Online Data Supplement to Labor Reallocation in Response to Trade Reform*

Naércio Aquino Menezes-Filho
Insper São Paulo and Universidade de São Paulo

Marc-Andreas Muendler ${ }^{〔}$
UC San Diego, CESifo and NBER

August 16, 2011

Abstract

This empirical supplement to our paper entitled Labor Reallocation in Response to Trade Reform presents evidence on the impact of trade reform on labor reallocation, using a comprehensive linked employer-employee data set for Brazil and covering the period 1986-2001.

Tracking individual workers across jobs after Brazil's trade liberalization in the 1990s shows that tariff cuts trigger worker displacements, but neither exporters nor comparativeadvantage sectors absorb trade-displaced labor. On the contrary, they separate from significantly more and hire fewer workers than the average employer. Trade liberalization increases transitions to services, unemployment, and out of the labor force. Results are consistent with faster labor productivity growth than sales expansions so that output shifts to more productive firms while labor does not. Higher rates of failed reallocations and longer durations of complete reallocations result, associated with a costly incidence of idle resources.

Keywords: International trade; factor reallocation; labor demand and turnover; linked emplo-yer-employee data
JEL Classification: F14, F16, J23, J63

[^0]
1 Main Statistics of Paper, Nationwide

Tariffs and Reallocation Failures

Tariffs and Reallocation Durations

Sources: RAIS 1986-2001 (1-percent random sample), workers nationwide of any gender or age, separated from a formal-sector job; not re-acceding into a formal-sector job within 48 months (left graph) or re-acceding into a formalsector job within 48 months (right graph). Product tariffs from Kume, Piani and Souza (2003), employment weighted at Nível 50 sector level in 1988.

Figure 1: Tariffs and labor-market performance

Table 1: Labor Market Performance and Economic Outcomes

	1986	1990	1992	1994	1998
	FAILED REALLOCATIONS	WITHIN A YEAR			
Mean failure rate (share of displaced)	.285	.354	.441	.391	.474
female workers	.387	.427	.500	.451	.517
young workers	.297	.361	.445	.384	.446
high-school or college educ. workers	.305	.350	.416	.366	.435
Change over 1990		.000	.088	.037	.120
Idle labor (foregone share of GDP)	.000	.024	.009	.037	
\quad DURATIONS OF SUCCESSFUL REALLOCATIONS WITHIN A YEAR					
Mean duration (in months)	2.918	3.927	4.280	4.125	4.253
female workers	3.157	3.965	4.097	4.017	4.097
young workers	2.896	3.909	4.184	3.969	4.105
high-school or college educ. workers	2.558	3.397	3.622	3.458	3.633
Change over 1990 (one twelfth)		.000	.029	.017	.027
Idle labor (foregone share of GDP)		.000	.008	.004	.008

Sources: RAIS 1986-1999 (1-percent random sample), workers nationwide of any gender or age, displaced from a formal-sector job; not rehired into a formal-sector job within 12 months (upper panel) or rehired into a formal-sector job within 12 months (lower panel). PME 1986-1999, share of idle prime-age male metropolitan workers (unemployed or withdrawn from labor force) used for nationwide sample, and Banco Central do Brasil, GDP.
Notes: Young workers have ten or less years of potential labor force experience, high-school or college-educated workers have some high-school education. Foregone GDP is the unrealized wage bill, measured as the product of the observed change over 1990 times the number of newly displaced workers during the year times their wage upon displacement. Idle labor is defined as the share of displaced workers in PME with transitions to unemployment or out of the labor force.

Table 2: Productivity Variation Across Firms and Over Time

	TFP \& Output shares				Labor Prod. \& Employment shares				Outp. \& Empl. Ann. chg. avg. corr. ${ }^{a}$ (9)
	Cross section			Ann. chg.		coss sectio		Ann. chg.	
	wgtd. (1)	unwgtd. (2)	cov. (3)	$\text { avg. corr. }{ }^{a}$ (4)	wgtd. (5)	unwgtd. (6)	cov. (7)	$\begin{aligned} & \text { avg. corr. }{ }^{a} \\ & \text { (8) } \end{aligned}$	
1986	1.018	. 924	. 095		1.011	1.019	-. 008		
1990	1.000	. 899	. 101	. 165	1.000	. 997	. 003	-. 164	. 182
1992	1.017	. 911	. 105	. 142	1.015	1.008	. 007	-. 198	-. 093
1994	1.013	. 918	. 096	. 135	1.023	1.019	. 005	-. 183	. 166
1998	1.035	. 910	. 125	. 148	1.073	1.043	. 030	-. 170	. 367

${ }^{a}$ Period averages of correlation coefficients (periods 1986-90, 1990-92, 1992-94, 1994-98).
Source: PIA firms 1986-98 (1991 missing); log total factor productivity from Muendler (2004) based on Olley and Pakes (1996) estimation (at Nível 50), inferring labor productivity under changing capital stocks and intermediateinput uses.
Note: Cross-sectional productivity decomposition as in Olley and Pakes (1996): $y_{t}=\bar{y}_{t}+\sum_{i} \bar{\Delta} \theta_{i t} \bar{\Delta} y_{i t}$, where y_{t} is weighted and \bar{y}_{t} is unweighted mean log productivity, θ denotes the weights and $\bar{\Delta}$ deviations from cross-section means (rebased to unity in 1990). Annual change correlations (correlation coefficients) relate $\Delta_{t-1} \theta_{i, t}$ and $\Delta_{t-1} y_{i, t}$ as well as employment changes and output changes, where Δ_{t-1} denotes the first difference between t and $t-1$.

Table 3: Four-Year Sector Transitions and Failures

$\begin{array}{lr} & \text { To: } \\ \text { From: } & \text { (in \%) }\end{array}$	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	28.0	6.8	2.4	5.7	3.0	30.1	24.0	100.0
2nd quintile	9.2	17.9	3.1	5.8	4.7	35.5	23.9	100.0
3 rd quintile	5.3	4.9	15.4	13.0	3.2	32.7	25.6	100.0
4th quintile	4.5	4.2	8.3	23.3	5.8	30.4	23.6	100.0
5th quintile	3.9	4.0	2.3	9.9	24.7	32.8	22.4	100.0
Nontraded	2.6	2.2	1.6	3.8	2.8	58.5	28.5	100.0
Failure	5.7	3.0	4.1	11.5	7.3	68.4	. 0	100.0
Implied stationary distrib. ${ }^{\text {b }}$	3.4	2.6	2.0	4.5	3.3	41.3	42.8	100.0
Impl. stat. distrib. 1990-94 ${ }^{\text {b }}$	3.7	2.7	1.8	6.5	4.4	40.9	40.0	100.0
Impl. stat. distrib. 1994-98 ${ }^{\text {b }}$	2.2	1.7	1.8	3.5	2.3	35.6	53.0	100.0

