required the more persistent the performance is since this makes it easier to identify the best
models from their historical track record.

Under mean squared error (MSE) loss the general forecast combination problem can be

posed as that of choosing a mapping R — R from a vector of N predictions §;,5; =
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(Q&)M, @t(i)h,t’ e Qﬁfgt)’ to the real line, that best approximates the conditional expectation,

ElYyisn|¥iins]- This general class of combination schemes comprises non-linear and time-
varying combination methods, but it is far more common to limit the analysis by assuming
a linear combination and choosing weights, w,;, = (wil}i, ...,w%))’ to produce a combined
forecast, Ui, ; = Wi, ¥i1nt, resulting in the forecast error ef,;, ; = yrin — Uiy

Assuming again that the forecaster’s loss function L(.) only depends on the forecast error,
€7 h4» the optimal combination weights, wy,, solve the problem

wy, = argmin [L (€§+h,t) |}A’t+h7t] . (9)

Wih

Under MSE loss, L(e) = €%, the combination weights are easy to characterize in population

and only depend on the first two conditional moments of the joint distribution of y;,, and

2 /
( Yt+n > -~ (Myth) Tyth  Oygin
Yith,t Hip Ougth  Lggth

Assuming that Xy, is invertible, the solution to equation (9) is

Yt+ht,

Wiy = (Mg ttyy, + Ej_r;th)(/'l’th:uyth + Oygin)- (10)

If 4, 5 is projected on a constant as well as on the forecasts, ¥111," the optimal (population)

values of the constant and the combination weights, w§y, and wj,, are

Cc* _ !
Woth =  Myth — Wenlen

wy, = E;;thayyth- (11)

These weights depend on the full conditional covariance matrix of forecasts, ¥gg;,. How-

ever, given a large number of forecasting models (N) relative to the number of time-series

"Including a constant to capture bias effects is a strategy recommended (under MSE loss) by Granger
and Ramanathan (1984) and, for a variety of loss functions, by Elliott and Timmermann (2004). Ruling
out that the covariance matrix, Xgy¢5, is singular is innocuous here since one can always drop superfluous
forecasts from the combination. One could alternatively consider non-linear combination schemes that do not
impose this restriction and allow individual forecasts to be perfectly linearly correlated as long as non-linear

transformations of the forecasts are not perfectly correlated.
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observations (T), it is generally not feasible or desirable to estimate optimal combination
weights at the level of the individual forecasts.

A special case of (11) arises when one model - e.g. the ith model - has a much smaller
forecast error than the other models. In this case, to an approximation, only a single forecast
gets selected:

wip = Vi, (12)

where 19; is an N—vector with zeros everywhere except for unity in the ¢th place.
The opposite case arises when the forecasting errors are all (roughly) of the same size

with similar correlations, in which case
w; ~ Ly /N, (13)

where ¢y is an N —vector of ones. It is often found in the empirical literature that estimated
“optimal” combination weights based on (11) lead to worse forecasting performance than

such simple equal-weighted averages, (13), c.f. Clemen (1989).

3.1 Conditional Forecast Combination Strategies

Standard model selection schemes such as (12) and forecast combination schemes such as
(11) or (13) suffer from a number of problems. With NNV large relative to 7', estimation of the
“optimal” combination weights (11) is either not feasible or is surrounded by considerable
sampling error. While the forecasting methods in (12) and (13) do not suffer from this
problem, they ignore correlation structure across different forecasts and do not efficiently
use all information in the joint distribution of the forecast errors. For this reason, we
propose a range of new (conditional) combination strategies that in a first stage sort the
forecasting models into groups based on their recent historical forecasting performance, then
pool forecasts within groups and finally combine the pooled forecasts for selected groups
of models using least squares estimates of the combination weights followed by shrinkage

towards equal weights.
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3.1.1 Combination of Forecasts from Pre-selected Quartiles

The first set of combination methods operates at the level of quartile-sorted forecasts and
uses information on the estimated transition probabilities to select which quartiles to include
in the combination. Forecasting models are initially assigned to quartiles based on their
historical forecasting performance up to the point of the prediction, ¢. For each quartile, a
pooled (average) forecast is then computed. If the transition probability estimates (using
information up to time t) suggest that a particular quartile of models produced better than
average forecasts, then the pooled forecast from models in this quartile is included in the
combination.

Pooling by quartile reduces the number of forecasts to between one and four. This is
a number that is small enough to let us consider estimating optimal combination weights
by least squares. We also consider shrinking the least-squares estimates of the combination

weights towards equal-weights, c.f. Diebold and Pauly (1990):
at({bt) = @t‘:’tOLS +(1- @bt)wa (14)

where @Abt, the parameter governing the amount of shrinkage, is a function of the data. This
estimator shrinks the least squares estimate of the combination weights, @? LS , towards
equal weights, w. As an extreme case, this includes simply using equal weights. Shrinkage
estimators can often improve the small sample performance of forecast combinations.?

To set out the combination strategy, let ¥ \ny De the Ny x 1 vector containing the
forecasts belonging to quartile ¢, where N, is the number of models in quartile g. We
use the persistence information contained in the estimated transition probabilities at time ¢,

A

P, to select quartiles as follows:
If }A’m > }514t: include the pooled forecast from models in the top quartile.
If Pglt + pggt > 1523,5 + 1524,5: include the pooled forecast from models in the second quartile.

