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Abstract
Add a stage of signal acquisition to a canonical model of portfolio choice.
Under fully revealing asset price, investors’ information demand reflects
their choice of transparency. In reducing uncertainty, financial trans-
parency raises expected asset price and thus benefits holders of the risky
asset. At a natural transparency limit, however, investors pay to inhibit
further disclosure in order to forestall the erosion of the asset’s expected
excess return. The natural transparency limit varies with the portfolio
position. There is a dominant investor with a risky asset endowment
modestly above market average who single-handedly determines trans-
parency in equilibrium. The dominant investor strictly improves welfare
for investors with similar endowments but strictly reduces welfare for oth-
ers when acquiring signals beyond their natural transparency limits. The
welfare consequences of financial transparency are thus intricately linked
to the wealth distribution.
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Financial transparency is widely regarded as a cornerstone of well-functioning
capital markets and a remedy to financial distress. What is the welfare effect
of financial transparency? This paper pays close attention to the importance of
heterogeneous portfolios and financial market conditions for the economic value
of transparency. The paper shows that there is a natural transparency limit at
which rational investors pay to inhibit disclosure. The natural transparency limit
varies with initial portfolio holdings.

A literature on learning and experimentation analyzes incentives for infor-
mation acquisition and the public-goods character of information, but frequently
treats markets in abstract terms and disregards equilibrium price effects of trans-
parency. Many models of financial information, on the other hand, consider sig-
nal receipt as exogenous to investors. The framework of this paper permits an
analysis of the utility value of financial transparency based on first principles.
To determine the economic value of financial transparency, the paper examines
fully revealing asset price. Under fully revealing price, the choice of individual
information becomes a choice of public transparency. Finitely many rational in-
vestors have well-defined signal demands which, in turn, capture the marginal
utility benefits and costs of transparency.

Natural transparency limits arise because, as information removes risk, it
raises expected asset price and diminishes an asset’s expected excess return. At
an investor’s transparency limit, the utility loss from diminished excess returns
outweighs information benefits. To take an example, risk averse investors are
compensated for default risk with returns that exceed the expected losses un-
der default. More information strictly diminishes this excess return. At the
transparency limit, rational lenders reject further information to keep the excess
return. Prior to investors’ natural transparency limits, financial information is a
public good.

An investor’s natural transparency limit crucially depends on initial port-
folio holdings. When initial portfolio positions are heterogeneous, a dominant
investor with an endowment close to market average emerges and dictates the
transparency outcome.1 Transparency makes the asset safer and thus raises the
expected asset price. A higher expected asset price benefits the dominant in-
vestor most, who holds an asset endowment modestly above market average.
Investors with smaller asset holdings experience only a smaller revaluation effect
from more transparency, and investors with larger holdings suffer more from the
higher expected variance of their endowment value because signal realizations
may be favorable or unfavorable. The dominant investor acquires information to
a degree that makes investors with smaller or larger initial asset holdings strictly

1This heterogeneity in endowments generalizes Muendler (2005) and stresses the importance
of the wealth distribution for informational welfare.
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worse off if the acquired number of signals exceeds those investors’ transparency
limits. As a consequence, additional information results in an unambiguous
Pareto improvement only if investors are sufficiently homogeneous.

Information and transparency are matters of degree. Beyond binary infor-
mation acquisition as in Grossman and Stiglitz (1980) or Diamond (1985), the
present paper gives investors a choice of a number of signals in the spirit of ex-
perimentation. The present setup draws on Raiffa and Schlaifer (1961) whose
conjugate-prior decision model provides a natural extension of the canonical port-
folio choice model and gives rise to a law of demand for financial information—
similar to the experimentation paradigm of repeated sampling (Moscarini and
Smith 2001) but for risk averse, not risk neutral, agents. Most important, this
approach allows rational investors to account for the equilibrium price impact of
transparency. Demand for transparency is strong if many risky assets are in the
market, or if investors are highly risk averse, or if the expected mean-variance
ratio of the asset return is relatively low so that uncertainty matters strongly
compared to expected returns.

Recent financial-market or general-equilibrium models address transparency
but often stop short of giving investors a rational choice of information (Morris
and Shin 2002, Krebs 2005). Morris and Shin (2002) argue in a beauty-contest
model, for instance, that more public information may reduce welfare. Their
result has been widely interpreted as counsel against transparency but the con-
clusion has been challenged within the original setting (Svensson 2005) as well as
in extensions (Angeletos and Pavan 2004). Experimentation models give rise to
decreasing but strictly positive marginal benefits to information and show that
the public-goods character of information induces free-riding (e.g. Moscarini
and Smith 2001, Cripps, Keller and Rady 2005). The abstract experimentation
framework, however, does not tie the value of information to financial primitives.
When embedding experimentation in a financial market context, information
turns into a public bad at the natural transparency limit.

Financial transparency can reduce welfare because information diminishes
the asset’s expected excess return by raising expected asset price—an effect that
also occurs in partially revealing rational expectations equilibrium (e.g. Admati
1985, Easley and O’Hara 2004). Easley, Hvidkjaer and O’Hara (2002) empirically
confirm the diminishing effect of public information on expected excess returns.
They find for a set of NYSE listed stocks between 1983 and 1998 that assets
exhibit a lower excess return if public information matters relatively more for
their valuation.2

2The resolution of information risk as in Easley et al. (2002) does not need to be the cause
of the diminishing excess return effect. Investors hold identical beliefs at all relevant stages in
this paper; information nevertheless raises asset price and diminishes the excess return.
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The joint equilibrium in signal and asset markets is called a Rational In-
formation Choice Equilibrium (RICE) and builds on common equilibrium def-
initions: a Walrasian rational expectations equilibrium (REE) for assets and
a Samuelson (1954) style public-goods equilibrium for signals, given rational
Bayesian updating.3 A fully revealing equilibrium exists for countably many
investors (Muendler forthcoming). Conversely, an individual in a continuum of
investors would have no price impact (Grossman and Stiglitz 1980, Kim and
Verrecchia 1991) and there would be no well-defined marginal valuation for pub-
lic information. In contrast to Grossman and Stiglitz (1980) or Diamond (1985),
RICE does not require a grouping of agents into informed and uninformed in-
vestors (which would equate their ex ante utilities), and thus permits a welfare
analysis of transparency in terms of individual expected utilities.

This paper employs the Poisson-gamma pair of signal-return distributions.
Apart from its welcome tractability, the Poisson-gamma pair exhibits many re-
alistic features. The normal-normal pair, in contrast, would result in an unrea-
sonable natural transparency limit at no information for investors without initial
risky asset holdings. Financial information often comes in discrete levels such as
Standard & Poor’s and Moody’s investment grades or on a three-level buy-hold-
sell scale; Poisson distributed signals are discrete. A gamma distribution of the
asset payoff is the unique conjugate prior distribution to Poisson signals so that
a closed-form solution of the financial market equilibrium ensues.4 Special cases
of the gamma distribution are the chi-squared, the Erlang, and the exponen-
tial distribution, for instance. The prominence and success of the Nelson (1991)
exponential ARCH model in empirical finance suggests that the gamma family
is a particularly relevant one for return distributions. Realistically, gamma dis-
tributed gross returns cannot be negative so that investors never lose more than
their principal.

The existence of a natural transparency limit is largely invariant to distribu-
tional assumptions.5 For price to be fully revealing, investors are given a common
degree of constant absolute risk aversion (CARA). While CARA utility provides
a generalization over risk neutrality in the experimentation and learning litera-
tures, informational properties of utility functions other than CARA are little
known in the financial information literature and beyond the scope of this paper.

3The public-goods character of signals is also common in models of experimentation (Bolton
and Harris 1999, Cripps, Keller and Rady 2005). Under partially revealing price, information
has public-goods character too because price permits belief updating (Admati 1985).

4Davis (1993) and Heston (1993) present earlier models in finance that employ the gamma
distribution.

5When signals are a sum of the asset’s fundamental plus noise and the fundamental and
noise distributions have moment-generating functions, then the natural transparency limit is
zero information for investors with no risky asset endowment (Muendler forthcoming).
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In Muendler (2005) I argue that, to instill more transparency, cutting costs
of information acquisition is superior to disclosure because disclosure crowds out
private information acquisition and risks a violation of investors’ transparency
limits. The present paper shows that this recommendation carries over to the
case of heterogeneous investors. Instilling more transparency is best achieved
by cutting costs because it results in a Pareto improvement for all investors if
they are sufficiently homogeneous so that no one’s transparency limit is violated,
whereas disclosure could breach transparency limits. If investors’ endowments
are strongly heterogenous, cutting information costs can inflict welfare losses on
some investors with initial positions far from those of the dominant investor.
But cutting information costs continues to be superior to disclosure because
reduced information costs necessarily benefit investors with initial positions close
to market average, whereas public disclosure risks violating the transparency
limit even of investors with close-to-average endowments.

The remainder of this paper is organized as follows. Section 1 puts forth the
modelling assumptions and adds a stage of information acquisition to a canonical
portfolio choice model. The resulting financial market equilibrium is presented in
Section 2. Section 3 derives the information market equilibrium and determines
the level of financial transparency, while Section 4 analyzes the informational
efficiency under a normative perspective. Section 5 concludes. Some proofs are
relegated to the appendix.