[^1]Table 4: Separations and Accessions

	Separations			Accessions		
Sample Estimator	RAIS OLS (1)	$\begin{gathered} \hline \text { RAIS } \\ \text { FE } \\ (2) \\ \hline \end{gathered}$	RAIS (3)	RAIS OLS (4)	$\begin{gathered} \hline \text { RAIS } \\ \text { FE } \\ (5) \\ \hline \end{gathered}$	RAIS FE-IV (6)
Product Market Tariff	$\begin{aligned} & \hline-.091 \\ & \hline .098) \end{aligned}$	$\begin{aligned} & -.187 \\ & (.098)^{*} \end{aligned}$	$\begin{gathered} -.263 \\ (.021)^{* * *} \end{gathered}$	$\begin{aligned} & .102 \\ & (.052)^{* *} \end{aligned}$	$\begin{gathered} .243 \\ (.122)^{* *} \end{gathered}$	$\begin{gathered} .309 \\ (.021)^{* * *} \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & .253 \\ & (.195) \end{aligned}$	$\begin{aligned} & .297 \\ & (.289) \end{aligned}$	$\frac{.192}{(.032)^{* * *}}$	$\begin{gathered} -.197 \\ (.092)^{* *} \end{gathered}$	$\begin{aligned} & -.430 \\ & (.352) \end{aligned}$	$\stackrel{-.328}{(.032)^{* * *}}$
Exporter Status	$\begin{aligned} & .006 \\ & (.005) \end{aligned}$	$\stackrel{.037}{(.003)^{* * *}}$	$\stackrel{.067}{(.032)^{* *}}$	$\begin{gathered} -.056 \\ (.004)^{* * *} \end{gathered}$	$\frac{-.048}{(.002)^{* * *}}$	$\frac{-.211}{(.031)^{* * *}}$
Sector-level covariates						
FDI Flow (USD billion)	$\frac{-.011}{(.004)^{* * *}}$	$\frac{-.014}{(.005)^{* * *}}$	$\stackrel{-.012}{(.0006)^{* * *}}$	$\begin{gathered} .007 \\ (.003)^{* *} \end{gathered}$	$\stackrel{.009}{(.004)^{* *}}$	$\begin{gathered} .009 \\ (.0006)^{* * *} \end{gathered}$
Sector real exch. rate	$\begin{aligned} & -.109 \\ & (.140) \end{aligned}$	$\begin{aligned} & -.116 \\ & (.220) \end{aligned}$	$\frac{-.151}{(.018)^{* * *}}$	$\frac{.228}{(.102)^{* *}}$	$\begin{aligned} & .122 \\ & (.284) \end{aligned}$	$\stackrel{.066}{(.018)^{* * *}}$
Herfindahl Index (sales)	$\frac{-.163}{(.059)^{* * *}}$	$\begin{aligned} & -.158 \\ & (.097) \end{aligned}$	$\stackrel{-.018}{(.005)^{* * *}}$	$\stackrel{.150}{(.075)^{* *}}$	$\begin{aligned} & .127 \\ & (.095) \end{aligned}$	$\stackrel{-.015}{(.005)^{* * *}}$
Plant-level covariates						
Log Employment	$\frac{-.020}{(.002)^{* * *}}$	$\stackrel{-.060}{(.002)^{* * *}}$	$\begin{gathered} -.063 \\ (.003)^{* * *} \end{gathered}$	$\frac{-.021}{(.002)^{* * *}}$	$\stackrel{-.015}{(.001)^{* * *}}$	$\begin{aligned} & .001 \\ & . .003) \end{aligned}$
Worker-level covariates						
Tenure at plant (in years)	$\begin{aligned} & -.139 \\ & (.007)^{* * *} \end{aligned}$	$\frac{.140}{(.005)^{* * *}}$	$\begin{gathered} .139 \\ (.001)^{* * *} \end{gathered}$			
Sqrd. Tenure at plant (sq. yrs.)	$\frac{.020}{(.0008)^{* * *}}$	$\begin{gathered} -.016 \\ (.0009)^{* * *} \end{gathered}$	$\stackrel{-.017}{(.0002)^{* * *}}$			
Pot. labor force experience	$\underset{(.0001)}{.00009}$	$\begin{gathered} .001 \\ (.00008)^{* * *} \end{gathered}$	$\begin{gathered} .001 \\ (.00006)^{* * *} \end{gathered}$	$\begin{gathered} -.006 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} -.001 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.001 \\ (.00006)^{* * *} \end{gathered}$
Prof. or Manag'l. Occ.	$\stackrel{-.084}{(.005)^{* * *}}$	$\begin{gathered} -.037 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.038}{(.002)^{* * *}}$	$\frac{-.154}{(.007)^{* * *}}$	$\stackrel{-.067}{(.004)^{* * *}}$	$\stackrel{-.070}{(.002)^{* * *}}$
Tech'l. or Superv. Occ.	$\stackrel{-.076}{(.005)^{* * *}}$	$\stackrel{-.034}{(.004)^{* * *}}$	$\stackrel{-.034}{(.002)^{* * *}}$	$\stackrel{-.142}{(.006)^{* * *}}$	$\stackrel{-.073}{(.004)^{* * *}}$	$\stackrel{-.076}{(.002)^{* * *}}$
Unskilled Wh. Collar Occ.	$\stackrel{-.064}{(.005)^{* * *}}$	$\stackrel{-.035}{(.003)^{* * *}}$	$\stackrel{-.036}{(.002)^{* * *}}$	$\frac{-.115}{(.006)^{* * *}}$	$\stackrel{-.066}{(.004)^{* * *}}$	$\stackrel{-.069}{(.002)^{* * *}}$
Skilled B1. Collar Occ.	$\stackrel{-.024}{(.005)^{* * *}}$	$\begin{gathered} -.003 \\ (.002)^{* *} \end{gathered}$	$\begin{gathered} -.004 \\ (.0009)^{* * *} \end{gathered}$	$\begin{aligned} & -.072 \\ & (.007)^{* * *} \end{aligned}$	$\begin{gathered} -.064 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} -.064 \\ (.0009)^{* * *} \end{gathered}$
Worker effects		yes	yes		yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	5,338,164	5,338,164	5,326,737	5,303,710	5,303,710	5,292,404
R^{2} (within)	. 068	. 056		. 097	. 033	

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; SECEX 1990-98; and complementary sector data.
Note: Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Reference observations are employments with no reported separation or accession in a given year. Plant-level controls (share of some college, some high school and white-collar occupations) not reported. Sector information at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98. Instruments for the three endogenous variables Product-market tariffs, Intermediate input tariffs and Export Status are PPI in Europe, PPI in North America, non-Brazilian imports to Asia-Pacific, Central and Eastern European, North American, Other Industrialized and Western European countries (at subsector IBGE level 1990-98). See Table 5 for the first stage. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron, Gelbach and Miller 2011, except non-clustered IV): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 5: First-stage Predictions