If Pyyy + Pyoy > Piay + Pay: include the pooled forecasts from models in the third quartile.

8Elliott (2002) establishes conditions under which the expected loss from averaging gets closer to the

expected loss from using the optimal weights as the number of forecasts (N) increases.
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If }541t > }544t: include the pooled forecasts from models in the fourth quartile.

Let Z; be an indicator variable taking the value 1 if the ith quartile is included and
otherwise zero, while ¢y, is an N, x 1 vector of ones. Then we consider four types of com-
bination weights applied to the forecasts pooled into quartiles, namely previous best (PB),

equal-weighted (EW), optimally weighted (OW) and shrinkage-weighted (SW) combinations:
1. PB: gthrh,t = (l’l]\h/Nl)ytlJrh,t‘

~1
2. EW 1§ py = (Z;lzl Iq) 22:1 Iq@?\rq/Nq)yam-

e x4 g [ o1 ] - -
3. OW & Giiny = Dy Lywqr | (e, /Nog)Fiin s | » Where g are least squares estimates of

the optimal combination weights for the included quartiles.

4. SW 2 g, = Z;l:l Ty5qt _(L?Vq /N, i where 5, are shrinkage weights applied

1
a1 Ty
maX{Oul_K (m)}

Quartile-sorted combinations are referred to as Q(W, Z) where W € {PB, EW, OW, SW'}
and Z € {L, M, H} captures the degree of shrinkage. As k goes up, 1, declines and the degree
of shrinkage increases so the choices of Kk = 2.5,5,7.5 represent low, medium and strong
shrinkage. These are denoted by Q(SW, L), Q(SW, M) and Q(SW, H), respectively.” If none
of the quartiles passes the test in the first step, we set Q(EW) = Q(OW) = Q(SW,.) =
~ SV Qt(ﬁh’t and average across all forecasting models.

Application of these methods requires that part of the out-of-sample period is used to
establish an initial ranking of the models. We use the first 20 out-of-sample observations as

our initial sorting period.

9These values are higher than the values (0.25, 0.5 and 1) considered by Stock and Watson (2004). This
is because we apply shrinkage to the grouped (quartile) forecasts whereas Stock and Watson apply shrinkage
to the original set of models (V) so the ratio of the number of forecasts to the effective sample size is much
larger in their application than in ours. Hence we need larger values of k to accomplish a similar degree of

shrinkage.
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3.1.2 Clustering by K-mean algorithm

The approach of sorting models into quartiles can be criticized for using arbitrary cut-off
points. Two models with very similar in-sample forecasting performance may get assigned
to different quartiles with different weights. To deal with this problem, we propose to use a
K —mean clustering algorithm that divides the models into a finite number of clusters based
on their past forecasting performance.

To motivate this approach, Figure 1 plots the in-sample MSFE performance for output
growth (up to period Tj) against the out-of-sample forecasting performance across linear
forecasting models while Figure 2 does the same for the non-linear models. In general there
is not much support for a simple monotonic or linear relationship between past and future
forecasting performance. However, there are indications of performance clusters in some
countries, notably France, Germany and Japan. There is also some evidence - notably for
Italy and Japan - that the models with the very worst in-sample forecasting performance
tend to generate the highest out-of-sample MSFE-values. This suggests trimming the worst
models prior to computing forecasts. Trimming is particularly appealing if many models
underperform the unconditional mean forecast but may also work more generally if there is
a large and persistent spread in the forecasting performance across models.'’

Suppose we identify K clusters and let §¥ ' 1y D€ the N x 1 vector containing the subset
of forecasts belonging to cluster k& € {1, ..., K} where the first cluster contains the models
with the lowest historical MSFE values. We consider the following conditional combination

strategies:

L. PB:gi ;= (tn,/N1)Fin, select the cluster with the lowest in-sample MSFE-values

and use the simple mean of the forecasts in this cluster.

2. EW : §fny = 25 Dopy (¢, /NK)FE, . exclude the worst cluster and apply equal-

weights to the forecasts from the top K — 1 clusters.

3. OW 1 ¢y, = S O (¢, /Nk)FEine] » where &y are least-squares estimates of the

10See also Aiolfi and Favero (2003) and Granger and Jeon (2004) who argue in favor of trimming the worst

models followed by computation of a simple equal-weighted average of the remaining forecasts.
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optimal combination weights for the K clusters.

4. SW gy, = S Bkt (¢, /Nk)§FEne] . where 34 are the shrinkage weights for the
K clusters, computed as: Sy = ¥,wr + (1 — ¢t)%, 1, = max {O, 11—k (ﬁ) } )
kK =2.5,9,7.5.

Cluster-sorted combinations are referred to as C(K,W,Z) where K is the number of
clusters, W € {PB, EW,OW,SW} and Z € {L, M, H} measures the degree of shrinkage.
Hence we use the notation C(K,SW, L), C(K,SW, M) and C(K,SW, H) for the cluster
combination based on K clusters with low, medium and high shrinkage weights, respectively.

We set K = 2,3 and use either two or three clusters.

3.2 Empirical Results

Results from a set of standard forecasting strategies (previous best single model (PB),
equal-weighted average (Q(EW)) and top quartile (Q(PB))) as well as from the four-step
conditional combination strategies are presented in Table 5 (linear models) and Table 6
(non-linear models) which summarize the distribution of out-of-sample MSFE performance
across countries and horizons.!! Performance is reported relative to the out-of-sample MSFE
performance of the previous best (PB) single model selected using an expanding sorting
window.