1 Information and Portfolio Choice

There are two periods, today and tomorrow, and two assets: One safe bond b
and one risky stock x. Assets are perfectly divisible. The safe bond sells at a
price of unity today and pays a real interest rate r ∈ (−1,∞) tomorrow so that
the gross interest factor is R≡1+r ∈ (0,∞). The risky asset sells at a price P
today and has a payoff of θ tomorrow.

Add an initial stage of signal acquisition to the standard expected utility
model of portfolio choice. Investors can acquire signals to update their prior
beliefs about the risky asset return. Think of signals as spy robots and of signal
realizations as the spy robots’ reports. Markets for spy robots (signals) Si

n open
at 9am today. Robot n, hired by investor i, reports back exclusively to investor
i with a signal realization si

n before 10am. How many spy robots N i should
investor i hire?

Figure 1 illustrates the timing of decisions. Every investor i is endowed with
initial wealth W i

0 ≡ bi
0+Pxi

0. At 9am, investors choose the number of signals (spy
robots) N i. To do so, they maximize ante notitias expected utility based on their
prior beliefs before signal realizations become known (ante notitias). Investors
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Figure 1: Timing of decisions and information revelation

then receive the realizations {si
1, ..., s

i
N i} of these N i signals (they get to know

the content of the spy robots’ reports) and update their beliefs. When Wall
Street opens at 10am today, investors choose consumption today and tomorrow,
C i

0 and Ci
1, and decide how much of the risky asset to hold. At this stage, they

maximize post notitias expected utility based on their posterior beliefs.6 The
Walrasian auctioneer in the financial market sets the price P for the risky asset
such that the stock market clears. The bond market clears given the interest
factor R.

The asset price at 10am will contain information. The reason is that each in-
vestor chooses her portfolio given her observations of signal realizations ({si

n}N i

n=1),
and the Walrasian auctioneer at Wall Street clears the market by calling an equi-
librium price. In the benchmark case of a fully revealing equilibrium, the asset
price is invertible in a sufficient statistic of all investors’ posterior beliefs and
permits the rational extraction of all relevant market information. This is the
case of analysis in the present paper.

In the spirit of competitive equilibrium, a rational expectations equilibrium
(REE) that clears both the asset market and the market for signals can be defined
as a Walrasian equilibrium at Wall Street preceded by a Bayesian public-goods
equilibrium in the market for spy robot services. I call this extension of REE to a

6To clarify the timing of signal realizations, I distinguish between ante notitias and post
notitias expected utility. Ante notitias expected utility is different from prior expected utility
in that the arrival of N i signals is rationally incorporated in ante notitias expected utility.
Raiffa and Schlaifer (1961) favored the terms “prior analysis,” “pre-posterior analysis” and
“posterior analysis.”
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rational Bayesian public-goods equilibrium in the signal market and a subsequent
Walrasian asset market equilibrium a Rational Information Choice Equilibrium,
or RICE.

Definition 1 (RICE). A Rational Information Choice Equilibrium (RICE) is
an allocation of xi∗ risky assets, bi∗ safe bonds, and N i∗ signals to investors
i = 1, ..., I and an asset price P along with consistent beliefs such that

• the portfolio (xi∗, bi∗) is optimal given RP and investors’ post notitias be-
liefs for i = 1, ..., I,

• the market for the risky asset clears,
∑I

i=1 xi∗ = Ix̄, and

• the choice of signals N i∗ is optimal for investors i = 1, ..., I given the sum
of all other investors’ signal choices

∑
k 6=i N

k,∗ and a marginal signal cost
c.

x̄ denotes the average risky asset supply per investor.
Rational Bayesian investors choose their demand for signals given the ex-

pected asset market REE at Wall Street under anticipated information revela-
tion. The equilibrium in the market for signals is the benchmark public-goods
equilibrium following Samuelson’s (1954) definition, where agents know other
agents’ total demand for the public good at the time of their decision. When
asset price fully reveals a sufficient statistic of all investors’ signal realizations
post notitias, signals are pure (non-rival and non-excludable) public goods ante
notitias.

1.1 Conjugate updating

Financial information often comes in discrete levels such as Standard & Poor’s
or Moody’s investment grades, or on a three-level buy-hold-sell scale. Poisson
distributed signals in particular are discrete and exhibit several useful statisti-
cal properties. The sum of N i conditionally independent Poisson signals, for
instance, is itself Poisson distributed with mean and variance N iθ (appendix B).
For a large number of draws and small probabilities, Poisson probabilities ap-
proximate binomial signal distributions (many buy-sell signals) (Casella and
Berger 1990, Example 2.3.6).

Assumption 1 (Poisson distributed signals and conjugate updating). Signals
are Poisson distributed and update the prior distribution of the asset return θ to
a posterior distribution from the same family.
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A gamma distribution of the asset return, θ ∼ G(αi, βi), uniquely satisfies as-
sumption 1 (Robert 1994, Proposition 3.3). The parameters αi and βi are specific
to investors’ beliefs in principle. The parameter αi is sometimes referred to as
the shape parameter and 1/βi as the scale parameter.

Distributions that are closed under sampling so that prior and posterior dis-
tributions belong to the same family are called conjugate prior distributions. The
gamma distribution is a conjugate prior to the Poisson distribution.7 A gamma
distributed asset return exhibits the additional advantage that its support is
strictly positive so that, realistically, negative returns cannot occur. In contrast,
a normal asset return would imply that stock holders must cover losses beyond
the principal (θ<−P ) with a strictly positive probability.

Under assumption 1, signals {Si
1, ..., S

i
N i}I

i=1 are conditionally independent

given the realization of the asset return, Si
n|θ i.i.d.∼ f(si

n |θ ). While assets are
assumed to be perfectly divisible, signals have to be acquired in discrete numbers.

Useful properties of the Poisson and gamma distributions are reported in
appendix B. The most important property relates to the updating of beliefs.

Fact 1 (Conjugate updating). Suppose the prior distribution of θ is a gamma
distribution with parameters ᾱ > 0 and β̄ > 0. Signals Si

1, ..., S
i
N i are indepen-

dently drawn from a Poisson distribution with the realization of θ as parameter.
Then the post notitias distribution of θ, given realizations si

1, ..., s
i
N i of the sig-

nals, is a gamma distribution with parameters αi = ᾱ+
∑N i

n=1 si
n and βi = β̄+N i.

Proof. See Robert (1994, Proposition 3.3).

The mean of a gamma distributed return θ is αi/βi, and its variance αi/(βi)2.
The mean-variance ratio will play a key role in particular: Ei [θ] /Vi (θ) = βi.

1.2 Portfolio choice

A signal costs c. So, the intertemporal budget constraint of investor i becomes

bi + Pxi = bi
0 + Pxi

0 − Ci
0 − cN i (1)

today.
Ci

1 = Rbi + θxi (2)

will be available for consumption tomorrow.

7The gamma distribution is also a conjugate prior distribution to itself and a normal dis-
tribution, for instance.
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Assumption 2 (Expected CARA utility). Investors i = 1, . . . , I evaluate con-
sumption with additively separable utility U i at constant individual discount rates
ρi and under common constant absolute risk aversion:

U i = E
[
u(Ci

0) + ρiu(Ci
1)

∣∣F i
]
, (3)

where u(C) = − exp{−AC} < 0, A > 0 is the Pratt-Arrow measure of absolute
risk aversion, and F i denotes investor i’s information set.

For ease of notation, abbreviate investor i’s conditional expectations with
Ei [·] ≡ E [· |F i ] when they are based on post notitias beliefs, and with Ei

ante [·] ≡
E [· |F i

ante ] for ante notitias beliefs in anticipation of N i signal receipts. Post
notitias expectations will coincide for all investors under fully revealing price.

To analyze the utility benefit of signals, given expected price responses to
signal realizations in general equilibrium, it is instructive to consider the case of
investors who are identical in beliefs and risk aversion. This homogeneity will
make price fully revealing (common priors are not necessary for fully revealing
price but convenient). Investors’ initial portfolios, however, are heterogeneous.

Assumption 3 (Common priors and risk aversion). Investors hold identical
prior beliefs about the joint signal-return distribution and share the same degree
of risk aversion.

If investors also know market size, asset price becomes fully revealing.

Assumption 4 (Known market size). The average supply of the risky asset x̄
and the total number of investors I are certain and known.

Assumptions 2 through 4 provide a closed-form solution for financial market
equilibrium in a RICE. The prior information market equilibrium in a RICE,
however, has no closed form. Its analysis becomes tractable under the following
additional assumption.

Assumption 5 (Single-price responses to signal realizations). The equilibrium
price of the safe asset does not respond to signal realizations on other assets’
returns.

The assumption is equivalent to the limiting case where markets for single risky
assets are small relative to the overall market for safe bonds so that single signal
realizations alter R negligibly little (see appendix D for a formal derivation).
Economies with large government debt and small open economies are leading
examples.
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On the second stage (Wall Street at 10am), investor i maximizes expected
utility (3) with respect to consumption C i

0 today and stock holdings xi, given (1)
and (2) and the asset price P , and after having received the realizations of her
N i signals {si

j}N i

j=1. For a gamma distributed asset return, demand for the risky
asset becomes

xi∗ =
βi

A

Ei [θ]−RP

RP
≡ βi

A
· ξi (4)

(plug the moment-generating function of the gamma distribution in appendix B
(fact 4) into the first-order condition (A.1) in appendix A). Demand for the risky
asset decreases in price and the safe asset’s return; demand is the higher the less
risk averse investors become (lower A) or the higher the expected mean-variance
ratio βi of the asset is. Investors go short in the risky asset whenever their return
expectations fall short of opportunity cost, Ei [θ] < RP , and go long otherwise.
Under CARA, demand for the risky asset is independent of wealth W i

0.
The term Ei [θ −RP ] /RP in (4) is an individual investor i’s expected relative

excess return over opportunity cost. Risk averse investors demand this premium.
For later reference, define the expected relative excess return as

ξi ≡ Ei [θ]−RP

RP
. (5)

The expected relative excess return ξi has important informational properties
that crucially affect incentives for information acquisition.