Sample Dependent variable	Separations			Accessions		
	RAIS	RAIS	RAIS	RAIS	RAIS	RAIS
	Prd. Mkt.	Intm. Inp.	Exp.	Prd. Mkt.	Intm. Inp.	Exp.
	Tariff	Tariff	Status	Tariff	Tariff	Status
	(1)	(2)	(3)	(4)	(5)	(6)
Instruments						
World imports APD	$\begin{aligned} & -28.577 \\ & (.211)^{* * *} \end{aligned}$	$\begin{aligned} & -50.974 \\ & (.130)^{* * *} \end{aligned}$	$\begin{gathered} .458 \\ (1.501) \end{gathered}$	$\frac{-28.002}{(.211)^{* * *}}$	$\begin{aligned} & -50.841 \\ & (.130)^{* * *} \end{aligned}$	$\begin{aligned} & 1.412 \\ & (1.514) \end{aligned}$
World imports CEE	$\underset{(.542)^{* * *}}{-488.715}$	$\underset{(.333)^{* * *}}{-326.813}$	$\begin{gathered} -60.492 \\ (3.850)^{* * *} \end{gathered}$	$\underset{(.542)^{* * *}}{-488.616}$	$\begin{gathered} -326.072 \\ (.333)^{* * *} \end{gathered}$	$\begin{gathered} -63.142 \\ (3.880)^{* * *} \end{gathered}$
World imports NAM	$\begin{aligned} & -59.363 \\ & (.179)^{* * *} \end{aligned}$	$\begin{gathered} -9.996 \\ (.110)^{* * *} \end{gathered}$	$\begin{gathered} 35.198 \\ (1.270)^{* * *} \end{gathered}$	$\begin{aligned} & -58.448 \\ & (.179)^{* * *} \end{aligned}$	$\begin{aligned} & -10.016 \\ & (.110)^{* * *} \end{aligned}$	$\underset{(1.282)^{* * *}}{40.100}$
World imports OIN	$\begin{gathered} 94.904 \\ (.340)^{* * *} \end{gathered}$	$\begin{aligned} & 113.853 \\ & (.209)^{* * *} \end{aligned}$	$\underset{(2.416)^{* * *}}{68.189}$	$\begin{gathered} 94.310 \\ (.341)^{* * *} \end{gathered}$	$\begin{aligned} & 114.633 \\ & (.210)^{* * *} \end{aligned}$	$\begin{gathered} 65.991 \\ (2.443)^{* * *} \end{gathered}$
World imports WEU	$\underset{(.243)^{* * *}}{-100.136}$	$\begin{aligned} & -88.568 \\ & (.149)^{* * *} \end{aligned}$	$\underset{(1.728)^{* * *}}{39.455}$	$\begin{aligned} & -100.563 \\ & (.244)^{* * *} \end{aligned}$	$\begin{aligned} & -88.352 \\ & (.150)^{* * *} \end{aligned}$	$\begin{gathered} 39.466 \\ (1.746)^{* * *} \end{gathered}$
PPI Idx. EU, import-weight 95	$\begin{gathered} -.429 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.171 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.185 \\ (.016)^{* * *} \end{gathered}$	$\begin{gathered} -.438 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.169 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.209 \\ (.016)^{* * *} \end{gathered}$
PPI Idx. NAM, import-weight 95	$\begin{gathered} .494 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .043 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.204 \\ (.016)^{* * *} \end{gathered}$	$\begin{gathered} .498 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .049 \\ (.001)^{* * *} \end{gathered}$	$\frac{-.216}{(.016)^{* * *}}$
Exogenous covariates						
FDI Flow (USD billion)	$\begin{gathered} .001 \\ (.00006)^{* * *} \end{gathered}$	$\begin{aligned} & .0001 \\ & (.00004)^{* * *} \end{aligned}$	$\stackrel{-.005}{(.0004)^{* * *}}$	$\begin{gathered} .001 \\ (.00006)^{* * *} \end{gathered}$	$\begin{aligned} & .0002 \\ & (.00004)^{* * *} \end{aligned}$	$\begin{gathered} -.005 \\ (.0005)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{gathered} -.027 \\ (.0005)^{* * *} \end{gathered}$	$\begin{gathered} -.059 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} .007 \\ (.003)^{* *} \end{gathered}$	$\begin{gathered} -.028 \\ (.0005)^{* * *} \end{gathered}$	$\begin{gathered} -.060 \\ (.0003)^{* * *} \end{gathered}$	$\underset{(.003)^{* * *}}{.014}$
Log Employment	$\begin{gathered} .0008 \\ (.00002)^{* * *} \end{gathered}$	$\begin{aligned} & -.00008 \\ & (.00002)^{* * *} \end{aligned}$	$\begin{aligned} & .110 \\ & (.0002)^{* * *} \end{aligned}$	$\begin{gathered} .0008 \\ (.00002)^{* * *} \end{gathered}$	$\begin{gathered} -.00008 \\ (1.00 \mathrm{e}-05)^{* * *} \end{gathered}$	$\underset{(.0002)^{* * *}}{.105}$
Share: Some High School	$\begin{gathered} -.0003 \\ (.0002) \end{gathered}$	$\stackrel{-.0007}{(.0001)^{* * *}}$	$\stackrel{.073}{(.001)^{* * *}}$	$\underset{(.0002)}{1.73 \mathrm{e}-06}$	$\begin{gathered} -.0007 \\ (.0001)^{* * *} \end{gathered}$	$\xrightarrow[(.001)^{* * *}]{.074}$
Share: Some College	$\begin{gathered} .001 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.006 \\ (.0002)^{* * *} \end{gathered}$	$\underset{(.002)^{* * *}}{.214}$	$\underset{(.0003)^{*}}{.0006}$	$\begin{gathered} -.006 \\ (.0002)^{* * *} \end{gathered}$	$\stackrel{.228}{(.002)^{* * *}}$
Share: White-collar occ.	$\begin{aligned} & .0002 \\ & (.0002) \end{aligned}$	$\begin{gathered} .002 \\ (.0001)^{* * *} \end{gathered}$	$\frac{.148}{(.001)^{* * *}}$	$\begin{gathered} -.0005 \\ (.0002)^{* * *} \end{gathered}$	$\begin{aligned} & .002 \\ & (.0001)^{* * *} \end{aligned}$	$\underset{(.001)^{* * *}}{.152}$
Worker effects	yes	yes	yes	yes	yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	5,326,737	5,326,737	5,326,737	5,292,404	5,292,404	5,292,404
R^{2} (within)	. 823	. 883	. 123	. 824	. 883	. 120
F statistic (joint IVs)	79477.27	13104.83	102.66	81178.72	13114.04	119.581

Sources: WTF (NBER) bilateral import data 1990-98 at subsector IBGE level; sector data from various sources at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98; RAIS 1990-98 labor force information; SECEX exporter information 1990-98.
Note: First-stage estimates for column 3 and 6 in Table 4 weighted by worker-sample observations. Imports to foreign destinations are annual sector-weighted shipments from source countries other than Brazil, coefficients rescaled to imports in USD trillion. Additional regressors (not reported) as in Table 4. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 6: Separations and Accessions: Robustness