First consider the results for the linear forecasting models (Table 5). Consistent with
earlier studies we find that the equal-weighted combination (“mean” or Q(EW) forecast)
produces good forecasts that dominate the forecasts from the previous best (PB) model.
Interestingly, however, the better conditional combination strategies outperform the equal-
weighted forecasts overall.

Comparing the overall forecasting performance across combination strategies, the best
methods appear to be either least squares estimates of the combination weights for the

selected quartiles followed by relatively strong shrinkage towards equal weights (Q(SW, M)

1 Our notation implies that PB is the forecast from the previous best single model while Q(PB) is the
average forecast from the quartile of previous best models and Q(EW) is the average forecast computed

across all models.
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and Q(SW, H)) or a simple average of forecasts in the top cluster (C(2, PB) or C(3, PB)).
Shrinkage towards equal weights systematically improves the forecasting performance.!?

Turning to the results for the non-linear models shown in Table 6, the methods involv-
ing pooling within quartile-ranked forecasts followed by estimation of optimal combination
weights and shrinkage towards equal weights (Q(SW, M) and Q(SW, H)) or pooling within
the top cluster of models continue to perform better on average than any of the other
methods, including using the mean forecast or the average forecast from the top quartile of
models.’ Once again, the combination schemes with the strongest degree of shrinkage lead
to the best overall forecasting performance.

The robustness of our results across linear and non-linear forecasting models is reassuring
and suggests that two mechanisms lead to better forecasting performance. First, even though
it is difficult to identify the top model among forecasting models with similar performance,
it is possible to identify clusters of good and bad models. Second, and related to this
point, provided that the models are pooled into groups based on their past performance,
least squares estimation of the combination weights (which accounts for the correlation
structure between forecasts) is a useful step. However, the estimated combination weights
are surrounded by sufficiently large sampling errors that shrinkage towards equal weights

generally improves on the forecasting performance.

4 Conclusion

This paper investigated the extent of persistence in forecasting performance across a large
set of linear and nonlinear models. Much of the paper was exploratory since there is not,
to our knowledge, any previous research on this question. We found significant evidence of

persistence in forecasting performance. Models that were in the top and bottom quartiles

12We do not report formal tests for significance of relative performance since the model choice is data
driven. Hence the model under the null is sometimes nesting, while at other times does not nest, the models

under the alternative. See also Stock and Watson (2004) for a discussion of this point.
I3For the nonlinear models, in most cases only two clusters were clearly identified so we restrict the

non-linear results to two clusters.
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when ranked by their recent historical performance have a higher than average chance of
remaining in the top and bottom quartiles, respectively, in future periods. However, we also
found systematic evidence of ‘crossings’—where the previous best models become the future
worst models or vice versa—among the linear forecasting models. The ranking of the worst
forecasts tended to be more persistent for non-linear models than for linear models, possibly
due to the fact that some of the nonlinear models are grossly misspecified—and more strongly
affected by parameter estimation error—while the performance of the linear models tends to
be more robust in this regard.

We next linked this evidence to the possibility of producing improved forecasts, argu-
ing that it is likely that conditional combination strategies (which use information on past
forecasting performance) can be designed under the persistence in forecasting performance
documented in our paper. We proposed a set of new combination strategies that first sort
models into either quartiles or clusters on the basis of the distribution of past forecasting
performance across models, pool forecasts within each cluster and then estimate optimal
combination weights and shrink these towards equal weights. This combination scheme
makes use of many of the techniques proposed in the literature for improving forecast com-
binations such as trimming, pooling, optimal weighting and shrinkage estimation. We find
evidence in our data that these conditional combination strategies lead to better overall
forecasting performance than simpler strategies in common use such as using the previous

best model or simply averaging across all forecasting models or a small subset of these.
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Table 1: Transition probabilities estimated for the linear models.
Each cell reports the corner probabilities of the 4x4 contingency
table tracking the forecasting models’ initial and subsequent h-
period rankings. Transition probabilities F;; give the probability
of moving from quartile ¢ (based on historical performance, ef’t_ )
to quartile j (based on future performance, e? +h7t). All estimates
are averaged across variables within a particular country.
Expanding Sorting Window

h=1 h=2 h=4 h=8
USA 0.30 0.31 0.29 030|029 0.29 ]| 0.29 0.30
0.23 0.23 024 025|026 0.26 | 026 0.26
UK 0.29 0.29 028 028|029 028|029 031

0.27 0.29 0.27 0.30 | 0.27 0.30 | 0.28 0.30

France 0.28 0.28 028 0.27 | 0.28 0.28 | 0.28 0.28
0.26 0.28 0.27 0.29 | 0.27 0.29 | 0.29 0.29

Germany | 0.29 0.30 0.29 0.29 | 028 0.29 | 0.29 0.30
0.26 0.26 026 0.27 | 0.27 0.28 | 0.27 0.29

Japan 0.29 0.27 0.28 0.26 | 0.29 0.26 | 0.27 0.27
0.26 0.29 0.26 0.30 | 0.26 0.32 | 0.28 0.30

Canada 0.30 0.31 0.30 0.31 | 0.30 0.30 | 0.28 0.28
0.24 0.25 0.24 025|026 0.27 | 027 0.27