2 Financial Market Equilibrium

To solve for a RICE backwards, this section establishes financial market equilib-
rium given any market equilibrium for spy robots.8 Investors i = 1, ..., I have
received the realizations of their conditionally independent N i ≥ 0 signals. It is
10am, and investors choose portfolios (xi∗, bi∗) given their post notitias informa-
tion.

In REE, rational investors not only consider their own signal realizations.

They extract information also from price. Because RP and
∑N i

n=1 si
n are corre-

lated in equilibrium, the post notitias distribution of the asset return, based on
this information set, can be complicated. If price P is fully revealing, however,
the information sets of all investors coincide. This gives the rational beliefs in
REE a closed and linear form analogous to fact 1.

8The equilibrium at Wall Street is analogous to that in Muendler (2005) because risky asset
demand is independent of endowments under CARA.
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Lemma 1 (Unique asset market REE). Under assumptions 1 through 4, the
asset market REE in RICE is unique and symmetric with

αi = ᾱ +
I∑

k=1

Nk∑
n=1

sk
n ≡ α, (6)

βi = β̄ +
I∑

k=1

Nk ≡ β, (7)

RP =
α

β

1

1 + ξ
, (8)

where xi∗ = x̄ and ξi = ξ ≡ Ax̄/β.

Proof. By (4) and for beliefs (6) and (7), xi∗ = α/(ARP ) − β/A for all i. So,
market clearing xi∗ = x̄ under definition 1 of RICE implies (8).

Uniqueness of beliefs (6) and (7) follows by construction. By (4) and market
clearing, RP can be expressed as a linear affine function of ΣI

k=1Σ
Nk

n=1s
k
n with

known parameters, because risk aversion A is common to all investors. But
then, every investor i can infer Σk 6=iΣ

Nk

n=1s
k
n from her knowledge of own signal

realizations. Since the random variables Σk 6=iΣ
Nk

n=1s
k
n and ΣN i

n=1s
i
n are Poisson

distributed by fact 3 (appendix B) and conditionally independent given θ, a
rational investor applies Bayesian updating following fact 1. Hence, αi = ᾱ +
ΣN i

n=1s
i
n+ΣI

k 6=iΣ
Nk

n=1s
k
n and βi = β̄+N i+ΣI

k 6=iN
k. ΣI

k 6=iN
k is known by definition 1

of RICE.
No less than ΣI

k=1Σ
Nk

n=1s
k
n signals can get revealed in REE because, if some αi

did not include some si
n, investor i would violate Bayesian updating (fact 1).

The equilibrium price P fully reveals aggregate information of all market

participants
∑I

i=1

∑N i

n=1 si
n. This is a sufficient statistic for every moment of

θ given
∑I

i=1 N i (which is known by definition 1 of RICE). Price is also fully
revealing if investors’ individual prior beliefs differ and investors merely know
average prior beliefs. In general, the equilibrium price is fully revealing if and
only if assumptions 1, 2 and 4 are satisfied, and investors know average prior
beliefs and share a common degree of risk aversion (see appendix C).

In fully revealing REE, investors’ information sets coincide by (6) and (7).
Consequently, the expected relative excess return ξi = ξ (5) coincides. It becomes

ξ =
E [θ]−RP

RP
=

Ax̄

β
=

Ax̄

β̄ +
∑I

k=1 Nk
∈ (0, ξ] where ξ ≡ Ax̄

β̄
. (9)

The upper bound ξ is the elementary excess return: the maximal expected excess
return absent information acquisition.
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The expected relative excess return over opportunity cost Ei [θ−RP ] /RP is
crucial for individual incentives to acquire information. Information acquisition
diminishes the expected relative excess return. Equilibrium price P will reveal
signal realizations. So, private information will become publicly known to in-
vestors through informative price, and risk averse investors will value the risky
asset more thus bidding up price. Therefore, investors expect higher opportu-
nity cost of the risky asset Eante [RP ] in the face of reduced uncertainty. The
diminishing effect of public information on the expected relative excess return
also occurs in additive signal-return models for any distribution with a moment-
generating function (Muendler forthcoming) and when price is partially revealing
(Admati 1985, Easley and O’Hara 2004).

Lemma 2 (Diminishing excess return). Under assumptions 1 through 4, the
expected relative excess return ξ in asset market REE strictly falls in the number
of signals, while the expected opportunity cost of the risky asset Eante [RP ] strictly
increases in the number of signals ante notitiam.

Proof. Note that ξ = Eante [ξ] by (9). The number of signals N̄ =
∑I

k=1 Nk

strictly diminishes ξ by (9). The number of signals strictly raises Eante [RP ] =
(ᾱ + ᾱN̄/β̄)/(Ax̄ + β) since ∂Eante [RP ] /∂N̄ = ξ/β2(1 + ξ)2 > 0.

3 Information Market Equilibrium

Given the expected financial market equilibrium, how much information do in-
vestors acquire in RICE? Investors dislike the diminishing effect of information
on the expected relative excess return ξ but anticipate a more educated portfo-
lio choice if they can receive signal realizations. In their ante notitias choice of
the optimal number signals, risk averse investors weigh the diminishing excess
return and the marginal cost of a signal against the benefit of a more informed
intertemporal consumption allocation.

Signals raise asset price Ei
ante [P ] ante notitias by Lemma 2. So, investors who

are endowed with the risky asset xi
0 experience a positive endowment revaluation

effect of signal acquisition ante notitias. In other words, investors who hold
the risky asset have an incentive to acquire information and raise the value of
their endowment W i

0 = bi
0 + Pxi

0 by buying signals. To distinguish between the
diminishing effect of information on the expected relative excess return ξ and the
positive endowment revaluation effect of information, it is instructive to define
the relative risky asset endowment of investor i as

ωi ≡ xi
0

x̄
∈ [0, I].
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If one investor initially owns all risky assets, then ωi = I. If an investor owns
the market average amount of assets, then ωi = 1.

Investors evaluate ante notitias expected utility for their signal choice, tak-
ing the potential revaluation of their endowments into account. Ante notitias
expected utility has a closed form if R is constant, which assumption 5 guaran-
tees.

For heterogeneous investors with arbitrary endowments xi
0 = ωix̄ and Poisson-

gamma signal-return distributions, ante notitias expected utility becomes

Ei
ante

[
U i

]
= −δi exp

{−A R
1+R

(W i
0 − cN i)

}
(10)

×
[
1 +

([
(1 + ξ) exp

{
ξ

1+ξ
(ωi−1)

}] 1
1+R − 1

)
ξ
ξ

]−ᾱ

(see appendix E).
Although the number of signals is discrete, one can take the derivative of ante

notitias utility with respect to N i to describe the optimal signal choice. Strict
monotonicity of the first-order condition in the relevant range will prove this to
be admissible. Differentiating (10) with respect to the number of signals yields
the incentive to purchase information. As long as ∂Ei

ante [U i∗] /∂N i > 0, investor
i will generically purchase more signals. If ∂Ei

ante [U i∗] /∂N i ≤ 0 for all N i, she
purchases no information at all.

Differentiate (10) with respect to N i, and divide by −Ei
ante [U i∗] > 0 for

clarity, to find

− 1

Ei
ante [U

i∗]
∂Ei

ante [U
i∗]

∂N i
= −A R

1+R
c (11)

+
ᾱ

β̄

[
(1 + ξ) exp

{
ξ(ωi−1)

1+ξ

}] 1
1+R

(
1− 1

1+R
ξ(ξ+ωi)
(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
ξ(ωi−1)

1+ξ

}] 1
1+R − 1

)
ξ
ξ

.

The first term on the right hand side of (11) is negative and represents the
marginal cost of a signal, MC. The second term expresses the potential marginal
signal benefit MBi(ξ, ωi), which can be positive or negative.9 Note that the
incentive for information acquisition does not depend on an investor’s patience.

9In Muendler (2005), where investors are homogeneous, I call the marginal utility benefit
the action value of information. Contrary to the action value of information, the potential
marginal signal benefit is not homogeneous at any given information level (any given ξ). The
potential benefit can be a strict utility loss for some investors at a given ξ while other investors
still gain from more information.
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Figure 2: Potential marginal signal benefits

3.1 The potential marginal signal benefit

The potential marginal signal benefit MBi(ξ, ωi) of a signal varies with ωi and
is therefore investor specific. Figure 2 depicts the range of individual marginal
benefit schedules MBi(ξ, ωi) by relative risky asset endowment ωi ∈ [0, I] (along
the axis running from front to back) and ξ ∈ (0, ξ] (ξ increases along the axis
running from west to east).

