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International Macroeconomics

Problem Set 2
October 22, 2009

Due: Tue, November 10, 2009
Instructor: Marc-Andreas Muendler
E-mail: muendler@ucsd.edu

1 Optimal Consumption with Complete and In-
complete Asset Markets

Consider a two-period model of consumption by a representative agent, who
faces a market interest rate r for riskless loans B2. Labor earnings today are Y1.
There are S states of nature tomorrow, and earnings realizations Y2(s) differ
across states. Each state s occurs with a probability π(s). The representative
consumer maximizes expected life-time utility

U1 = C1 − a0

2 (C1)
2 + βE1

[
C2 − a0

2 (C2)
2
]
,

where period utility is quadratic and a0 > 0. The consumer’s time preference
parameter β is such that β = 1

1+r . You may assume that Y1 and all Y2(s) levels
are small enough so that the marginal utility of period consumption 1− a0C is
strictly positive for all consumption levels.

When asset markets are incomplete, the relevant constraints can be written
as

B2 = (1 + r)B1 + Y1 − C1

C2(s) = (1 + r)B2 + Y2(s) ∀s ∈ {1, . . . ,S}

Initial bond holdings B1 are given and B2 denotes bonds accumulated through
the end of period 1.

1. Show that the preceding constraints imply the S intertemporal budget
constraints

C1 +
C2(s)

1 + r
= (1 + r)B1 + Y1 +

Y2(s)

1 + r

for all states s ∈ {1, . . . ,S}.
2. Temporarily ignore the nonnegativity constraints C2(s) ≥ 0 for states s of

nature tomorrow. Compute the optimal level of consumption C1 today.
What are the implied values of C2(s). What would the optimal level of
C1 be for an infinitely-lived agent and output uncertainty in each future
period?
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3. Consider the nonnegativity constraint on C2. Relabel the states of nature
such that Y2(1) = mins{Y2(s)}. Show that if

(1 + r)B1 + Y1 +
2+r
1+rY2(1) ≥ E1 [Y2]

then the C1 computed in part 2 (for the two-period case) is still valid.
What is the intuition? Suppose the preceding inequality fails to hold.
Show that optimal consumption C1 today is lower and equals

C1 = (1 + r)B1 + Y1 +
Y2(1)
1+r .

This is a precautionary savings effect. Explain why it arises. Does the
bond Euler equation hold in this case?

[Hint : Apply the Kuhn-Tucker theorem to derive optimal consumption
C1.]

4. Assume the consumer faces complete global asset markets with p(s)/(1+r),
the state s Arrow-Debreu security price, equal to π(s)/(1 + r). Explain
why these are called actuarially fair prices. Find the optimal values of C1

and C2(s). Why can nonnegativity constraints be disregarded in the case
of complete asset markets?

2 Consumption-based CAPM model
(Lucas, ECMA 1978)

Consider a representative agent and a production process, in which a random
and exogenous amount of perishable output yt falls from one fruit tree each
period. There is no other output. The fruit output follows the stochastic process

ln yt = ln yt−1 + εt, (2-1)

where εt is an unanticipated Gaussian shock with Et−1 [εt] = 0 and N (0, σ2).
So, yt has a lognormal distribution. There is no investment, that is there is no
way to grow more fruit trees.

The agent’s life-time utility function takes the particular form

Ut = Et

[ ∞∑
s=t

e−θ(s−t)u(cs)

]
,

where θ > 0 is the rate of time preference. Assume there is a competitive stock
market, in which people can trade shares in the fruit tree. The price of a share
is denoted pt and ex-dividend. So, if the agent buys a share on date t, she gets
her first dividend payment only on date t+ 1.

1. Argue that a share holder’s individual budget constraint is cs + psxs+1 ≤
(ys + ps)xs, where xs denotes the shares in the tree that the agent holds
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at the end of period s − 1. Setup up the Bellman equation for the rep-
resentative agent’s intertemporal consumption and share-holding choice.
Show that the optimal consumption path satisfies the Euler equations

psu
′(cs) = e−θEt [(ps+1 + ys+1)u

′(cs+1)] (2-2)

for all s ≥ t.

2. Show that, in equilibrium, the fundamental bubble-free price path of the
shares in the tree is

p∗t = Et

[ ∞∑
s=t+1

e−θ(s−t)u
′(ys)ys
u′(yt)

]
.

Interpret this formula in terms of expected payoffs and a “risk premium”
by rewriting it in CAPM-style. What is the sign of the risk premium on
the tree, and why?

3. Let agents have the iso-elastic period utility function

u(c) =
c1−ρ − 1

1− ρ
,

where ρ > 0. Show that this utility function, together with the output
process (2-1) implies

Et

[
(ys)

1−ρ
]
= (yt)

1−ρeσ
2(1−ρ)2(s−t)/2.