Italy 0.28 0.28 028 0.27 | 0.27 0.27 | 0.29 0.28
0.27  0.28 026 0.28 | 0.27 0.28 | 0.28 0.29

Rolling Sorting Window

h=1 h=2 h—=4 h=8
USA 0.30 0.30 | 0.30 0.30 030 030|030 0.31
025 027 |0.26 029|027 028027 028
UK 029 029 |030 029030 030|030 0.31

0.28 0.31 028 032|028 031|028 0.31

France 0.30 0.28 0.30 0.28 | 031 0.29 | 0.31 0.31
0.28 0.31 0.27 031 | 027 0.31] 028 0.30

Germany | 0.31 0.30 0.30 0.31 | 0.30 0.32 | 0.31 0.32
0.27  0.29 0.27 0.29 | 0.28 0.29 | 0.28 0.29

Japan 0.30 0.27 0.29 0.27 | 0.30 0.27 | 0.30 0.30
0.27 0.31 0.27 032|026 033|029 0.31

Canada 0.31 0.31 031 032|031 0311 031 0.32
0.26 0.27 026 0.28 | 0.26 0.29 | 0.27 0.28

Italy 0.29 0.28 0.30 0.29 | 0.30 0.29 | 0.31 0.30
0.28 0.31 027 032|028 031|028 0.31

Short Sorting Window

h=1 h=2 h=4 h=8
USA 030 030 |03l 031031 030030 0.30

030 033 |029 033|029 032028 0.30
UK 030 032 |03l 032]032 030032 030

0.31 0.34 0.30 0.35 | 0.28 0.36 | 0.29 0.33

France 0.32  0.30 0.33 0.30 | 0.32 0.30 | 0.34 0.30
0.29 0.35 028 035|029 033 027 0.34

Germany | 0.32 0.31 031 032032 031|031 031
0.30 0.34 0.30 0.33 | 0.30 0.33 | 0.29 0.31

Japan 0.30 0.31 031 030|032 029 032 0.30
0.30 0.34 029 034 | 027 0.36 | 0.28 0.34

Canada 0.30 0.32 031 032031 031] 031 0.31
0.30 0.32 029 032029 032|028 031

Italy 0.32  0.30 0.32 0.30 | 0.33 0.28 | 0.33 0.30
0.30 0.35 029 035|027 0.36 | 0.28 0.35




Table 2: Significance of transition probabilities estimated for the
linear models. Each cell reports the percentage of corner proba-
bilities in Table 1 that is greater than 0.25 at the 5% significance
level.

Expanding Sorting Window

h=1 h=2 h=4 h=8
USA 0.88 0.89 0.72 0.80 | 0.66 0.78 | 0.68 0.81
0.05 0.08 021 023|032 0.36 | 0.30 0.42
UK 0.68 0.66 0.54 0.61 | 0.56 0.65 | 0.65 0.69

0.46 0.52 0.39 0.66 | 0.44 0.67 | 0.53 0.67

France 0.57 0.57 0.60 0.45 | 047 049 | 0.36 0.45
0.32  0.49 0.36 0.49 | 0.47 0.60 | 0.55 0.64

Germany | 0.62 0.66 0.62 0.66 | 0.53 0.67 | 0.52 0.70
0.30 0.40 0.36 0.40 | 0.57 0.63 | 0.58 0.64

Japan 0.65 0.47 0.50 0.39 | 0.55 0.35 | 0.48 0.53
0.31 0.60 034 0.69 | 0.33 0.78 | 0.52 0.64

Canada 0.75 0.82 0.67 0.82 | 0.65 0.67 | 0.46 0.52
0.18 0.18 0.14 0.18 | 0.31 045 | 043 0.44

Italy 0.43 0.61 053 053|043 043 ] 049 0.53
0.41  0.47 0.41 0.57 | 0.43 0.51 | 0.49 0.62

Rolling Sorting Window

h=1 h=2 h=4 h=8
USA 0.95 092 |0.93 089|093 093|077 090

023 068 |036 076|053 070|045 062
UK 0.68 057 | 0.70 0.66| 067 0.76 | 0.71 0.90

0.57 0.79 0.57 0.82 | 0.56 0.76 | 0.47 0.78

France 0.72  0.49 0.70 0.62 | 0.71 0.69 | 0.64 0.80
0.51 0.85 0.45 0.81 | 047 0.78 | 0.45 0.70

Germany | 0.79 0.79 0.74 092|082 0.88 | 0.72 0.88
0.51 0.74 053 0.72 | 0.71 0.65 | 0.46 0.64

Japan 0.71  0.50 0.61 0.44 | 0.70 0.48 | 0.66 0.79
0.40 0.81 0.50 0.85 | 0.47 0.85 | 0.69 0.76

Canada 0.88 0.98 093 096 | 0.84 093] 0.85 0.93
0.25 0.42 032 0.44 | 0.29 0.73 | 0.37 0.57

Italy 0.69 0.71 0.69 0.59 | 0.68 0.60 | 0.70 0.70
0.47 0.71 041 0.84 | 043 0.74| 0.55 0.74