Rational investors view the choice of the total number of signals
∑I

k=1 Nk as
the converse of a choice of the expected relative excess return ξ because more
signals

∑I
k=1 Nk imply a lower expected relative excess return ξ and vice versa

(Lemma 2). Figure 2 therefore also depicts how the marginal signal benefit
MBi(ξ, ωi) varies as the expected relative excess return ξ changes (ξ falls along the
axis running from east to west). When there is no information (

∑I
k=1 Nk = 0),

the expected relative excess return ξ is at its maximum elementary level ξ (at the
upper bound to the east). When there is perfect information (

∑I
k=1 Nk → ∞),

the risky asset becomes identical to a safe bond so that there is no excess return
(ξ = 0 at the lower bound to the west).

3.2 An investor’s natural transparency limit

There is a fundamental tradeoff behind the potential marginal signal benefit MB.
An additional signal can diminish the expected relative excess return ξ so strongly
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Figure 3: Potential marginal signal benefits by endowment

that this negative effect more than outweighs the benefits of information.10

Figure 3 depicts sections of the graph in Figure 2 for four relative risky asset
endowments ωi and shows the individual marginal benefit schedules MBi(ξ, ωi).
These sections could represent an economy with ten investors, for instance, where
eight investors hold ωi = 1/8 and one investor each holds ωi = 1 and ωi = 8.

Starting from zero information (at the eastern most excess return ξ = ξ),
the individual marginal benefit schedule MBi(ξ, ωi) decreases monotonically in
the number of signals for every investor (as we move westwards). Ultimately,
the potential marginal benefit MB of an additional signal reaches zero. Most
important, the potential marginal signal benefit MB turns strictly negative when
the expected relative excess return ξ drops very far. Call the threshold where

10It can be shown for the case of a normal-normal pair of signal-return distributions that
the diminishing effect of information on the expected excess return is so strong that the MB
never turns positive for ωi = 0 (an implication of Theorem 4, Muendler forthcoming). For a
Poisson-gamma pair of distributions, however, the MB term in (11) can take a negative or a
positive sign for ωi = 0.
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the potential marginal signal benefit turns weakly negative investor i’s natural
transparency limit ξi.

At the natural transparency limit ξi, investor i pays to inhibit further infor-
mation disclosure. The potential benefit MB does not constitute a benefit but
a cost once ξ falls below an investor’s natural transparency limit. The negative
MB for low ξ reflects that, given a relatively large number of available signals,
the negative effect of an additional signal on the expected relative excess return ξ
outweighs the benefit from a more informed expected portfolio choice ante noti-
tias. A low ξ means that investors currently hold relatively many signals given
market size and the mean-variance ratio of the asset.

The transparency limit is investor specific because information revalues the
risky asset, and the revaluation affects investors with heterogeneous endowments
in different ways. The diminishing effect of an additional signal on the excess
return ξ weighs heavily for investors with large initial risky asset positions be-
cause ante notitias they are strongly affected by expected asset price volatility,
anticipating that information will move price post notitias. The diminishing ef-
fect of an additional signal on the excess return is also particularly strong for
investors with no endowment of the risky asset (xi

0 = 0) since the increase in the
opportunity cost RP is not mitigated by any positive wealth effect of asset price
on their endowments.

Facing the marginal utility cost of information MC, every investor comes up
with an individually optimal choice of ξ∗ωi given her relative stock endowment

ωi. When the elementary excess return ξ ≡ Ax̄/β̄ (the maximal expected excess
return absent information acquisition) is high, then a given choice of excess
return ξ∗ωi requires a large amount of information acquisition, and vice versa.
So, information demand is strong if many risky assets are in the market, or if
investors are highly risk averse, or if prior expectations of the mean-variance
ratio of the asset return are relatively low so that uncertainty matters strongly
compared to expected returns.

Proposition 1 (Potential marginal signal benefit). The following is true for the
potential marginal signal benefit MB(ξ, ωi) under assumptions 1 to 5.

1. Investor i’s natural transparency limit ξi ∈ (0,∞) uniquely solves the zero

potential marginal signal benefit condition MB(ξi, ωi) = 0 given R∈(0,∞)

and ωi. The potential marginal signal benefit depends on ωi but not on ξ.

2. The potential marginal signal benefit MB(ξ, ωi) takes strictly positive values
if and only if the prevailing expected relative excess return exceeds investor
i’s natural transparency limit ξ > ξi.
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3. If investor i’s natural transparency limit is less than the elementary excess
return ξi < ξ then, in the range ξ ∈ [ξi, ξ], the potential marginal signal
benefit MB(ξ, ωi) strictly monotonically increases in ξ and is unbounded
for arbitrarily large ξ.

4. If investor j has a risky asset endowment around the market average with
ωj ∈ [

√
R/(

√
1+R +

√
R),

√
1+R/(

√
1+R − √

R)], then the potential
marginal signal benefit MB(ξ, ωj) attains strictly positive values for any
ξ ∈ (0, ξ] so that investor j’s natural transparency limit is infinite infor-
mation.

Proof. See appendix F.

Proposition 1 establishes that there is an investor specific natural transparency
limit below which the investor pays to inhibit further disclosure. The natural
transparency limit is unique for each investor i and is determined by the investor’s
risky asset endowment ωi (statements 1 and 2). So, the incentive for information
acquisition varies with the risky asset endowment.

Proposition 1 also shows, however, that there is always a market size x̄, or a
degree of risk aversion A, or a level of the prior mean-variance ratio of the risky
asset β̄ behind ξ so that, for any investor i with endowment ωi, at least one costly
signal becomes worthwhile to acquire in equilibrium as x̄ is raised (statement 3).

Finally, Proposition 1 identifies a range of risky asset endowments ωi ∈
[
√

R/(
√

1+R+
√

R),
√

1+R/(
√

1+R−√R)] where the potential marginal signal
benefit never turns negative (statement 4), not even as ξ approaches zero. This
range contains the market average endowment ωi = 1 as depicted in Figure 3.
An investor with initial stock holdings in this range will hire unboundedly many
spy robots when their fee goes to zero.

These properties of the potential marginal signal benefit MB characterize the
information market equilibrium in RICE. Signals are public goods and therefore
perfect strategic substitutes under fully revealing price because any fellow in-
vestor’s signal is as useful (or detrimental) as an own signal. Consequently, the
information market equilibrium does not pin down how many signals a single
investor holds. In RICE, one investor may acquire all

∑
i N

i signals while no-
body else buys any signal, or all investors may hold the same number of signals.
Monotonicity of the individual potential marginal signal benefit schedules im-
plies, however, that the equilibrium information level

∑I
k=1 Nk,∗ is unique.

Proposition 2 (Information market equilibrium). A RICE results in the fol-
lowing informational outcomes for any R∈(0,∞) under assumptions 1 to 5.

1. If the cost of a signal is strictly positive, then the equilibrium information
level

∑I
k=1 Nk,∗ is unique.
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2. If the cost of a signal is strictly positive, any permutation of the signal
allocation that maintains the information level

∑I
k=1 Nk,∗ is an equilibrium.

3. If the cost of a signal is nil but R>0, and if there is at least one investor j
with a risky asset endowment ωj ∈ [

√
R/(

√
1+R+

√
R),

√
1+R/(

√
1+R−√

R)], then the unique signal market equilibrium involves an infinite amount
of freely received signals.

It remains to determine how investors arrive at
∑I

k=1 Nk,∗ in the equilibrium
for spy robots.

3.3 Dominant investor valuation of signals

Information demand is intricately tied to investors’ risky asset endowments in
RICE. There is, in fact, a single dominant investor with an above-average en-
dowment of the risky asset. This dominant investor’s marginal signal valuation
dominates everyone else’s valuation so that she single-handedly picks the infor-
mation market outcome. In the sample economy of Figure 3, the average investor
κ with ωκ =1 has the strongest incentive for information acquisition among the
ten investors and continues to acquire signals until the expected relative excess
return ξ is diminished into a neighborhood around ξ∗κ. All other investors would
stop acquiring signals earlier: at some expected relative excess return ξ∗ω > ξ∗κ.
In Figure 3, the dominant investor κ’s endowment revaluation effect is so strong
that the individual marginal signal benefit MBκ never turns negative for any
level of the expected relative excess return ξ. Proposition 3 shows that the dom-
inant investor is to be found in an open set around investors with endowments
of ωκ =1 and above.

The individual marginal signal benefit in equation (11) involves the expected
relative excess return ξ and investor i’s relative risky asset endowment ωi in
non-algebraic ways. Proposition 3 states properties of the information market
equilibrium for intervals of endowments.

Proposition 3 (Dominant Investor Valuation of Signals). A RICE has the fol-
lowing allocation properties for any R∈(0,∞) under assumptions 1 to 5.

1. Given any ξ∗, the individual marginal signal benefit MB(ξ∗, ωκ) is maximal
in equilibrium for a dominant investor κ. The dominant investor’s unique
relative risky asset endowment falls into the interval ωκ

max MB ∈ (1, 1 +
R(1+ξ∗)). This investor determines the total number of signals

∑I
k=1 Nk,∗

in equilibrium and diminishes expected relative excess return to ξ∗.
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Figure 4: Contours of potential marginal signal benefits

2. The individual marginal signal benefit MB(ξ∗, ωi) at expected relative excess
return ξ∗ is strictly positive for investors with endowments ωi in an open
interval Ω+ that includes [1, ωκ] ⊂ Ω+.

Proof. See appendix G.