[Hint : You may find it helpful to use the moment generating function
(mgf) for a normal probability distribution. The mgf of a normally dis-
tributed random variable X (with X ∼ N(µ, σ2)) is MX(t) ≡ E [

e−tX
]
=

eµt+σ2t2/2. Also recall that the notation Et[·] is short-hand for conditional
expectations Et[(ys)

1−ρ|yt, ·].]
4. Deduce from your finding in part 3 that if θ > σ2(1−ρ)2/2, then p∗t = χyt

for

χ ≡ 1

e[θ−σ2(1−ρ)2/2] − 1
.

5. Return to a general, strictly concave period utility function u(c). Let bt
be the random variable bt = A(yt)

λ/u′(yt), where λ ≡
√
2θ/σ2 and A is

an arbitrary constant. Show that p∗t + bt will satisfy the individual’s Euler
equation (recall part a) in equilibrium. So, bt is an asset price bubble.
Show that pt = p∗t + bt violates the transversality condition

lim
T→∞

e−θ(T−t)Et [u
′(yt+T )pt+T ] = 0. (2-3)
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6. Together with the equilibrium Euler equations

psu
′(cs) = e−θEt [(ps+1 + ys+1)u

′(cs+1)]

from (2-2), the transversality condition (2-3) is sufficient for a stochastic
price path {ps}∞s=1 to be an equilibrium. You are asked to show here that
(2-3) is also a necessary condition for an equilibrium. Iterate (2-2) forward
to derive

ptu
′(yt) = Et

[ ∞∑
s=t+1

e−θ(s−t)u′(ys)ys

]
+ lim

T→∞
e−θ(T−t)Et [u

′(yt+T )pt+T ] .

Argue that if the limit above is strictly negative, everyone would want
to buy more of the tree and never sell it. Then argue conversely that
it cannot be an equilibrium either if the limit is strictly positive. Why?
[Hint : Look for a strategy that raises lifetime utility infinitely through the
sale of a tiny fruit tree share today that is never repurchased.] Why does
the Euler equation (2-2) not suffice to rule out an asset price bubble?

3 Speculative Hyperinflations (Cagan 1956)

Consider the following money-in-the-utility-function model in continuous time.
Agents maximize

∫ ∞

t

e−ρ(s−t) [u (c(s)) + v (m(s))] ds.

1. There are two types of assets, money M and a nominal bond B. Total
nominal asset holdings A are A = M + B. The representative agent
accumulates nominal assets at a rate Ȧ = P (y − c) + iB. Assume the
Fisher parity holds and i = r + π, where π = Ṗ /P is the inflation rate.
Show that the intertemporal budget constraint can be written in real terms
as

ȧ = (y − c) + ra− im,

where a ≡ A/P , m ≡ M/P are real holdings of nominal assets.

2. Assume that
v(m) = mγ/γ,

where γ ∈ (−∞, 1). [For γ = 0, v(m) = lnm.] Show that, in this model,
the elasticity of money demand with respect to the nominal interest rate
i is

−d lnm

d ln i
=

1

1− γ
.

[You may but need not use a Hamiltonian. An argument about marginal
utility equalization to infer the first-order condition is fine.]
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3. Argue that in equilibrium ρ = r and c = y. Suppose nominal money

supply M grows at a rate Ṁ
M = µ. Derive the equation of motion for real

money holdings
ṁ

m
= µ+ ρ− mγ−1

u′(y)
.

4. Keep assuming that v(m) = mγ/γ, where γ ∈ (−∞, 1). Show that, in
equilibrium and under constant money supply, speculative hyperinflations
such that P → ∞ can arise only if the interest elasticity of money demand
exceeds unity. [Hint: Speculative hyperinflations result in m = 0 in the
limit. This is possible iff limm→0 mv′(m) = 0. Why?]

5. Cagan thought it more plausible that the interest elasticity of money,
rather than being constant, rises as expected inflation rises. Assume that

v(m) =
m

γ

[
1− ln

(m
κ

)]
. (3-4)

for some κ > 0. Normalize output so that u′(y) = 1. Show that v′(m) > 0
for m < κ and that v′′ < 0. Show that money demand is given by

m = κe−γi,

the so-called Cagan equation.

Verify that, for this equation, the interest elasticity of money demand is
γi, which tends to infinity as i → ∞.

6. Show that in the Cagan version of utility from money holdings (3-4)

lim
m→0

mv′(m) = 0

so that speculative hyperinflations are possible. [Hint : Invoke L’Hôspital’s
Rule.]