Short Sorting Window

h=1 h=2 h=4 h=8
USA 0.84 0.83 |099 093099 093|093 097

0.83 097 |08l 1.00|0.84 1.00 | 081 0.92
UK 0.88 093 | 084 091|087 0.69 084 0.73

0.93 0.98 0.80 0.96 | 0.59 1.00 | 0.61 0.96

France 0.91 0.85 0.96 0.74 | 0.82 0.80 | 0.93 0.82
0.66 1.00 0.64 1.00 | 0.60 0.96 | 0.45 0.93

Germany | 0.98 0.94 092 094 | 098 094 | 092 0.98
0.89 1.00 0.85 096 | 0.84 0.98 | 0.70 0.90

Japan 0.73 0.84 0.87 0.69 | 0.90 0.62 | 091 0.81
0.82 1.00 0.68 0.98 | 0.55 1.00 | 0.62 0.97

Canada 0.88 091 096 1.00 | 0.95 0.89 | 0.96 0.96
0.88 0.96 0.89 1.00 | 0.80 0.96 | 0.65 0.96

Italy 0.92 0.78 092 0.88 | 089 0.68 | 0.89 0.77
0.78 1.00 0.71 1.00 | 0.40 1.00 | 0.57 1.00




Table 3: Transition probabilities estimated for the non linear mod-
els. Each cell reports the corner probabilities of the 4x4 contin-
gency table tracking the forecasting models’ initial and subsequent
h-period rankings. Transition probabilities P;; give the probability
of moving from quartile ¢ (based on historical performance, ef’t_ )
to quartile j (based on future performance, e? +h7t). All estimates
are averaged across variables within a particular country.
Expanding Sorting Window

h=1 h=2 h=4 h=8
USA 0.25 0.20 026 019 | 026 0.22] 0.26 0.23
0.25 0.34 025 033|026 0311025 0.30
UK 0.25 0.19 025 0.19 | 026 0.21 | 0.25 0.21

0.25 0.35 0.25 033|026 0331 0.25 0.33

France 0.25 0.19 025 0.21 | 025 0.22] 026 0.23
0.25 0.34 025 031|026 031026 0.29

Germany | 0.26 0.19 025 0.19 | 026 0.19 | 0.27 0.20
0.24 0.35 025 033|024 0341023 0.35

Japan 0.25 0.18 0.25 0.19 | 0.26 0.20 | 0.27 0.23
0.25 0.35 0.26 0.32 | 0.25 0.32 | 0.25 0.30

Canada 0.25 0.20 026 020 | 026 022|026 0.21
0.25 0.35 0.25 033|025 0321 0.25 0.33

Italy 0.25 0.20 025 020 | 026 0.22] 025 0.22
0.25 0.33 0.25 032|025 0.30] 025 0.29

Rolling Sorting Window

h=1 h=2 h—=4 h=8

USA 026 020 |0.26 020|026 021|026 022
026 036 | 026 034026 032]026 0.31

UK 026 0.19 | 026 020|027 020|027 020

0.25 0.36 025 034|025 0341 025 0.33

France 0.26 0.20 026 0.21 | 026 0.22] 0.27 0.23
0.25 0.35 025 033|026 0321 0.2 0.30

Germany | 0.26 0.19 0.26 0.20 | 0.27 0.20 | 0.28 0.20
0.24 0.35 025 033|024 034|023 0.34

Japan 0.27 0.18 026 0.19 | 0.27 0.20 | 0.28 0.22
0.25 0.36 025 034|025 033|025 0.31

Canada 0.25 0.20 026 021|026 022/ 026 0.22
0.25 0.35 026 033|025 0331025 0.33

Italy 0.26 0.20 0.26 0.20 | 0.27 0.21 | 0.27 0.22
0.26 0.34 026 033|024 032|025 031

Short Sorting Window

h=1 h=2 h=4 h=8
USA 027 025 | 027 024|027 025|027 025

026 034 |026 033|027 031025 030
UK 027 025 | 027 024|027 024027 024

0.26 0.35 026 034|025 0321 026 0.32

France 0.28 0.24 0.27 0.24 | 028 0.24 | 0.27 0.26
0.26 0.35 0.26 033|026 0.31| 026 0.30

Germany | 0.27 0.23 026 0.24 | 027 0.23 | 0.27 0.24
0.26 0.35 0.25 033|025 0321 0.25 0.30

Japan 0.27 0.24 0.28 0.24 | 0.28 0.24 | 0.29 0.24
0.26 0.35 025 034|025 032024 031

Canada 0.26 0.25 026 024|026 0.25] 0.27 0.25
0.26 0.34 026 033|026 031025 0.32

Italy 0.27 0.24 0.27 0.24 | 028 0.23 | 0.27 0.24
0.26 0.35 0.26 033 ] 025 033|026 0.31




Table 4: Significance of transition probabilities estimated for the
non linear models. Each cell reports the percentage of corner prob-
abilities in Table 3 that is greater than 0.25 at the 5% significance
level.