Figure 4 shows contours of the potential marginal signal benefit MB(ξ, ωi)
and serves to illustrate Proposition 3. Proposition 3 establishes that, for a given
equilibrium excess return ξ∗ (or any ξ), there is a unique ωκ

max MB that maxi-
mizes the potential marginal signal benefit (statement 1). Equivalently, since
MB(ξ, ωi) is monotonic in ξ when positive (Proposition 1), every marginal signal
benefit MB(ξ, ωi) contour must have one unique ωκ

max MB, for which ξ is minimal.
Figure 4 depicts these ωκ

max MB as the western most points of the MB contours.
Fix the marginal cost of a signal in utility terms, cAR/(1 + R). This cost

is the same for all investors by the first order condition (11). So, in equi-
librium, the decisive investor must sit on the marginal signal benefit contour
MB(ξ, ωi) = cAR/(1 + R). Pick any relative risky asset endowment ωj; the
MB(ξ, ωi) contour returns the expected relative excess return ξ that investor
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j finds optimal. Investor j will acquire signals until the expected relative ex-
cess return in equilibrium is pushed down to her desired level. Move along the
MB(ξ, ωi) to its western most point. This is the relative risky endowment level
of the unique dominant investor, ωκ

max MB ∈ (1, 1 + R(1 + ξ)), for whom the
incentives to acquire information strictly exceed those of any other investor.

For investors with relative risky asset endowments below or above ωκ
max MB,

the diminishing effect of signals on the expected excess return ξ weighs more
heavily. So, the investor with relative risky asset endowment ωκ

max MB single-
handedly determines the information market outcome. This investor κ will con-
tinue acquiring signals and diminish the expected relative excess return ξ until
the total number of signals

∑I
k=1 Nk,∗ satisfies her first-order condition (11) for

signal demand. Proposition 3 also shows, however, that investors with relative
risky asset endowments in a range from below unity to above ωκ

max MB do not suf-
fer a utility loss from the dominant investor’s signal choice (statement 2). What
is the overall welfare impact of transparency?

4 Informational Efficiency

The rational Bayesian framework permits the application of a Pareto criterion
to judge transparency in financial markets.

Definition 2 (Informational Pareto efficiency) An allocation of xi∗∗ risky assets,
bi∗∗ safe bonds, and N i∗∗ signals to investors i = 1, ..., I is called informationally
Pareto efficient in a given market environment (ξ, R) if there is no other allo-
cation such that all investors are at least as well off and at least one investor is
strictly better off.

To investigate whether RICE is Pareto efficient, imagine a benevolent social
planner who can instruct every consumer j to buy exactly N j∗∗ signals. This
social planner maximizes

∑I
j=1 Ei

ante [U j] with respect to {N1, ..., N I}. Thus,
similar to Samuelson’s (1954) condition for public good provision, a benevolent
social planner’s first-order conditions for information allocation are not (11) but
instead

− 1

Ej
ante [U

j]

∂
∑I

k=1 Ek
ante

[
Uk∗∗]

∂Nk
= −A R

1+R
c (12)

+
ᾱ

β̄

[
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R

(
1− 1

1+R
ξ2

(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R − 1

)
ξ
ξ

(
1 +

I∑

k 6=j

Ek
ante

[
Uk∗∗]

Ej
ante [U j∗∗]

)
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Figure 5: Socially desirable information choice for homogeneous in-
vestors

for any j ∈ 1, ..., I, written in terms of that investor j’s utility. Thus, com-
pared to the privately perceived benefits, the potential social benefits SB that
a social planner considers scale up the private benefits MB by a factor of 1 +
(1/Ej

ante [U j∗∗]) ·∑I
k 6=j Ek

ante

[
Uk∗∗] > 1.

4.1 Welfare effects for homogeneous investors

To simplify the welfare analysis, consider the case of I−1 homogeneous investors
with ωi = 0 and one single owner j of the risky asset with ωj = I. The upper left
and lower right graphs in figure 3 exemplify this case for a sample economy with
I = 8 investors, seven of whom hold ωi = 0 while one owns ωj = I = 8. Neither
the sole owner nor investors with safe endowments may value information much.
In fact, the marginal signal benefit approaches negative infinity for the sole owner
of a risky project as her relative risky asset endowment ωj (the project size Ix̄)
increases for a given average endowment x̄ (claim 4 in appendix G).

Not even for homogeneous investors with no initial risky asset holdings need
information be desirable. Proposition 1 implies that signals can turn from a
public good into a public bad as market conditions change. These market con-
ditions are captured by ξ. If ξ drops below the homogeneous investors’ joint
transparency limit, information becomes a public bad, and a benevolent social
planner wants to implement an even smaller amount of information than the
private market. For no information is acquired in private markets in that case
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anyway, the market equilibrium is informationally efficient when information is
a public bad.

On the other hand, if information is a public good under given market con-
ditions, a social planner wants (weakly) more information to be allocated than
markets provide. Individual investors do not take into account that their signal
acquisition also benefits other investors through fully revealing price. In this
case, markets allocate (weakly) less information than desirable. Signals are not
divisible, however, and we cannot infer from condition (12) that a social planner
wants to implement strictly more information. In Figure 5, a social planner wants
to allocate information so that the relative excess return is brought down from
around ξ∗ to around ξ∗∗. If a single additional signal makes the implementable
level of ξ drop far below ξ∗∗, however, investors could be better off if relative
excess return ξ remains at the market equilibrium level around ξ∗.

Even if signals are free with c = 0, only the market outcome with finite
information is efficient but not the one with infinite information. As long as the
bond is valuable (R > 0), neither markets nor the social planner want to remove
uncertainty. In incomplete markets, investors with no initial risky asset holdings
prefer to have a second asset around that is not a perfect substitute to the bond.
Risk-averse investors want to hold risky assets that yield a positive excess return
ξ over opportunity cost. Only if the bond becomes useless and R → 0, does
unbounded information Pareto become efficient.

4.2 Welfare effects for heterogeneous investors

The welfare analysis changes considerably when endowments with the risky as-
set differ across investors. Now, one dominant investor κ with close-to-market-
average holdings of the risky asset determines the equilibrium number of signal
in RICE (Proposition 3). Investors with endowments in an open interval around
[1, ωκ] strictly benefit from investor κ’s additional information choice since their
marginal utility benefit of signals is strictly positive and they do not have to pay
for the public good.

For investors outside the open set of endowments of ωκ =1 and above, how-
ever, the individual marginal signal benefit MBi(ξ, ωi) can turn strictly negative
even in the presence of the endowment revaluation effect. Reduce the signal
cost in Figure 3, for instance. Then the individual marginal benefit schedules
MBi(ξ, ωi) can dip into the strictly negative range before investor κ reaches her
natural transparency limit. Similarly, consider the western-most (strictly posi-
tive) potential marginal benefit contour in Figure 4. At the equilibrium outcome
ξ∗ for the dominant investor on this contour, the potential marginal signal benefit
has turned strictly negative for investors at the extremes of the ωi distribution.
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Formally, at any ξ, the marginal signal benefit approaches negative infinity as ωi

increases for a given average endowment x̄ (claim 4 in appendix G). So, when the
distribution of risky asset endowments is unequal and many investors hold risky
asset endowments far from average, the dominant investor’s information choice
inflicts a strict negative externality on numerous investors. If, on the other hand,
investors’ risky asset endowments are distributed closely around the market av-
erage, the endowment revaluation effect makes signals similarly valuable to all
investors. Proposition 4 summarizes these insights.

Proposition 4 (Informational Efficiency). A RICE has the following informa-
tional efficiency properties for any R∈(0,∞) under assumptions 1 to 5.

1. If every investor i’s endowment ωi falls into the interval ωi ∈ [1, ωκ], where
ωκ is the dominant investor κ’s endowment (Proposition 3), then RICE is
not informationally Pareto efficient. Up to discrete tolerance, an increase
in the number of signals raises every investor’s ante notitias utility.

2. If there is one investor j with an endowment outside the range where infi-
nite information is beneficial, ωj /∈ [

√
R/(

√
1+R+

√
R),

√
1+R/(

√
1+R−√

R)], then there is an information cost c low enough so that RICE is in-
formationally Pareto efficient. An increase in the number of signals strictly
reduces investor j’s ante notitias utility while, up to discrete tolerance, the
increase in the number of signals strictly raises the dominant investor’s
ante notitias utility.

Information acquisition creates a two-group society of investors. The endow-
ment revaluation effect of more signals strictly outweighs the diminishing effect
on the expected excess return ξ for a first group of investors in an open set Ω+

of relative risky asset endowments around [1, ωκ] ⊂ Ω+ (Proposition 3). In fact,
given the choice of free signals, investors k with endowments inside the range
ωk ∈ [

√
R/(

√
1+R +

√
R),

√
1+R/(

√
1+R − √

R)] (Proposition 1), would re-
move all uncertainty from the market—just to enjoy the endowment revaluation.

For the second group of investors, endowments are either too small so that the
diminishing effect on the expected excess return starts to outweigh the endow-
ment revaluation effect at some small enough ξ, or endowments are too large so
that the expected variance of price outweighs the endowment revaluation effect
at some small enough ξ. Outside the endowment range where infinite costless
information is beneficial (outside [

√
R/(

√
1+R+

√
R),

√
1+R/(

√
1+R−√R)]),

the marginal ante notitias utility of an additional signal is strictly negative for
low ξ. The second group of investors suffers a strict negative externality in ante
notitias utility terms from the rush to information of the first group of investors.
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The Pareto criterion applied to a social planner’s transparency choice loses its
bite: investors in the second group are worse off with every additional signal.