7. Assume there is a fixed flow of government spending g, which is not tax
funded but financed by money creation instead. The central bank mone-
tizes the government deficit ḋCB

G . So, the government’s budget constraint
is

g = ḋCB
G =

Ṁ(s)

P (s)
=

Ṁ(s)

M(s)
m(s) = µ(s)m(s),

where the rate of nominal money supply growth µ(s) is an endogenous
variable. Assume money demand is of the Cagan form

m = κe−γi,

where i(s) = ρ+ π(s). Using the equilibrium condition that the inflation
rate equals money supply growth less money demand growth,

π(s) = µ(s)− ṁ(s)

m(s)
,
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derive a differential equation of the form π̇(s) = f(π(s), g) that charac-
terizes the equilibrium. Graph π̇ on the vertical axis against π on the
horizontal axis and show that there can be two different steady-state in-
flation rates. Also show that the low-inflation steady state is dynamically
unstable and that the high-inflation steady state is dynamically stable.

4 Exchange Rate Overshooting (Dornbusch, JPE
1976)

Suppose money demand takes the Cagan-like form

md
t − pt = φydt − η is+1 with φ, η > 0

where md
t denotes the natural logarithm of nominal money demand, pt the

log price level, ydt log aggregate demand and is+1 the nominal interest rate
(ln(1+is+1)). Money supply is constant ms

t = m.
Suppose the uncovered interest parity condition holds and is+1 = i∗s+1 +

es+1 − et, where et is the log nominal exchange rate. By definition, the real
exchange rate is qt = et + p∗t − pt.

Suppose aggregate demand increases when the real exchange rate depreciates
so that

yds = δqt with δ ∈ (0, 1
φ )

The full-employment level of aggregate supply is

yss = ȳ.

Finally, suppose in Keynesian style, that prices are not immediately set to
the expected equilibrium level, but adjusted slowly. In particular, prices obey
the response function

ps+1 − ps = π(yds − yss).

Standardize all foreign variables to constants p∗s = i∗s+1 = 0, and suppose that
money markets clear instantaneously: md

s = ms
s = m̄.

1. Show that, under these assumption, a Dornbusch model can be built from
three equations:

m̄− ps = φyds − η(es+1 − es), (4-1)

yds = δ(es − ps) δ ∈ (0, 1
φ ), (4-2)

ps+1 − ps = π(yds − ȳ). (4-3)

2. Find the steady-state values of the exchange rate and the price level
(es+1 = es = ē, ps+1 = ps = p̄).
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3. Express both (es+1− es) and (ps+1− ps) as functions of es, ps (substitute
exogenous variables in the equations with their relationships to ē, p̄). Find
the two functional relationships between ps and es that satisfy es+1−es =
0 and ps+1− ps = 0. Draw them in a phase diagram with ps on the y-axis
and es on the x-axis. Complete the phase diagram indicating the motion
of the system (using the conditions for es+1 − es ≥ 0 and ps+1 − ps ≥ 0).

Finally, add a line to the diagram that obeys a ‘no-arbitrage condition’ as
mandated by UIP: ps − p̄ = −θ̂ (es − ē) for some θ̂ > φδ/(1−φδ). (The θ̂
is not quite the same as in the original Dornbusch model since there is no
uncertainty in the present setup.)

4. Is the steady-state stable, saddle-path stable, or unstable? If not, what is
the unique stable (“saddle”) path given a steady-state of p̄ and ē?

5. Suppose all variables except for ps immediately respond to a monetary
shock.

What is the new steady-state? Draw a ‘no-arbitrage’ line through it.

What happens to es right after an unanticipated reduction in the monetary
base from m̄ to m̄′ < m̄? How do es+s and ps+s evolve over time?

6. Now consider the dynamics of the model around its steady-state. Using
(4-2) and the steady-states of ē and p̄ that you found in part 1, express
yds − ȳ as a function of es − ē and ps − p̄.

7. Using (4-1) along with the results in parts 1 and 6, express es+1 − ē as a
function of 1

η (es − ē) and 1
η (ps − p̄).

8. Using (4-2) and (4-3) along with the results in part 1, express ps+1 − p̄ as
a weighted sum of es − ē and ps − p̄.

From now on, assume that π = 1
η and φ = 3 for simplicity.

9. Write your findings from 7 and 8 into a system of two difference equations
that takes the form

(
es+1 − ē
ps+1 − p̄

)
= A ·

(
es − ē
ps − p̄

)
. (4-4)

Find the eigenvalues and eigenvectors of the system.

[Hint : An intermediate result is tr(A) = 2(δ+η)
η and det(A) = 1− (1−2η)δ

η2 .]

10. Is the system stable? That is, do the exchange rate and price levels con-
verge to the steady-state?

If not, set the coefficient of the unstable root to zero. Then, using the
simplified system in part 9 and the results from 6, express ps+1 as a
function of es+1 and exogenous variables. Draw this function into the
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phase diagram from part 5 so that it passes through the steady-state.
(You can safely pretend that ȳ 6= 0. Also, remember that δ < 1

φ .)

What did you just find? What is the intuition for the fact that the econ-
omy obeys this relationship?
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