Expanding Sorting Window

h=1 h=2 h=4 h=8
USA 0.35 0.13 0.36  0.08 | 0.48 0.22 | 0.36 0.29
0.43 0.88 0.40 0.88 | 040 0.75| 0.36 0.66
UK 0.21  0.03 0.26 0.02 | 041 0.09 | 0.38 0.20

0.36 0.93 0.36 091 | 048 0.77 | 0.42 0.76

France 0.22  0.02 0.18 0.04 | 0.30 0.11 | 0.22 0.22
0.24 0.90 024 0.78 | 0.34 0.83 | 0.33 0.62

Germany | 0.40 0.07 0.33 0.11 | 047 0.07 | 0.46 0.22
0.26 0.93 032 0.84 | 0.25 0.80 | 0.24 0.74

Japan 0.25 0.05 0.30 0.05 | 0.30 0.07 | 0.39 0.25
0.33 0.94 0.44 0.87 | 0.30 0.77 | 0.36 0.55

Canada 0.32 0.14 0.32 0.08 | 0.35 0.19 | 0.34 0.21
0.32  0.93 0.29 0.83| 030 0.79 | 0.38 0.68

Italy 0.22 0.06 0.34 0.09 | 043 0.20 | 0.30 0.30
0.43 0.94 0.43 0.86 | 0.32 0.66 | 0.30 0.63

Rolling Sorting Window

h=1 h=2 h=4 h=8
USA 031 001 | 031 011|037 012|040 0.26

044 099 | 045 095|049 088|042 0.66
UK 036 002 | 034 000|046 0.05| 048 0.12

0.41 0.98 036 091 | 0.36 0.88 | 0.40 0.74

France 0.31  0.00 0.31 0.06 | 0.28 0.04 | 0.38 0.22
0.29 1.00 0.31 0.88 | 0.34 0.83 | 0.47 0.64

Germany | 0.37 0.00 0.32 0.07 | 0.44 0.07 | 0.57 0.11
0.30 0.96 0.32 0.86 | 0.27 0.84 | 0.28 0.81

Japan 0.40 0.02 0.37 0.06 | 0.41 0.07 | 045 0.21
0.25 0.97 0.35 0.89 | 0.36 0.82 | 0.41 0.73

Canada 0.25 0.07 0.34 0.07 | 0.26 0.07 | 0.46 0.14
0.32  0.95 039 095|035 0.86 | 0.39 0.68

Italy 0.41 0.04 0.50 0.02 | 0.50 0.14 | 0.53 0.20
0.41 0.98 036 098 | 034 0.86 | 0.28 0.85

Short Sorting Window

h=1 h=2 h=4 h=8
USA 041 028 | 045 023|048 032042 026

041 092 | 037 095|044 0.86 | 0.36 0.67
UK 0.36 026 | 048 021|048 0.20 | 0.46 0.32

0.45 0.95 028 093 | 027 0.84 | 0.38 0.80

France 0.55 0.10 0.43 0.16 | 0.47 0.23 | 0.40 0.36
0.35 0.96 0.35 090 | 0.30 0.79 | 0.33 0.67

Germany | 0.47 0.12 0.42 0.23 | 0.40 0.20 | 0.43 0.26
0.30 0.95 0.30 093|035 095|022 0.74

Japan 0.32  0.27 037 029 | 044 0.20 | 0.59 0.16
0.40 0.95 0.30 0.90 | 0.25 0.89 | 0.21 0.75

Canada 0.34 0.20 039 0.20 | 042 0.25| 0.46 0.23
0.34 0.93 034 095|040 0.75| 0.21 0.79

Italy 041 0.22 0.45 0.16 | 0.52 0.20 | 0.35 0.30
0.41 0.98 041 098 | 0.27 091 | 0.38 0.78




Table 5: Out-of-sample forecasting performance of combination schemes ap-
plied to linear models. Each panel reports the distribution of out-of-sample
MSFE - relative to that of the previous best model using an expanding win-
dow - averaged across variables, countries and forecast horizons (1,095 fore-
casts) for different combination strategies. Standard combination strategies
include PB, the previous best model, the average across the models in the
top quartile Q(PB), and across all models Q(EW). Quartile and cluster-
sorted conditional combination strategies are referred to as Q(W,Z2), and
C(K,W,Z) respectively, where W € {EW,OW, PB,SW} (equal weighted,
optimally weighted, previous best, and shrinkage weighted), Z € {L, M, H}
is the degree of shrinkage (low, medium, high), and K is the number of clus-
ters.