Overall, transparency leads to an unambiguous Pareto improvement only in
markets with sufficiently similar investors—after the risky asset has been issued
and all investors hold it in their initial portfolios to some degree. If an asset has
not been issued yet so that only one agent holds the asset in his or her initial
endowment, public disclosure can violate everyone’s transparency limit.

4.3 Asset price precision

Most commonly, the informational efficiency of financial markets is judged with
criteria that do not relate to welfare but to the degree of information transmis-
sion through asset price. Fama (1970) discerns three degrees of market efficiency
in this welfare-independent sense: Strong, semi-strong, and weak. Prices are
fully revealing in RICE under the assumptions of this paper (Lemma 3 in ap-
pendix C). So, Ei [RP − Ei [RP ]] = 0 and RICE satisfies strong-form efficiency.
An alternative statistically well defined measure of the informativeness of a signal
is its precision, the inverse of the ante notitias variance. Informational efficiency
in this non-welfare sense relates to price as a source of information.

The precision of price, a Poisson variable by (4) and fact 3 (appendix B), is

1

Ei
ante [Vi (P |θ)] =

β̄2

ᾱ

(
(1 + ξ) +

∑I
i=1 N i∗/β̄

)2

∑I
i=1 N i∗/β̄

.

So, the precision of price can fall with the number of signals purchased. For

∂

∂N i

(
1

Ei
ante [Vi (P |θ)]

)
=

β̄

ᾱ

(
∑I

i=1 N i∗/β̄)2 − (1 + ξ)2

(
∑I

i=1 N i∗/β̄)2
,

each additional signal reduces the precision of the market clearing price if the
amount of pre-existing information

∑I
k=1 Nk,∗ is small.

Proposition 5 (Precision loss of the price system). In asset market REE under
assumptions 1 through 4, the ante notitias precision of the price system decreases
with every additional signal if and only if

∑I
k=1 Nk,∗/β̄ < 1 + ξ.

Precision of price can fall with the number of signals purchased.11 Each in-
vestor anticipates that she and all others will respond to signals in their portfolio

11Bushee and Noe (2000) provide empirical evidence that more information may worsen price
volatility.
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choice. From an ante notitias perspective, asset demand (4) can become more
volatile with the anticipated arrival of information. The expected variance of
asset demand is

Ei
ante

[
Vi

(
xi∗|θ) |RP

]
=

ᾱ

β̄A2(RP )2

(
I∑

k=1

Nk

)

by fact 3. Financial markets need to clear and every investor ends up hold-
ing x̄ risky assets in equilibrium by Proposition 3, irrespective of information.
Hence, market price has to fully absorb any demand moves that stem from in-
formation revelation. As a consequence, the variance of price can increase with
more information acquisition. When there is relatively little pre-existing infor-
mation

∑I
k=1 Nk,∗, an additional signal will affect individual demands strongly

and thus add to the price’s variance. If, on the other hand, a lot of information is
available already, an additional signal that gets fully revealed through price will
move investors’ demands little. If investors receive many signals, an additional
piece of information is likely to confirm previous observations and tends to sta-
bilize demand. So, equilibrium price is expected to become less volatile with an
additional signal if the pre-existing information level

∑I
k=1 Nk,∗ is high.

Rational investors completely internalize this change in price volatility when
they maximize ante notitias utility. In that sense, the precision of price is irrel-
evant for the Pareto efficiency of RICE.

5 Conclusion

By adding a stage of signal acquisition to a canonical model of portfolio choice,
this paper has shown that investors with heterogeneous initial holdings of the
risky asset find financial transparency, even if free, only desirable to a degree. In
reducing uncertainty, transparency raises expected asset price and thus benefits
holders of the risky asset. At their natural transparency limits, however, investors
pay to inhibit further disclosure in order to prevent the information-induced
increase in expected asset price and to avert an erosion of the asset’s expected
excess return. The natural transparency limit varies with an investor’s initial
portfolio position. The natural transparency limit shifts to perfect information
for investors around the market average risky asset endowment because these
investors benefit most from rising expected asset price. There is, in fact, a
dominant investor with a risky asset endowment modestly above market average
who keeps acquiring signals after all other investors’ demand for transparency is
exhausted. The dominant investor’s transparency choice strictly improves welfare
for investors with similar (modestly smaller or larger) risky asset endowments.
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Investors with strongly different risky asset endowments, however, suffer a strict
welfare loss if the dominant investor keeps acquiring signals beyond their natural
transparency limits.

Financial transparency not only changes its utility benefit with market con-
ditions. Transparency raises expected asset price and thus also affects investors’
portfolio positions ante notitias. So, the value of public signals is intricately
linked to the distribution of risky asset endowments across heterogeneous in-
vestors. This poses an intriguing problem for the analysis of informational ef-
ficiency in the presence of heterogeneous investors. A common distinction in
economics between pure allocative efficiency in the Pareto sense and distributive
judgements is hard to uphold for financial information in a rational Bayesian
framework.

Extensions of the framework in this paper remain for future work: an analysis
of information values in complete markets, an investigation of partially revealing
equilibrium (such as for investors with different degrees of risk aversion), and the
consideration of investors who engage in strategic demand decisions to partly
conceal their information. The driving force behind the effects of transparency,
however, is the diminishing effect of information on an asset’s excess return. In-
formation diminishes the asset’s excess return because a sufficient statistic of
private signals is publicly inferrable from price. Neither complete markets nor
partially revealing equilibrium nor strategic investors can make asset price en-
tirely uninformative, or else price would lose its allocation function. So informa-
tion continues to diminish excess returns in those settings albeit in a mitigated
manner (Admati 1985, Easley and O’Hara 2004). It thus appears plausible that
main results of this paper will carry over to generalizations and extensions.
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Appendix

A Optimality conditions and portfolio value

Define t ≡ −Axi ∈ (−∞, 0) for the moment generating function (MGF) Mθ|Fi(t).
Maximizing (3) over xi and bi for CARA (assumption 2 and 3) yields the first-
order conditions

P

ρi
= H i M ′

θ|Fi(t) and
1

ρiR
= H i Mθ|Fi(t), (A.1)

where H i ≡ exp{−A[(1+R)bi + Pxi −W i
0 − cN i]}. Note that H i, W i

0, Ci
1 and

C i
0 are functions of F i since RP depends on F i.

With the definition of H i, the optimal portfolio value can be written

bi + Pxi = 1
1+R

(
W i

0 − cN i + RP xi − 1
A

ln H i
)

(A.2)

= 1
1+R

[
bi
0 + RP (xi

0/R + xi) + 1
A

ln ρiRMθ|Fi(−Axi)− cN i
]
,

where the second line follows from the bond first-order condition in (A.1).
The matrix of cross-derivatives for the two assets bi and xi reflects the second-

order conditions:

B = −A2ρi exp{−ARbi}
∣∣∣∣
R(1+R)Mθ|Fi(t) ·
(1+R)M ′

θ|F i(t) PM ′
θ|Fi(t) + M ′′

θ|Fi(t)

∣∣∣∣ (A.3)

by (A.1). If B is negative definite, a unique global utility maximum results.
Equivalently, require −B to be positive definite and all upper-left sub-matrices
must have positive determinants. Since the upper-left entry in B is strictly
positive, negative definiteness of B is equivalent to

det(−B) = A4(ρi)2 exp{−2ARbi}R(1+R)
[
M ′′

θ|Fi(t)Mθ|Fi(t)−M ′
θ|Fi(t)2

]
> 0,

which in turn is equivalent to

M ′′
θ|Fi(t)

Mθ|Fi(t)
−

(
M ′

θ|Fi(t)

Mθ|Fi(t)

)2

> 0 (A.4)

since Mθ|Fi(t) > 0. This condition implies that M ′
θ|Fi(t)/Mθ|Fi(t) strictly mono-

tonically increases in t, or strictly monotonically decreases in xi for t ≡ −Axi.
The condition is satisfied for a gamma distribution.
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B Poisson and gamma distributions

Fact 1 in the text states how Poisson signals update beliefs about gamma dis-
tributed returns. This appendix lists further useful properties of Poisson and
gamma distributions

B.1 Poisson signals

Poisson distributed signals Si
n|θ i.i.d.∼ P(θ) have a density

f
(
si

n |θ
)

=

{
exp{−θ} θsi

n/si
n! for si

n > 0
0 for si

n ≤ 0

Fact 2 (Poisson MGF). The MGF of a Poisson signal is

MS|θ(t) = exp{θ(exp{t} − 1)}.
Proof. Casella and Berger (1990).

Fact 3 (Sum of Poisson signals). The sum of N independently Poisson dis-
tributed signals with a common mean and variance θ, S1 + ...+SN , has a Poisson
distribution with parameter Nθ.

Proof. The distribution of the sum of N independent Poisson variables is the
product ΠN

n=1f (si
n |θ ) = exp{−Nθ} θ

∑N
n=1 si

n/
∑N

n=1 si
n!, a Poisson distribution

with parameter Nθ.

B.2 Gamma payoffs

Given an individual investor i’s information set {αi, βi}, the risky asset payoff is
distributed θ ∼ G(αi, βi) so that its density is

π
(
θ
∣∣αi, βi

)
=

{
(βi)αi

θαi−1 exp{−βiθ}/Γ(αi) for θ > 0
0 otherwise

where the gamma function is given by Γ(αi) ≡ ∫∞
0

zαi−1e−z dz. The two param-
eters αi and βi must be positive.

Fact 4 (Gamma MGF). The MGF of a gamma distributed return is

Mθ|αi,βi(t) =

(
βi

βi − t

)αi

.