Sample Estimator	Separations			Accessions		
	$\underset{\text { FE }}{\text { RAIS-PIA }}$ (1)	$\underset{\text { FE }}{\text { RAIS-PIA }}$ (2)	RAIS-PIA cLogit (3)	$\begin{gathered} \text { RAIS-PIA } \\ \text { FE } \end{gathered}$ (4)	$\underset{\text { FE }}{\substack{\text { RAIS-PIA }}}$ (5)	RAIS-PIA cLogit (6)
Product Market Tariff	$\begin{gathered} -.264 \\ (.119)^{* *} \end{gathered}$	$\begin{aligned} & -.183 \\ & (.097)^{*} \end{aligned}$	$\begin{aligned} & -1.161 \\ & (.095)^{* * *} \end{aligned}$	$\underset{(.241)^{*}}{ }$	$\begin{gathered} .235 \\ (.119)^{* *} \end{gathered}$	$\begin{aligned} & 1.776 \\ & (.104)^{* * *} \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & .415 \\ & (.317) \end{aligned}$	$\begin{aligned} & .289 \\ & (.288) \end{aligned}$	$\underset{(.149)^{* * *}}{2.556}$	$\begin{aligned} & -.420 \\ & (.369) \end{aligned}$	$\begin{aligned} & -.420 \\ & (.349) \end{aligned}$	$\begin{gathered} -3.307 \\ (.155)^{* * *} \end{gathered}$
Exporter Status	$\stackrel{.037}{(.003)^{* * *}}$	$\stackrel{.037}{(.003)^{* * *}}$	$\underset{(.006)^{* * *}}{.234}$	$\stackrel{-.046}{(.002)^{* * *}}$	$\stackrel{-.048}{(.002)^{* * *}}$	$\stackrel{-.358}{(.006)^{* * *}}$
Share: Jobs at private firms	$\begin{gathered} -.014 \\ (.047) \end{gathered}$			$\begin{gathered} -.086 \\ (.034)^{* *} \end{gathered}$		
Indic.: Outsourceable job		$\stackrel{.006}{(.002)^{* * *}}$			$\frac{-.016}{(.002)^{* * *}}$	
Worker effects	yes	yes	yes	yes	yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	4,747,727	5,281,036	2,846,694	4,725,103	5,248,748	2,576,206
(Pseudo) R^{2}	. 056	. 056	. 145	. 033	. 033	. 076

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; PIA 1990-98 random three-firm aggregates; SECEX 1990-98; and complementary sector data.
Note: Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Reference observations are employments with no reported separation or accession in a given year. Additional regressors (not reported) as in Table 4. Sector information at subsector $I B G E$ level 1990-93 and CNAE 4-digit level 1994-98. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron et al. 2011): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 7: Separations and Accessions: Additional Specifications

Sample Estimator	Separations			Accessions		
	$\begin{gathered} \text { RAIS } \\ \text { FE } \\ (1) \end{gathered}$	$\begin{aligned} & \text { RAIS } \\ & \text { FE } \\ & (2) \end{aligned}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \\ (3) \end{gathered}$	$\begin{gathered} \hline \text { RAIS } \\ \text { FE } \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \\ (5) \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \\ (6) \end{gathered}$
Prd. Trff. \times Comp. Adv.	$\begin{gathered} -.270 \\ (.117)^{* *} \end{gathered}$		$\begin{gathered} -.288 \\ (.118)^{* *} \end{gathered}$	$\frac{.332}{(.161)^{* *}}$		$\begin{gathered} .317 \\ (.153)^{* *} \end{gathered}$
Intm. Trff. \times Comp. Adv.	$\frac{.400}{(.118)^{* * *}}$		$\stackrel{.415}{(.117)^{* * *}}$	$\begin{gathered} -.424 \\ (.188)^{* *} \end{gathered}$		$\begin{gathered} -.397 \\ (.183)^{* *} \end{gathered}$
Prd. Trff. \times Exporter		$\begin{aligned} & -.090 \\ & (.047)^{*} \end{aligned}$	$\frac{-.146}{(.042)^{* * *}}$		$\begin{aligned} & -.098 \\ & (.101) \end{aligned}$	$\begin{gathered} -.033 \\ (.086) \end{gathered}$
Intm. Trff. \times Exporter		$\frac{.209}{(.063)^{* * *}}$	$\frac{.273}{(.057)^{* * *}}$		$\begin{aligned} & -.060 \\ & (.132) \end{aligned}$	$\begin{aligned} & -.140 \\ & (.112) \end{aligned}$
Product Market Tariff	$\begin{aligned} & .201 \\ & (.137) \end{aligned}$	$\begin{aligned} & -.118 \\ & (.107) \end{aligned}$	$\xrightarrow[(.156)^{* *}]{.335}$	$\begin{aligned} & -.236 \\ & (.164) \end{aligned}$	$\xrightarrow[(.179)^{*}]{.301}$	$\begin{aligned} & -.201 \\ & (.180) \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & -.294 \\ & (.288) \end{aligned}$	$\begin{aligned} & .176 \\ & (.288) \end{aligned}$	$\frac{-.501}{(.289)^{*}}$	$\begin{aligned} & .306 \\ & (.287) \end{aligned}$	$\begin{aligned} & -.437 \\ & (.391) \end{aligned}$	$\begin{aligned} & .321 \\ & (.299) \end{aligned}$
Exporter Status	$\underset{(.003)^{* * *}}{.038}$	$\stackrel{.023}{(.005)^{* * *}}$	$\underset{(.005)^{* * *}}{.025}$	$\frac{-.047}{(.003)^{* * *}}$	$\begin{gathered} -.017 \\ (.007)^{* *} \end{gathered}$	$\stackrel{-.017}{(.007)^{* *}}$
Worker effects	yes	yes	yes	yes	yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	5,195,376	5,338,164	5,195,376	5,164,959	5,303,710	5,164,959
R^{2}	. 057	. 056	. 057	. 033	. 034	. 033

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; SECEX 1990-98; and complementary sector data.
Note: Balassa (1965) revealed comparative advantage measure for the initial year 1990. Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Reference observations are employments with no reported separation or accession in a given year. Additional regressors (not reported) as in Table 4. Sector information at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron et al. 2011): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 8: Separations and Accessions: Worker Interactions

Sample Estimator	Separations			Accessions		
	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$	$\begin{gathered} \text { RAIS } \\ \text { FE } \end{gathered}$
	(1)	(2)	(3)	(4)	(5)	(6)
Product Market Tariff	$\begin{gathered} -.178 \\ (.106)^{*} \end{gathered}$	$\begin{aligned} & -.173 \\ & (.094)^{*} \end{aligned}$	$\begin{gathered} -.173 \\ (.096)^{*} \end{gathered}$	$\underset{(.253)^{*}}{ }$	$\begin{gathered} .232 \\ (.099)^{* *} \end{gathered}$	$.256$
Intm. Input Tariff	$\begin{aligned} & .296 \\ & (.297) \end{aligned}$	$\begin{aligned} & .288 \\ & (.284) \end{aligned}$	$\begin{aligned} & .304 \\ & (.288) \end{aligned}$	$\begin{aligned} & -.454 \\ & (.362) \end{aligned}$	$\begin{aligned} & -.507 \\ & (.332) \end{aligned}$	$\begin{aligned} & -.448 \\ & (.350) \end{aligned}$
Exporter Status	$\frac{.037}{(.003)^{* * *}}$	$\underset{(.003)^{* * *}}{.037}$	$\underset{(.003)^{* * *}}{.037}$	$\begin{aligned} & -.048 \\ & (.002)^{* * *} \end{aligned}$	$\frac{-.047}{(.002)^{* * *}}$	$\frac{-.048}{(.002)^{* * *}}$
Prd. Trff. \times High-sch. or coll. ed.	$\begin{gathered} -.034 \\ (.034) \end{gathered}$			$\begin{gathered} -.021 \\ (.041) \end{gathered}$		
Intm. Trff. \times High-sch. or coll. ed.	$\begin{gathered} -.029 \\ (.045) \end{gathered}$			$\frac{.118}{(.051)^{* *}}$		
Prd. Trff. \times Young		$\frac{-.100}{(.060)^{*}}$			$\begin{gathered} .142 \\ (.200) \end{gathered}$	
Intm. Trff. \times Young		$\begin{array}{r} .096 \\ (.073) \end{array}$			$\begin{aligned} & .162 \\ & (.250) \end{aligned}$	
Prd. Trff. \times White collar			$\begin{gathered} -.058 \\ (.043) \end{gathered}$			$\begin{gathered} -.052 \\ (.040) \end{gathered}$
Intm. Trff. \times White collar			$\begin{gathered} -.082 \\ (.060) \end{gathered}$			$\begin{array}{r} .072 \\ (.063) \end{array}$
Worker effects	yes	yes	yes	yes	yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	5,338,164	5,338,164	5,338,164	5,303,710	5,303,710	5,303,710
R^{2}	. 056	. 056	. 056	. 033	. 035	. 033