[ Min [ 10% [ 25% | Median [ 75% | 90% [ Max [ Mean
Expanding Sorting Window
PB 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 1.000
Q(PB) 0.223 | 0.762 | 0.866 | 0.939 0.991 | 1.036 | 2.360 0.923
Q(EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
QOowW) 0.152 | 0.705 | 0.820 | 0.919 0.994 | 1.073 | 3.518 0.912
Q(SW, L) 0.251 | 0.701 | 0.821 | 0.917 0.985 | 1.056 | 2.820 0.904
Q(SW, M) 0.304 | 0.705 | 0.828 | 0.916 0.981 | 1.047 | 2.695 0.900
Q(SW, H) 0.328 | 0.709 | 0.834 | 0.916 0.979 | 1.040 | 2.688 0.901
C(3,PB) 0.145 | 0.762 | 0.870 | 0.944 0.993 | 1.038 | 1.951 0.924
C(3,EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
C(3,0W) 0.271 | 0.808 | 0.934 | 1.045 1.240 | 1.552 | 13.748 | 1.187
C(3,SW, L) 0.292 | 0.780 | 0.897 | 1.000 1.120 | 1.313 | 9.226 1.058
C(3,SW,M) | 0.203 | 0.765 | 0.872 | 0.969 1.051 | 1.171 | 5.966 0.980
C(3,SW, H) 0.211 | 0.760 | 0.866 | 0.953 1.019 | 1.097 | 3.818 0.945
C(2,PB) 0.173 | 0.756 | 0.862 | 0.941 0.994 | 1.046 | 2.490 0.925
C(2,0W) 0.198 | 0.741 | 0.864 | 0.976 1.110 | 1.389 | 8.287 1.057
C(2,SW, L) 0.237 | 0.734 | 0.855 | 0.958 1.070 | 1.264 | 6.009 1.006
C(2,SW,M) | 0.270 | 0.731 | 0.851 | 0.947 1.037 | 1.182 | 4.228 0.968
C(2,SW,H) | 0.213 | 0.737 | 0.847 | 0.938 1.020 | 1.129 | 2.943 0.943
Rolling Sorting Window
PB 0.510 | 0.874 | 0.948 | 1.005 1.060 | 1.133 | 1.967 1.010
Q(PB) 0.163 | 0.754 | 0.863 | 0.940 0.995 | 1.049 | 2.408 0.924
Q(EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
QOwW) 0.152 | 0.697 | 0.822 | 0.919 0.992 | 1.079 | 3.541 0.911
Q(SW, L) 0.253 | 0.694 | 0.822 | 0.916 0.986 | 1.055 | 2.824 0.903
Q(SW, M) 0.304 | 0.697 | 0.827 | 0.914 0.983 | 1.047 | 2.776 0.900
Q(SW, H) 0.328 | 0.704 | 0.829 | 0.915 0.981 | 1.042 | 2.760 0.900
C(3,PB) 0.172 | 0.757 | 0.864 | 0.942 0.995 | 1.048 | 1.922 0.926
C(3,EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
C(3,0W) 0.222 | 0.845 | 0.971 | 1.114 1.331 | 1.662 | 16.616 | 1.263
C(3,SW, L) 0.235 | 0.802 | 0.924 | 1.035 1.186 | 1.389 | 11.452 | 1.113
C(3,SW,M) | 0.272 | 0.778 | 0.892 | 0.992 1.093 | 1.229 | 7.642 1.017
C(3,SW,H) | 0.304 | 0.763 | 0.877 | 0.969 1.044 | 1.149 | 5.023 0.970
C(2,PB) 0.178 | 0.752 | 0.860 | 0.939 0.995 | 1.044 | 2.259 0.923
C(2,0W) 0.245 | 0.763 | 0.895 | 1.019 1.189 | 1.464 | 10.246 | 1.131
C(2,SW, L) 0.251 | 0.747 | 0.882 | 0.994 1.135 | 1.332 | 8.357 1.064
C(2,SW,M) | 0.283 | 0.742 | 0.872 | 0.977 1.091 | 1.238 | 6.710 1.013
C(2,SW,H) | 0.295 | 0.740 | 0.863 | 0.963 1.058 | 1.171 | 5.303 0.977
Short Sorting Window
PB 0.291 | 0.825 | 0.924 | 1.016 1.098 | 1.207 | 3.034 1.023
Q(PB) 0.160 | 0.755 | 0.865 | 0.942 0.999 | 1.062 | 2.585 0.929
Q(EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
Q(OW) 0.269 | 0.695 | 0.821 | 0.921 1.004 | 1.098 | 3.756 0.920
Q(SW, L) 0.280 | 0.697 | 0.819 | 0.920 0.997 | 1.078 | 3.014 0.910
Q(SW, M) 0.296 | 0.701 | 0.820 | 0.917 0.990 | 1.063 | 2.575 0.905
Q(SW, H) 0.281 | 0.708 | 0.827 | 0.917 0.985 | 1.054 | 2.590 0.904
C(3,PB) 0.175 | 0.749 | 0.855 | 0.938 0.998 | 1.063 | 2.449 0.924
C(3,EW) 0.204 | 0.755 | 0.860 | 0.940 0.996 | 1.060 | 2.694 0.928
C(3,0W) 0.313 | 0.868 | 1.005 | 1.172 1.464 | 2.022 | 15.199 | 1.404
C(3,SW, L) 0.330 | 0.819 | 0.948 | 1.068 1.253 | 1.570 | 9.402 1.190
C(3,SW,M) | 0.275 | 0.783 | 0.902 | 1.008 1.127 | 1.317 | 5.183 1.055
C(3,SW,H) | 0.282 | 0.768 | 0.882 | 0.977 1.064 | 1.194 | 3.074 0.989
C(2,PB) 0.189 | 0.749 | 0.856 | 0.934 0.992 | 1.058 | 2.625 0.923
C(2,0W) 0.254 | 0.797 | 0.921 | 1.055 1.262 | 1.671 | 9.782 1.223
C(2,SW, L) 0.258 | 0.783 | 0.900 | 1.021 1.180 | 1.479 | 7.376 1.127
C(2,SW,M) | 0.275 | 0.766 | 0.881 | 0.989 1.116 | 1.336 | 5.425 1.053
C(2,SW, H) 0.321 | 0.755 | 0.865 | 0.968 1.079 | 1.233 | 3.929 1.002




Table 6: Out-of-sample forecasting performance of combination schemes applied
to non linear models. Each panel reports the distribution of out-of-sample
MSFE - relative to that of the previous best model using an expanding window
- averaged across variables, countries and forecast horizons (1,095 forecasts)
for different combination strategies. Standard combination strategies include
PB, the previous best model, the average across the models in the top quartile
Q(PB), and across all models Q(EW). Quartile and cluster-sorted conditional
combination strategies are referred to as Q(W, Z), and C(K, W, Z) respectively,
where W € {EW,OW, PB, SW} (equal weighted, optimally weighted, previous
best, and shrinkage weighted), Z € {L, M, H} is the degree of shrinkage (low,
medium, high), and K is the number of clusters.