Proof. Casella and Berger (1990).
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C Conditions for fully revealing price

Lemma 3 Suppose signals are Poisson, the asset return is gamma distributed
(assumption 1), and expected utility is CARA (assumption 2). Then equilibrium

price P fully reveals all investors’ information
∑I

i=1

∑N i

n=1 si
n in RICE if and only

if

1. investors know average prior beliefs and share a common degree of risk
aversion (a weaker version of assumption 3),

2. investors know market size (assumption 4),

3. investors know the total number of all other investors’ signals
∑I

k=1 Nk at
the time of portfolio choice, and

4. investors are not borrowing constrained.

Proof. Lemma 1 establishes sufficiency. Necessity of assumptions 3 and 4 follows
by inspection of the general solution for market price given individual beliefs

αi = ᾱi +
∑N i

n=1 si
n and βi = β̄i + N i, based on heterogeneous priors ᾱi and β̄i,

and arbitrary degrees of risk aversion Ai:

RP =
1
I

∑I
i=1

αi

Ai

x̄ +
∑I

i=1
βi

Ai

=

(
1
I

∑I
i=1

ᾱi

Ai

)
+ 1

I

∑I
i=1

1
Ai

∑N i

n=1 si
n

x̄ +
(

1
I

∑I
i=1

β̄i

Ai

)
+ 1

I

∑I
i=1

1
Ai N i

.

If investors have a common degree of risk aversion Ai = A, only knowledge of
the average prior beliefs 1

I

∑I
i=1 ᾱi and 1

I

∑I
i=1 β̄i is necessary to make price fully

revealing.
Conditional independence of signals is necessary since investor i would not

know the correlation between RP and her signals if perfect copies or correlated
signals had been sent to other investors. If

∑I
k=1 Nk were unknown to investor

i, she would not be able to extract the sufficient statistic
∑I

k=1

∑Nk

n=1 sk
n from

price.
For necessity of unconstrained borrowing, consider the case in which some

investors cannot go short in the risky asset due to a borrowing constraint. Then
another investor will not know whether the equilibrium price is low because many
relatively poor investors received bad signals and hit their borrowing constraint
or whether only a few relatively wealthy investors received extremely bad signals.
As a consequence, price uncertainty remains.
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D Bond return response to stock information

Taking logs of both sides of the bond first-order condition in (A.1) yields

A(1+R)bi − Abi
0 + AP (xi − xi

0) = ln[ρiRMθ|Fi(−A xi)] + AcN i,

a permissible operation since ρi, R,Mθ|Fi(·) > 0 by their definitions. Summing
up both sides over investors i and dividing by their total number yields

ARb̄− ln ρiR− ln Mθ|Fi(t)− Ac
∑I

k=1 Nk/I = 0 (D.1)

where b̄ ≡ ∑I
i=1 bi

0/I is the average initial bond endowment per investor and t ≡
−Ax. Equation (D.1) implicitly determines the gross bond return R. Post noti-

tias, Mθ|Fi(t) and R respond to the signal realization. Define s̄ ≡ ∑I
k=1

∑Nk

n=1 sk
n.

Applying the implicit function theorem to (D.1) for the MGF of the gamma
distribution Mθ|α,β(t) = [β/(β − t)]α yields

dR

ds̄
= − ln(1 + ξ)

Ab̄− 1/R

for α = ᾱ + s̄, β = β̄ +
∑I

k=1 Nk by (6) and ξ = Ax̄/β given
∑I

k=1 Nk. The
bond return falls in response to a favorable signal realization s̄ iff b̄ > 1/(AR).
So, in principle, R too is a function of the signal realization s̄. For large bond
endowments b̄, however,

lim
b→∞

dR/ds̄ = 0.

Similarly, dR/ds̄ = 0 for ξ = x̄ = 0.

E Ante notitias expected indirect utility

The following property of the Poisson-gamma signal-return distributions proves
useful for the derivation of ante notitias expected indirect utility.

Fact 5 (Expected signal effect on utility). For two arbitrary constants B and ξ,
N̄ Poisson distributed signals S1, ..., SN̄ and a conjugate prior gamma distribution
of their common mean θ, the following is true:

Eante


(1 + ξ)

−B·
N̄∑

n=1
sn · exp

{
− ξ(ωi−1)

1+ξ
B ·

N̄∑
n=1

sn

}


= (1 + ξ)ᾱB exp
{

ᾱ ξ(ωi−1)
1+ξ

B
}(

1 +
[
(1 + ξ)B exp

{
ξ(ωi−1)

1+ξ
B

}
− 1

]
β
β̄

)−ᾱ

,

where ᾱ and β̄ are the parameters of the prior gamma distribution of θ, and
β = β̄ + N̄ is the according parameter of the post notitias distribution.
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Proof. By iterated expectations Eante [·] = Eθ [E [· |θ ]]. The ‘inner’ expectation
E [· |θ ] is equal to

E [· |θ ] =
∑∞

(
∑N̄

n=1sn)= 0
(1 + ξ)

−B
N̄∑

n=1
sn

exp

{
− ξ(ωi−1)

1+ξ
B

N̄∑
n=1

sn

}
f

(∑N̄
n=1 sn

)

= exp
{
−N̄θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})}
,

because the sum
∑N̄

n=1 sn is Poisson distributed with mean N̄θ (fact 3). Thus,
by the MGF of a gamma distribution (fact 4),

Eante [·] = Eθ

[
exp

{
−θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

}]

= (β̄)ᾱ
(
β̄ +

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

)−ᾱ

.

since N̄ = β − β̄ (fact 1). Simplifying the last term and factoring out (1 +

ξ)B exp{ ξ(ωi−1)
1+ξ

B} proves fact 5.

For a gamma distributed asset return, post notitias expected indirect utility
becomes

Ei [U i∗] = −δi exp
{−A R

1+R
(W i

0 − cN i)
}

exp
{

ξ(ωi−1)
1+ξ

}− αi

1+R
(1 + ξ)−

αi

1+R (E.1)

where ωi ≡ xi
0/x̄ ∈ [0, I] is the relative endowment of investors with the risky

asset, and ξ ≡ Ax̄/β. With fact 5 at hand, one can set B ≡ 1/(1 + R) (by
assumption 5) and obtains ante notitias expected utility (10) for ωi = 0 and (10)
for arbitrary ωi ∈ [0, I].

F Monotone marginal signal benefit schedule

(proof of Proposition 1)

Define the relative endowment of investors with the risky asset as ωi ≡ xi
0/x̄ ∈

[0, I]. The expected relative excess return ξ is bounded by ξ ∈ (0, ξ]. Un-
der assumptions 1 through 5, the potential marginal signal benefit MB(ξ, ωi)
is MB(ξ, ωi) = g(ξ, ωi)/h(ξ, ωi) by (11) with

m(ξ, ωi) ≡
[
(1 + ξ) exp

{
ξ(ωi−1)

1 + ξ

}] 1
1+R

, (F.1)

h(ξ, ωi) ≡ 1 +
[
m(ξ, ωi)− 1

] ξ

ξ
, (F.2)

g(ξ, ωi) ≡ −ξ2

ξ

∂h(ξ, ωi)

∂ξ
= m(ξ, ωi)

(
1− 1

1+R

ξ(ξ+ωi)

(1 + ξ)2

)
−1. (F.3)
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The proof of Proposition 1 proceeds in four steps.
First, claim 1 sates useful properties of m(ξ, ωi) for the discussion of g(ξ, ωi)

and h(ξ, ωi). Second, claim 2 establishes that the numerator g(ξ, ωi) strictly
increases in ξ iff ξ > |ωi−1|

√
1 + 1/R − ωi and that it is not bounded above.

So, the numerator boosts the marginal benefit MB(ξ, ωi) higher and higher as
ξ rises. Third, claim 3 establishes that the denominator h(ξ, ωi) is bounded
below and above in the positive range, and that it strictly decreases in ξ iff the
numerator is strictly positive. So, the denominator cannot explode and boosts
the marginal benefit MB(ξ, ωi) higher where the potential benefit MB(ξ, ωi) is
positive. The latter two claims imply that MB(ξ, ωi) strictly increases in ξ iff
ξ > |ωi−1|

√
1 + 1/R− ωi and that MB(ξ, ωi) is unbounded for arbitrarily large

ξ. So, fourth and last, MB(ξ, ωi) ultimately attains strictly positive values and
continues to strictly increase in that positive range.

Claim 1 m(ξ, ωi) strictly increases in ωi; m(0, ωi) = 1; and m(ξ, ωi) > 1 for
any ξ > 0, ωi ≥ 0 and R∈(0,∞).

Proof. By (F.1), ∂m(ξ, ωi)/∂ξ = m(ξ, ωi)ξ/(1 + ξ) > 0, which establishes the
first part of the claim.

Taking natural logs of both sides of (F.1) is permissible since m(ξ, ωi) > 0
and shows that m(ξ, ωi) ≥ 1 iff ln(1 + ξ) ≥ −ξ(ωi−1)/(1 + ξ). Since m(ξ, ωi)
strictly increases in ωi, consider ωi = 0. So, m(ξ, 0) ≥ 1 iff ln(1+ ξ) ≥ ξ/(1 + ξ).
Note that equality holds at ξ = 0 but ln(1 + ξ) increases strictly faster in ξ than
ξ/(1 + ξ) increases in ξ for any ξ > 0. So, m(ξ, 0) > 1. Since m(ξ, ωi) strictly
increases in ωi, m(ξ, ωi) > 1.