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; PIA 1990-98 random three-firm aggregates; SECEX 1990-98; and complementary sector data.
Note: Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Young workers have ten or less years of potential labor force experience, high-school or college-educated workers have some high-school education. Reference observations are employments with no reported separation or accession in a given year. Additional regressors (not reported) as in Table 4. Sector information at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron et al. 2011): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 9: Separations, Accessions and Productivity

Sample Estimator	Separations			Accessions		
	$\begin{gathered} \text { RAIS-PIA } \\ \text { FE } \end{gathered}$ (1)	$\begin{aligned} & \text { RAIS-PIA } \\ & \text { FE } \end{aligned}$ (2)	$\underset{\mathrm{FE}}{\mathrm{RAIS}-\mathrm{PIA}}$ (3)	$\underset{\mathrm{FE}}{\mathrm{RAIS}-\mathrm{PIA}}$ (4)	$\underset{\text { FE }}{\substack{\text { RAIS-PIA }}}$ (5)	$\begin{gathered} \text { RAIS-PIA } \\ \text { FE } \end{gathered}$ (6)
Product Market Tariff	$\begin{gathered} -.174 \\ (.057)^{* * *} \end{gathered}$	$\begin{gathered} -.144 \\ (.057)^{* *} \end{gathered}$	$\frac{-.148}{(.057)^{* * *}}$	$\frac{.168}{(.053)^{* * *}}$	$\begin{gathered} .079 \\ (.046)^{*} \end{gathered}$	$\underset{(.046)^{*}}{. .082}$
Intm. Input Tariff	$\begin{aligned} & .260 \\ & (.175) \end{aligned}$	$\begin{aligned} & .266 \\ & (.230) \end{aligned}$	$\begin{aligned} & .287 \\ & (.233) \end{aligned}$	$\begin{aligned} & -.291 \\ & (.189) \end{aligned}$	$\begin{aligned} & -.116 \\ & (.152) \end{aligned}$	$\begin{aligned} & -.119 \\ & (.154) \end{aligned}$
Exporter Status	$\stackrel{.010}{(.004)^{* *}}$	$\begin{gathered} .009 \\ (.004)^{* *} \end{gathered}$		$\stackrel{-.022}{(.003)^{* * *}}$	$\begin{gathered} -.021 \\ (.003)^{* * *} \end{gathered}$	
Log LP			$\stackrel{.014}{(.004)^{* * *}}$			$\begin{gathered} -.004 \\ \hline .003) \end{gathered}$
Worker effects	yes	yes	yes	yes	yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Sector-year trend		yes	yes		yes	yes
Observations	1,860,763	1,860,763	1,860,763	1,845,911	1,845,911	1,845,911
R^{2}	. 079	. 079	. 079	. 037	. 039	. 039

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; PIA 1990-98 random three-firm aggregates; SECEX 1990-98; and complementary sector data.
Note: Balassa (1965) revealed comparative advantage measure for the initial year 1990. Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Reference observations are employments with no reported separation or accession in a given year. Additional regressors (not reported) as in Table 4. Sector information at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron et al. 2011): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 10: Productivity

Dependent variable Estimator	Log Labor Prod. FE	Log Labor Prod. FE-IV	Log Capital/Empl. FE-IV
	(1)	(2)	(3)
Product Market Tariff	$\begin{aligned} & .084 \\ & (.170) \end{aligned}$	$\begin{aligned} & -1.446 \\ & (.709)^{* *} \end{aligned}$	$\begin{gathered} -3.160 \\ (1.345)^{* *} \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & -1.031 \\ & (.239)^{* * *} \end{aligned}$	$\begin{aligned} & 1.590 \\ & (1.104) \end{aligned}$	$\begin{aligned} & 2.406 \\ & (2.128) \end{aligned}$
Exporter Status	$\begin{gathered} .044 \\ (.012)^{* * *} \end{gathered}$	$\stackrel{.045}{(.012)^{* * *}}$	$\underset{(.021)^{* * *}}{.078}$
Sector-level covariates			
FDI Flow (USD billion)	$\begin{aligned} & .011 \\ & (.009) \end{aligned}$	$\begin{aligned} & .001 \\ & (.010) \end{aligned}$	$\begin{aligned} & .021 \\ & (.019) \end{aligned}$
Sector real exch. rate	$\begin{aligned} & .249 \\ & (.288) \end{aligned}$	$\begin{aligned} & -.046 \\ & (.321) \end{aligned}$	$\begin{aligned} & -1.700 \\ & (.586)^{* * *} \end{aligned}$
Herfindahl Index (sales)	$\begin{aligned} & .099 \\ & (.117) \end{aligned}$	$\frac{.272}{(.141)^{*}}$	$\begin{aligned} & -.026 \\ & (.256) \end{aligned}$
Firm aggregates of plant-level covariates			
Log Employment	$\begin{gathered} -.133 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.134 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.295 \\ (.014)^{* * *} \end{gathered}$
Firm aggregates of worker-level covariates			
Pot. labor force experience	$\begin{aligned} & -.002 \\ & (.001) \end{aligned}$	$\begin{aligned} & -.001 \\ & (.001) \end{aligned}$	$\stackrel{.010}{(.002)^{* * *}}$
Prof. or Manag'l. Occ.	$\begin{aligned} & -.064 \\ & (.052) \end{aligned}$	$\begin{aligned} & -.059 \\ & (.053) \end{aligned}$	$\begin{gathered} -.030 \\ \hline . .094) \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{aligned} & .015 \\ & (.043) \end{aligned}$	$\underset{(.044)}{.022}$	$\begin{gathered} -.008 \\ (.078) \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{aligned} & -.024 \\ & (.048) \end{aligned}$	$\begin{gathered} -.022 \\ (.048) \end{gathered}$	$\begin{array}{r} .052 \\ (.087) \end{array}$
Skilled B1. Collar Occ.	$\begin{aligned} & .031 \\ & (.025) \end{aligned}$	$\underset{(.025)}{.030}$	$\begin{gathered} .080 \\ (.045)^{*} \end{gathered}$
Firm effects	yes	yes	yes
Year effects	yes	yes	yes
Observations	23,268	23,251	25,574

