MEcon 8,270 — Spring 2019

International Macroeconomics

Problem Set 3: Simulation of ToT Shocks for High-Income Economies

May 15, 2019

Due date and time:	Wednesday, May 22, at 12pm (prior to final exam)
Instructor:	Marc-Andreas Muendler
E-mail:	marc-andreas.muendler@unisg.ch
Teaching Assistant:	David Torun
E-mail:	david.torun@unisg.ch

This problem set asks you to simulate terms-of-trade (ToT) shocks, similar to chapter 7 of Uribe and Schmitt-Grohé (2017). The problem set proceeds in two steps. First you are asked to calibrate the model to a selection of small open high-income economies (including Switzerland). Second, you are asked analyze impulse response functions for a variation in parameter values.

Please upload your solutions to this problem set (as a **zip** file) in the respective folder on *StudyNet*. Your zip file should contain your code, your data set (if applicable), and a pdf file with your written solution. Please create one folder per question (e.g., a folder "Q6 Simulating ToT shocks for Small Open Economies", etc.). Please name the zip file in the following way: PS3_surname_name_19.zip (e.g., PS3_Torun_David_19.zip). After the deadline for submission on Wednesday, May 22, at 12pm (prior to the lecture), the *StudyNet* folder will automatically close and you will not be able to submit your solutions anymore.

6 Simulating ToT shocks for small open high-income economies

Simulate the SOE-MX Model for the following three small open economies (SOEs) with high per-capita incomes: Canada, New Zealand and Switzerland.

The **deliverable product** for this question has *one* component: a verbal comparison of the model-implied and SVAR-implied variances (both conditional on ToT shocks), including tables reporting these values.

- 1. Load the data in the files ps3_data_Q6.csv, ps3_names_Q6.csv and ps3_iso_Q6.csv into MATLAB.
- 2. This step is already completed in the code. Use the routine from Question 1 of Problem Set 1 to detrend the data of the following per capita variables: terms of trade, ToT_t , trade balance to output ratio, tb_t/y_t , output y_t , consumption c_t , and investment i_t .¹
- 3. This step is already completed in the code. Code the SVAR model from Lecture 7:

$$\begin{bmatrix} \widehat{ToT}_{t+1} \\ \widehat{\mathbf{v}}_{t+1} \end{bmatrix} = H\begin{bmatrix} \widehat{ToT}_t \\ \widehat{\mathbf{v}}_t \end{bmatrix} + \Sigma\begin{bmatrix} \epsilon_t^1 \\ \epsilon_t^2 \end{bmatrix}, \text{ where}$$
$$H \equiv \begin{bmatrix} \rho_1 & 0 \\ \alpha_0 \rho_1 + \alpha_1 & \rho_2 \end{bmatrix} \text{ and } \Sigma \equiv \begin{bmatrix} \eta & 0 \\ \alpha_0 \eta & \gamma_{22} \end{bmatrix}$$

 \mathbf{v}_t is a vector of relevant macro variables, ρ_1 is a persistence scalar, $\boldsymbol{\rho}_2$ is a persistence matrix with zero off-diagonal entries, u_t^1 is a random scalar (zero mean, unit variance), and $\boldsymbol{\epsilon}_t^2$ is a random vector (zero mean, full-rank variance-covariance matrix).

Compute estimates for the matrices H (called h_x in the code files provided) and Σ (called Π in the code files provided).

4. This step is already completed in the code. Set all parameters reported in the first row of Table 7.5 in the Uribe and Schmitt-Grohé textbook equal to the values displayed in the table. Set $s_x = 0.32$, $s_{tb} = -0.1$, and $s_{yx} = 0.52$ in order to match empirical averages for SOEs.

¹All variables, except for tb_t/y_t , have to be log-quadratically detrended. tb_t/y_t has to be divided by the secular component of output, and then detrended in levels, as in Problem Set 1.

- 5. This step is already completed in the code. Adjust the routine in order to calibrate country-specific values for ϕ (= $\phi_x = \phi_m$) and ψ to match the two empirical moments σ_i / σ_y and $\sigma_{tb/y} / \sigma_y$.
- 6. Produce and **report** tables that correspond to Tables 7.4, 7.6 and 7.7 in the Uribe and Schmitt-Grohé textbook.
- 7. Compare the model-implied variances of tb/y, y, c and i (conditional on ToT shocks) to those measured by the SVAR model. Briefly discuss. Then compare your version of Table 7.6 with that in the Uribe and Schmitt-Grohé textbook.
- 8. Compare Table 7.7 in the Uribe and Schmitt-Grohé textbook with your results. Comment on plausible reasons to set $\phi_m = \phi_x$, as is done in the code.

7 Simulating impulse-response functions for different values of μ

Simulate the impulse-response functions implied by the model fitted in Question 6 for two different values of μ : $\mu = 1$ and $\mu = 10$. Note that no recalibration is necessary. (Keep the remaining parameters fixed, altering μ only).

The **deliverable product** for this question has *one* component: a verbal discussion of the impulse-response functions for a terms of trade shock of ten percent under $\mu = 1$ and $\mu = 10$, and the corresponding graphs.

- 1. Simulate the impulse-response functions (for ten periods after the shock) for all variables specified in the code $plot_mx_ir_Q7.m$ under a current terms of trade shock of ten percent. Use the median response of our SOEs for the plots. Explain the behavior of these variables. Explain the differences between the impulse-response functions when $\mu = 1$ and $\mu = 10$.
- 2. **Relate** the impulse-response functions to the Harberger-Laursen-Metzler (HLM) Effect and the Obstfeld-Razin-Svensson (ORS) Effect. Briefly discuss.

References

Uribe, Martin and Stephanie Schmitt-Grohé, Open Economy Macroeconomics, Princeton and Oxford: Princeton University Press, 2017.