Claim 2 g(ξ, ωi) strictly increases in ξ iff ξ > |ωi−1|
√

1 + 1/R−ωi. In addition,
limξ→0 g(ξ, ωi) = 0 and limξ→∞ g(ξ, ωi) = +∞.

Proof. The first derivative of g(ξ, ωi) with respect to ξ is

∂g(ξ, ωi)

∂ξ
=

ξ

(1+R)2(1+ξ)4
m(ξ, ωi)

[
R(ξ + ωi)2 − (1+R)(ωi − 1)2

]
.

So, ∂g(ξ, ωi)/∂ξ = 0 at ξ = 0 and at ξ = |ωi−1|
√

1 + 1/R − ωi (the negative
root is ruled out by ξ ≥ 0). Evaluating ∂g(ξ, ωi)/∂ξ = 0 around the zero points
shows that g(ξ, ωi) strictly decreases in ξ if ξ ∈ (0, |ωi−1|

√
1 + 1/R − ωi) and

strictly increases if ξ ∈ (|ωi−1|
√

1 + 1/R− ωi,∞).
limξ→0 g(ξ, ωi) = m(0, ωi) − 1 = 0 by claim 1. limξ→∞ g(ξ, ωi) = −1 +

limξ→∞ exp{ξ/(1 + R)} = +∞ since R∈(0,∞).
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Claim 2 implies that, if |ωi−1|
√

1 + 1/R − ωi > 0, then there must be a

strictly positive ξi > |ωi−1|
√

1 + 1/R − ωi that solves g(ξi, ωi) = 0 because

g(ξ, ωi) strictly decreases as long as ξ < |ωi−1|
√

1 + 1/R− ωi but subsequently

strictly increases in ξ. If |ωi−1|
√

1 + 1/R− ωi ≤ 0, however, then g(ξi, ωi) = 0

only at ξi = 0.

Claim 3 h(ξ, ωi) strictly decreases in ξ iff g(ξ, ωi) > 0. h(ξ, ωi) is bounded in
h(ξ, ωi) ∈ (1, h(ξi, ωi)] for any ξ ∈ (0, ξ] and R∈ (0,∞), where ξ is given by (9)

and ξi solves g(ξi, ωi) = 0. Moreover, h(ξi, ωi) > 1.

Proof. By (F.3), ∂h(ξ, ωi)/∂ξ < 0 iff g(ξ, ωi) > 0. So, h(ξ, ωi) attains its global
maximum at ξi, which solves g(ξi, ωi) = 0, and h(ξ, ωi) attains its minimum
either if ξ → 0 or if ξ → ∞. By L’Hôpital’s rule, limξ→0 m(ξ, ωi)/ξ − 1/ξ = 0
so limξ→0 h(ξ, ωi) = 1. Similarly, for any R∈ (0,∞), limξ→∞ h(ξ, ωi) = 1 (but,
as R → 0, limξ→∞ h(ξ, ωi) = 1 + ξ exp{ωi − 1}). This establishes that h(ξ, ωi) ∈
(1, h(ξi, ωi)] for any ξ ∈ (0, ξ].

Claims 2 and 3 imply that, if |ωi−1|
√

1 + 1/R − ωi > 0, then MB(ξ, ωi)

strictly increases in ξ iff ξ > |ωi−1|
√

1 + 1/R− ωi and MB(ξ, ωi) is unbounded
for arbitrarily large ξ. So, MB(ξ, ωi) attains strictly positive values if and only if
ξ > ξi, where ξi > |ωi−1|

√
1 + 1/R−ωi > 0 solves g(ξi, ωi) = 0, and ξi∈(0,∞)

is independent of ξ and unique given R∈(0,∞).
If |ωi−1|

√
1 + 1/R−ωi ≤ 0, however, then MB(ξ, ωi) attains strictly positive

and increasing values for any ξ ∈ (0, ξ]. |ωi−1|
√

1 + 1/R− ωi ≤ 0 is satisfied if

ωi ∈ [
√

R/(
√

1+R +
√

R),
√

1+R/(
√

1+R−√R)].

G Dominant investor valuation of signals

(proof of Proposition 3)

Define the relative endowment of investors with the risky asset as ωi ≡ xi
0/x̄ ∈

[0, I]. The expected relative excess return ξ is bounded by ξ ∈ (0, ξ]. Un-
der assumptions 1 through 5, the potential marginal signal benefit MB(ξ, ωi)
is MB(ξ, ωi) = g(ξ, ωi)/h(ξ, ωi) by (11) with h(ξ, ωi) and g(ξ, ωi) given by (F.3)
and (F.2).

The proof of the remainder of Proposition 3 draws on properties of g(ξ, ωi)
and h(ξ, ωi), which claims 4 and 5 establish. Claim 6 evaluates the potential
marginal signal benefit MB(ξ, ωi) at ωi = 1.

Claim 4 g(ξ, ωi) strictly decreases in ωi iff ωi > 1 + R(1 + ξ). In addition,
limωi→∞ g(ξ, ωi) = −∞.

33



Proof. The first derivative of g(ξ, ωi) with respect to ωi is

∂g(ξ, ωi)

∂ωi
=

1

1+R

ξ2

(1+ξ)2
m(ξ, ωi)

[
R(1 + ξ)− (ωi − 1)

]
,

where m(ξ, ωi) is given by (F.1). So, ∂g(ξ, ωi)/∂ωi = 0 at ωi = 1 + R(1 + ξ).
Evaluating ∂g(ξ, ωi)/∂ξ = 0 around this unique zero point shows that g(ξ, ωi)
strictly increases in ωi if ωi ∈ [0, 1 + R(1 + ξ)) and strictly increases if ωi ∈
(1 + R(1 + ξ), I]. So, limωi→∞ g(ξ, ωi) = −∞ for R∈(0,∞) and ξ∈(0, ξ].

Claim 5 h(ξ, ωi) strictly increases in ωi and is strictly convex in ωi at any ξ > 0.

Proof. The first and second derivatives of h(ξ, ωi) with respect to ωi are

∂h(ξ, ωi)

∂ωi
=

1

1+R

ξ

1+ξ
m(ξ, ωi) > 0

and
∂2h(ξ, ωi)

∂(ωi)2
=

1

1+R

ξ

1+ξ

∂h(ξ, ωi)

∂ωi
> 0.

Claim 6 The potential marginal signal benefit MB(ξ, 1) is strictly positive at
ωi = 1 for ξ >0,R>0. At ωi = 1, the potential marginal signal benefit MB(ξ, 1)
strictly increases in ωi.

Proof. At ωi = 1, MB(ξ, 1) > 0 iff

1
1+R

ln(1 + ξ) > − ln
(
1− 1

1+R
ξ

1+ξ

)
.

Note that equality holds at ξ = 0 but the left-hand side increases strictly faster
in ξ (it increases by 1/(1+R)(1+ξ)) than the right-hand side increases (which
increases in ξ by 1/(1+ξ)2[1+R− ξ/(1+ξ)]) for any ξR > 0. So, MB(ξ, 1) > 0.

The first derivative of MB(ξ, ωi) with respect to ωi is

∂MB(ξ, ωi)

∂ωi
=

(
∂g(ξ, ωi)/∂ωi

g(ξ, ωi)
− ∂h(ξ, ωi)/∂ωi

h(ξ, ωi)

)
MB(ξ, ωi).

So, ∂MB(ξ, ωi)/∂ωi > 0 at ωi = 1 iff
(

∂g(ξ, ωi)/∂ωi

g(ξ, ωi)

/
∂h(ξ, ωi)/∂ωi

h(ξ, ωi)

)∣∣∣∣∣
ωi=1

> 1 (G.1)
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since h(ξ, ωi) > 1 by claim 3 and ∂h(ξ, ωi)/∂ωi > 1 by claim 5 for ξ>0. A round
of simplifications shows that inequality (G.1) is equivalent to

ξ(ξ + ξR) > ξ(1+R)
[
(1+ξ)

1
1+R − 1

]
.

Note that this condition holds with equality at ξ = 0 but the left-hand side
increases strictly faster in ξ (it increases by ξ(1+2Rξ/ξ) > ξ) than the right-hand

side increases (which increases in ξ by ξ(1+ξ)−
1

1+R < ξ). So, ∂MB(ξ, 1)/∂ωi > 0.

These claims help establish Proposition 3. g(ξ, ωi) attains its unique maxi-
mum in ωi at ωi = 1 + R(1 + ξ) by claim 4 while h(ξ, ωi) strictly increases in
ωi but is convex. So, given any ξ, MB(ξ, ωi) must attain its global maximum
at some ωκ < 1 + R(1 + ξ). At ωi = 1, MB(ξ, 1) strictly increases. This proves
the first statement of Proposition 3 that, given any ξ, MB(ξ, ω) must attain its
unique global maximum for some ωκ ∈ (1, 1 + R(1 + ξ)). The second statement
that MB(ξ, ω) > 0 for ω in an open interval Ω+ that includes [1, ωκ] ⊂ Ω+ fol-
lows because MB(ξ, ωi) is strictly positive and strictly increases at ω = 1 for any
ξ > 0. So, MB(ξ, ω) > 0 in an open interval around ω = 1. MB(ξ, ω) is maximal
at ωκ so that the open interval Ω+ must in fact extend to [1, ωκ] ⊂ Ω+.
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