Sources: PIA 1990-98 firm sample linked to RAIS 1990-98 firm sample (based on 10-percent random worker sample). Note: Additional regressors (not reported) as in Table 4. Sector information at subsector IBGE level 1990-93 and CNAE 4-digit level 1994-98. Instruments for the three endogenous variables Product-market tariffs, Intermediate input tariffs and Export Status are PPI in Europe, PPI in North America, non-Brazilian imports to Asia-Pacific, Central and Eastern European, North American, Other Industrialized and Western European countries (at subsector IBGE level 1990-98). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 11: Multinomial Logit Estimation: Reallocation

Transition to:	Manufacturing		Non-manufacturing	Failure
	Same sector	Other sector		
	(1)	(2)	(3)	(4)
Product Market Tariff	$\begin{aligned} & -1.653 \\ & (.050)^{* * *} \end{aligned}$	$\begin{aligned} & -3.065 \\ & (.060)^{* * *} \end{aligned}$	$\stackrel{-.478}{(.043)^{* * *}}$	$\begin{gathered} -.587 \\ (.042)^{* * *} \end{gathered}$
Intm. Input Tariff	$\underset{(.070)^{* * *}}{2.348}$	$\underset{(.085)^{* * *}}{5.458}$	$\stackrel{.586}{(.062)^{* * *}}$	$\begin{gathered} 1.333 \\ (.060)^{* * *} \end{gathered}$
Exporter Status	$\frac{-.014}{(.002)^{* * *}}$	$\underset{(.003)^{* * *}}{.105}$	$\underset{(.002)^{* * *}}{.010}$	$\underset{(.002)^{* * *}}{.016}$
Sector-level covariates				
FDI Flow (USD billion)	$\frac{-.048}{(.003)^{* * *}}$	$\begin{gathered} -.033 \\ (.004)^{* * *} \end{gathered}$	$\frac{-.051}{(.003)^{* * *}}$	$\begin{gathered} -.030 \\ (.002)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -1.606 \\ & (.079)^{* * *} \end{aligned}$	$\begin{gathered} 1.234 \\ (.086)^{* * *} \end{gathered}$	$\begin{gathered} -.225 \\ (.063)^{* * *} \end{gathered}$	$\begin{aligned} & .031 \\ & (.063) \end{aligned}$
Plant-level covariates				
Log Employment	$\begin{gathered} -.196 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} -.113 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.1355 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} -.126 \\ (.0006)^{* * *} \end{gathered}$
Share: White-collar occ.	$\underset{(.006)^{* * *}}{.305}$	$\stackrel{.167}{(.008)^{* * *}}$	$\underset{(.005)^{* * *}}{.650}$	$\underset{(.005)^{* * *}}{.288}$
Worker-level covariates				
Prof. or Manag'l. Occ.	$\stackrel{-.271}{(.006)^{* * *}}$	$\frac{-.540}{(.007)^{* * *}}$	$\begin{gathered} -.469 \\ (.005)^{* * *} \end{gathered}$	$\stackrel{-.220}{(.004)^{* * *}}$
Tech'l. or Superv. Occ.	$\stackrel{-.432}{(.005)^{* * *}}$	$\begin{gathered} -.524 \\ (.006)^{* * *} \end{gathered}$	$\stackrel{-.265}{(.003)^{* * *}}$	$\stackrel{-.311}{(.004)^{* * *}}$
Unskilled Wh. Collar Occ.	$\stackrel{-.701}{(.005)^{* * *}}$	$\stackrel{-.475}{(.006)^{* * *}}$	$\stackrel{-.129}{(.003)^{* * *}}$	$\stackrel{-.384}{(.004)^{* * *}}$
Skilled B1. Collar Occ.	$\stackrel{.151}{(.003)^{* * *}}$	$\begin{gathered} -.033 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.255}{(.002)^{* * *}}$	$\begin{gathered} -.172 \\ (.002)^{* * *} \end{gathered}$
Year effects	yes			
Sector effects	yes			
Obs.	25,435,160			
Pseudo R^{2}	. 057			

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or remaining in manufacturing job; SECEX 1990-98; and complementary sector data.
Note: Baseline category is no transition (continuous employment with no reported separation in a given year). Multinomial logit estimates of employment transitions. Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Additional regressors (not reported): worker and plant-level workforce education. Sector information at subsector $I B G E$ level. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 12: Work Status Transitions from Formal Employment

Covariate (in t) (in $t+1$)	From formal manufacturing employment in t to:			
	Informal (1)	Self employed (2)	Unemployed (3)	Withdrawn (4)
Product Market Tariff	$\underset{(.870)}{.646}$	$\begin{aligned} & .319 \\ & (.474) \end{aligned}$	$\begin{gathered} -2.035 \\ (.788)^{* * *} \end{gathered}$	$\begin{aligned} & -1.929 \\ & (.721)^{* * *} \end{aligned}$
Intm. Input Tariff	$\begin{array}{r} -1.417 \\ (1.056) \end{array}$	$\begin{aligned} & .835 \\ & (.632) \end{aligned}$	$\begin{aligned} & 2.403 \\ & (.707)^{* * *} \end{aligned}$	$\underset{(.796)^{* * *}}{2.761}$
Formal empl. for four months	$\begin{aligned} & -1.299 \\ & (.040)^{* * *} \end{aligned}$	$\begin{aligned} & -1.190 \\ & (.067)^{* * *} \end{aligned}$	$\frac{-.610}{(.077)^{* * *}}$	$\frac{-.882}{(.035)^{* * *}}$
Age	$\begin{gathered} -.100 \\ (.013)^{* * *} \end{gathered}$	$\frac{.152}{(.018)^{* * *}}$	$\begin{aligned} & -.027 \\ & (.015)^{*} \end{aligned}$	$\frac{-.171}{(.015)^{* * *}}$
Sqrd. age	$\begin{gathered} .001 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.002 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.0001 \\ (.0002) \end{gathered}$	$\begin{gathered} .003 \\ (.0002)^{* * *} \end{gathered}$
Indic.: Male	$\begin{gathered} .263 \\ (.064)^{* * *} \end{gathered}$	$\frac{.578}{(.106)^{* * *}}$	$\begin{gathered} .098 \\ (.080) \end{gathered}$	$\begin{aligned} & -1.115 \\ & (.055)^{* * *} \end{aligned}$
Some High School	$\begin{gathered} -.065 \\ (.064) \end{gathered}$	$\begin{gathered} -.195 \\ (.071)^{* * *} \end{gathered}$	$\begin{aligned} & .025 \\ & (.051) \end{aligned}$	$\begin{aligned} & .008 \\ & (.081) \end{aligned}$
Some College	$\begin{gathered} -.199 \\ (.080)^{* *} \end{gathered}$	$\begin{gathered} -.432 \\ (.089)^{* * *} \end{gathered}$	$\begin{gathered} -.064 \\ (.081) \end{gathered}$	$\frac{-.342}{(.080)^{* * *}}$
College Degree	$\begin{gathered} -.292 \\ (.081)^{* * *} \end{gathered}$	$\frac{-.500}{(.088)^{* * *}}$	$\begin{gathered} -.361 \\ (.128)^{* * *} \end{gathered}$	$\frac{-.521}{(.096)^{* * *}}$
Year effects				
Sector effects				
Metro area effects				
Obs.				
Pseudo R^{2}				