[ Min [ 10% [ 25% [ Median [ 75% [ 90% [ Max [ Mean
Expanding Sorting Window
PB 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000
Q(PB) 0.369 | 0.748 | 0.833 | 0.907 0.970 | 1.018 | 1.630 | 0.896
Q(EW) 0.355 | 0.708 | 0.814 | 0.906 0.988 | 1.065 | 1.651 | 0.900
QOW) 0.089 | 0.641 | 0.746 | 0.858 0.968 | 1.062 | 2.925 | 0.862
Q(SW, L) 0.153 | 0.647 | 0.747 | 0.855 0.960 | 1.036 | 2.259 | 0.853
Q(SW, M) 0.207 | 0.652 | 0.747 | 0.854 0.951 | 1.024 | 1.727 | 0.849
Q(SW, H) 0.232 | 0.661 | 0.755 | 0.857 0.949 | 1.016 | 1.555 | 0.850
C(2,PB) 0.356 | 0.709 | 0.813 | 0.893 0.963 | 1.018 | 1.339 | 0.881
C(2,0W) 0.154 | 0.679 | 0.807 | 0.938 1.101 | 1.438 | 7.130 | 1.026
C(2,SW,L) 0.164 | 0.671 | 0.798 | 0.928 1.069 | 1.339 | 5.659 | 0.990
C(2,SW,M) | 0.167 | 0.672 | 0.798 | 0.916 1.041 | 1.257 | 4.423 | 0.962
C(2,SW,H) | 0.183 | 0.676 | 0.797 | 0.913 1.026 | 1.194 | 3.789 | 0.944
Rolling Sorting Window
PB 0.520 | 0.870 | 0.948 | 1.017 1.097 | 1.187 | 3.710 | 1.034
Q(PB) 0.381 | 0.749 | 0.830 | 0.912 0.982 | 1.041 | 1.825 | 0.904
Q(EW) 0.355 | 0.708 | 0.814 | 0.906 0.988 | 1.065 | 1.651 | 0.900
QowW) 0.089 | 0.639 | 0.752 | 0.869 0.977 | 1.073 | 2.894 | 0.867
Q(SW, L) 0.135 | 0.643 | 0.750 | 0.865 0.963 | 1.049 | 2.246 | 0.858
Q(SW, M) 0.143 | 0.649 | 0.752 | 0.860 0.957 | 1.033 | 1.808 | 0.853
Q(SW, H) 0.181 | 0.660 | 0.757 | 0.864 0.954 | 1.023 | 1.633 | 0.853
C(2,PB) 0.357 | 0.714 | 0.810 | 0.897 0.970 | 1.029 | 1.467 | 0.885
C(2,0W) 0.176 | 0.687 | 0.813 | 0.944 1.117 | 1.448 | 5.869 | 1.041
C(2,SW, L) 0.158 | 0.679 | 0.807 | 0.932 1.076 | 1.359 | 4.906 | 1.001
C(2,SW,M) | 0.157 | 0.682 | 0.803 | 0.919 1.053 | 1.285 | 4.320 | 0.970
C(2,SW,H) | 0.170 | 0.685 | 0.802 | 0.914 1.034 | 1.218 | 3.787 | 0.949
Short Sorting Window

PB 0.392 | 0.850 | 0.960 | 1.091 1.242 | 1.461 | 3.869 | 1.130
Q(PB) 0.385 | 0.751 | 0.844 | 0.943 1.047 | 1.179 | 2.221 | 0.958
Q(EW) 0.355 | 0.708 | 0.814 | 0.906 0.988 | 1.065 | 1.651 | 0.900
QOW) 0.088 | 0.642 | 0.758 | 0.880 0.996 | 1.118 | 2.682 | 0.886
Q(SW, L) 0.144 | 0.648 | 0.759 | 0.874 0.983 | 1.086 | 2.245 | 0.876
Q(SW, M) 0.166 | 0.649 | 0.762 | 0.874 0.976 | 1.070 | 1.880 | 0.871
Q(SW, H) 0.227 | 0.659 | 0.768 | 0.878 0.970 | 1.055 | 1.621 | 0.871
C(2,PB) 0.371 | 0.722 | 0.819 | 0.915 0.991 | 1.073 | 1.765 | 0.907
C(2,0W) 0.158 | 0.684 | 0.813 | 0.939 1.093 | 1.373 | 4.455 | 1.003
C(2,SW, L) 0.150 | 0.682 | 0.803 | 0.926 1.059 | 1.282 | 3.947 | 0.968
C(2,SW, M) | 0.157 | 0.678 | 0.799 | 0.916 1.037 | 1.213 | 3.483 | 0.944
C(2,SW,H) | 0.180 | 0.677 | 0.801 | 0.911 1.022 | 1.170 | 3.060 | 0.930
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Fig. 1. Scatter plot of the average in-sample versus out-of-sample MSFE values generated by
linear forecasting models estimated for output growth.
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non-linear forecasting models estimated for output growth.