Source: PME 1986-99, household members of any gender and age in metropolitan area, with initial formal manufacturing employment (annual transitions between 4th and 8th interview).
Note: Baseline category is continuation in formal work status. Sector-level variables at level similar to atividade-80 classification. Further regressors (not reported): Sector real exchange rate, FDI flow, Herfindahl index. Standard errors in parentheses (clustering at sector level): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 13: Summary Statistics

	All sectors and firms		5th comp. adv. quintile Mean	Exporter Mean
	Mean	Std.Dev.		
	(1)	(2)	(3)	(4)
Outcomes				
Indic.: Separation	. 237	. 425	. 278	. 197
Quit	. 038	. 191	. 048	. 028
Indic.: Accession	. 223	. 416	. 282	. 156
Main covariates				
Exporter Status	. 491	. 500	. 472	1.000
Product Market Tariff	. 206	. 113	. 181	. 206
Intm. Input Tariff	. 155	. 085	. 114	. 153
Balassa Comp. Adv. 1990	1.424	1.062	3.189	1.404
Plant-level covariates				
Log Employment	5.129	1.970	5.546	6.238
Log Employment 1998/90	. 939		. 956	. 924
Log Labor Productivity	11.202	. 752	11.063	11.260
Log Labor Productivity 1998/90	1.051		1.021	1.052

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, with manufacturing job. Statistics based on separation sample, except for accession indicator (5,338,164 observations in separation, $5,303,710$ in accession sample). Sector information at subsector IBGE level. PIA 1986-98 for labor productivity information.

Piecemeal Reform

Tariffs and Reallocation Failures

Tariffs and Reallocation Durations

Shock Therapy

Tariffs and Reallocation Failures

Tariffs and Reallocation Durations

Sources: RAIS 1986-2001 (10-percent random sample for estimates), workers nationwide of any gender or age, separated from a formal-sector job; not re-acceding into a formal-sector job within 48 months (left graphs) or re-acceding into a formal-sector job within 48 months (right graphs). PNAD 1988-1998, household members nationwide age 25 through 64, with or without formal-sector job. Product tariffs from Kume et al. (2003), employment weighted at Nível 50 sector level in 1988.
Note: Simulated job-finding rates $\hat{F}_{s}=\hat{A}_{s} /\left(\widehat{n_{s} / e_{s}}\right)$ from $\hat{A}_{t}=A_{t}+\beta_{\tau}^{A}\left(\hat{\tau}_{t}^{\text {cntrft }}-\tau_{t}\right)$ and $\widehat{n_{s} / e_{s}}$ from ratio of $\hat{n}_{s}=\left(\hat{S}_{s-1}-\hat{A}_{s-1}\right) e_{s-1}+n_{s-1}$ and $\hat{e}_{s}=\left(\hat{A}_{s-1}-\hat{S}_{s-1}\right) e_{s-1}+e_{s-1}$ given simulated relative changes to PNAD nonemployment and employment counts. Simulated finding rate \hat{F}_{s} then used in the reallocation failure rate $\hat{\phi}_{t, t+T} \equiv \prod_{s=t}^{t+T}\left(1-\hat{F}_{s}\right)$ and the reallocation duration $\hat{d}_{t, t+T} \equiv \sum_{p=t}^{t+T} p \prod_{s=t}^{p-1}\left(1-\hat{F}_{s}\right) \hat{F}_{p} /\left(1-\hat{\phi}_{t, T}\right)$.

Figure 2: Counterfactual tariffs and simulated labor-market performance

Sources: RAIS 1986-2001 (10-percent random sample for estimates), workers nationwide of any gender or age, separated from a formal-sector job; not re-acceding into a formal-sector job within 48 months (left graph) or re-acceding into a formal-sector job within 48 months (right graph). Product tariffs from Kume et al. (2003), employment weighted at Nível 50 sector level in 1988.
Note: Simulated job-finding rates $\hat{F}_{s}=\hat{A}_{s} /\left(n_{s} / e_{s}\right)$ from $\hat{A}_{t}=A_{t}+\beta_{\tau}^{A}\left(\tau_{1990}-\tau_{t}\right)$ and observed nonemployment-to-employment ratios, used in the reallocation failure rate $\hat{\phi}_{t, t+T} \equiv \prod_{s=t}^{t+T}\left(1-\hat{F}_{s}\right)$ and the reallocation duration $\hat{d}_{t, t+T} \equiv \sum_{p=t}^{t+T} p \prod_{s=t}^{p-1}\left(1-\hat{F}_{s}\right) \hat{F}_{p} /\left(1-\hat{\phi}_{t, T}\right)$.

Figure 3: Counterfactual tariffs at $\mathbf{1 9 9 0}$ level and simulated labor-market performance

2 Background Statistics, Nationwide

Product market tariffs

Input market tariffs

Source: Product tariffs from Kume et al. (2003).
Note: Sectors at Nível 50 ordered by 1990 product tariff.
Figure 4: Manufacturing Tariffs

Sources: PME 1986-98, workers of any gender and age employed in manufacturing in a metropolitan area; and complementary data.

Figure 5: Work status of PME workers in manufacturing

Table 14: Employment Allocations

percent	Traded: Comp. adv. quintile ${ }^{a}$					$\begin{aligned} & \text { Non- } \\ & \text { traded } \end{aligned}$		Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Formal Employment Allocation								
1986	7.8	5.7	4.5	6.0	5.2	70.8	100.0	22,164.3
1990	6.6	5.2	3.4	5.6	4.9	74.4	100.0	23,173.5
1992	3.6	6.5	4.0	4.8	4.9	76.2	100.0	22,272.8
1994	5.8	4.1	3.0	8.0	5.2	73.9	100.0	23,667.2
1998	4.7	3.4	3.6	6.4	4.6	77.2	100.0	24,491.6
Work Status Distribution 1990								
Formal	85.0	89.9	90.9	74.5	83.6	84.6		
Informal	11.3	8.9	7.1	14.5	14.6	11.4		
Self-employment	3.8	1.2	2.0	11.0	1.8	4.0		
Work Status Distribution 1994								
Formal	77.4	87.8	89.0	68.3	78.8	79.5		
Informal	16.7	10.0	9.6	17.5	18.3	14.9		
Self-employment	5.9	2.2	1.4	14.2	2.8	5.6		

${ }^{a}$ Balassa (1965) comparative advantage (5th quintile: strongest advantage).
Sources: RAIS universe 1986, 1990, 1994 and 1998, workers nationwide of any gender or age; and PME 1986-1999, male workers, 25 years or older and employed in manufacturing in a metropolitan area. UN Comtrade 1986 for Balassa comparative advantage at subsector IBGE level.
Note: Total formal employment in thousands of workers.

Table 15: Separations and Accessions: Year Effects

Sample	Separations			Accessions		
	$\begin{aligned} & \text { RAIS } \\ & \text { OLS } \end{aligned}$	$\begin{aligned} & \text { RAIS } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { RAIS } \\ & \text { FE-IV } \end{aligned}$	$\begin{aligned} & \text { RAIS } \\ & \text { OLS } \end{aligned}$	$\underset{\text { FE }}{\text { RAIS }}$	$\begin{aligned} & \text { RAIS } \\ & \text { FE-IV } \end{aligned}$
	(1)	(2)	(3)	(4)	(5)	(6)
1990	-. 050	-. 064	$\frac{-.139}{(.007)^{* * *}}$	-. 012	$\xrightarrow[(22.788)]{.105}$	$\stackrel{.177}{(.007)^{* * *}}$
1991	-. 027	. 028	$\stackrel{-.057}{(.003)^{* * *}}$	-. 048	$\begin{gathered} .066 \\ (26.410) \end{gathered}$	$\stackrel{.171}{(.003)^{* * *}}$
1992	-. 032	. 055	$\begin{gathered} -.039 \\ (.003)^{* * *} \end{gathered}$	-. 099	$\begin{gathered} .019 \\ (15.804) \end{gathered}$	$\stackrel{.146}{(.003)^{* * *}}$
1993	-. 045	. 046	$\stackrel{-.060}{(.002)^{* * *}}$	-. 045	$\begin{gathered} .032 \\ (14.635) \end{gathered}$	$\underset{(.002)^{* * *}}{.168}$
1994	$\stackrel{-.027}{(.008)^{* * *}}$	$\begin{gathered} -.098 \\ (.022)^{* * *} \end{gathered}$	$\frac{-.099}{(.001)^{* * *}}$	$\stackrel{.068}{(.008)^{* * *}}$	$\begin{gathered} .192 \\ (.023)^{* * *} \end{gathered}$	$\stackrel{.186}{(.002)^{* * *}}$
1995	$\begin{array}{r} .021 \\ (.019) \end{array}$	$\begin{gathered} -.044 \\ (.034) \end{gathered}$	$\begin{aligned} & -.053 \\ & (.002)^{* * *} \end{aligned}$	$\frac{.078}{(.014)^{* * *}}$	$\frac{.157}{(.045)^{* * *}}$	$\frac{.152}{(.003)^{* * *}}$
1996	$\begin{aligned} & -.004 \\ & (.011) \end{aligned}$	$\begin{gathered} -.041 \\ (.018)^{* *} \end{gathered}$	$\frac{-.047}{(.001)^{* * *}}$	$\begin{gathered} .046 \\ (.009)^{* * *} \end{gathered}$	$\underset{(.025)^{* * *}}{.126}$	$\frac{.124}{(.002)^{* * *}}$
1997	$\begin{gathered} .002 \\ (.009) \end{gathered}$	$\begin{gathered} -.023 \\ (.014)^{*} \end{gathered}$	$\begin{aligned} & -.029 \\ & (.001)^{* * *} \end{aligned}$	$\underset{(.006)^{* * *}}{.036}$	$\stackrel{.086}{(.019)^{* * *}}$	$\xrightarrow[(.001)^{* * *}]{.085}$
Worker effects		yes	yes		yes	yes
Sector effects	yes	yes	yes	yes	yes	yes
Year effects	yes	yes	yes	yes	yes	yes
Observations	5,338,164	5,338,164	5,326,737	5,303,710	5,303,710	5,292,404
R^{2} (within)	. 068	. 056		. 097	. 033	

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or acceding into manufacturing job; PIA 1990-98 random three-firm aggregates; and complementary data.
Note: Year effects from estimation in Table 4. Reference year 1998 (omitted). For remaining regressors see Table 4. Standard errors in parentheses (two-way clustering at worker and sector level following Cameron et al. 2011): * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 16: Four-Year Sector Transitions and Failures

From: $\begin{array}{r}\text { To: } \\ \text { (in \%) }\end{array}$	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	15.9	6.3	5.8	7.0	4.3	36.6	24.0	100.0
2nd quintile	9.9	14.8	5.4	5.3	3.7	37.0	23.8	100.0
3 rd quintile	5.1	3.6	26.3	5.1	3.1	32.9	23.9	100.0
4th quintile	4.5	2.6	4.8	22.1	8.9	32.6	24.4	100.0
5 th quintile	3.7	3.7	4.9	12.5	17.1	34.5	23.6	100.0
Nontraded	2.0	1.8	2.5	3.9	2.1	60.7	27.1	100.0
Failure	3.1	3.4	7.1	9.2	5.0	72.2	. 0	100.0
Implied stationary distrib. ${ }^{\text {b }}$	2.0	1.7	3.0	4.0	2.3	33.7	53.3	100.0

${ }^{a}$ Vollrath (1991) comparative advantage, transition year quintile (5th: strongest advantage).
${ }^{b}$ Failure adjustment of stationary distribution based on estimate of 4-year nonformal-to-nonformal transitions from PME (for 1986-98 64.9\% of nonformal PME workers are in nonformal work status after three annual transitions, replacing the zero from RAIS.
Sources: RAIS 1986, 1990, 1994 and 1998 (1-percent random sample), workers nationwide of any gender or age; and PME 1986-1999. UN Comtrade 1986 for Vollrath comparative advantage at subsector IBGE level.
Note: Transition frequencies refer to employments in Brazil four years after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector employment anywhere in Brazil within four years, excluding workers with retirement or death, or age 65 or above in past job. Compared to the Balassa (1965) comparative-advantage measure, the Vollrath (1991) measure assigns industries in similar ways except for one main group of differences: apparel, which is mostly in the lowest first quintile under the Balassa but mostly in the third quintile under Vollrath, non-metallic manufactures, which are mostly third quintile under Balassa (1965) but mostly second under Vollrath (1991), and chemicals, which are mostly second quintile under Balassa (1965) but mostly first under Vollrath (1991).

Table 17: Four-Year Re-Accessions and Failures by Skill Group

	To:						
	Traded: Comp. adv. quintile ${ }^{a}$						
	1st	2nd	3rd	4th	5th	Nontraded	Failure
	(1)	(2)	(3)	(4)	(5)	52.2	(7)
All workers	5.0	3.8	2.7	5.8	4.4	52.6	29.3
Female workers	7.2	3.6	1.0	2.3	4.1	54.0	33.3
Highly educ. workers	3.5	3.7	1.5	1.9	2.0	53.7	29.8
Young workers	4.9	4.2	1.9	2.6	2.9		

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Sources: RAIS 1986, 1990, 1994 and 1998 (1-percent random sample), workers nationwide of any gender or age; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE).
Note: Re-accession frequencies refer to employments in Brazil four years after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector employment anywhere in Brazil after four years, excluding workers with retirement or death, or age 65 or above in past job. In our definitions highly educated workers have more than eight years of schooling, young workers have less than ten years of potential labor-market experience.

Table 18: Annual Transitions Across Firms

To:	Transitions 1990-91				Transitions 1996-97		
	Nonexp.	Exp.	Total		Nonexp.	Exp.	Total
From: (in millions)	(1)	(2)	(3)		(4)	(5)	(6)
Nonexporter	1.743	.142	1.885		1.600	.127	1.728
Exporter	.204	.071	.275		.200	.059	.259
Total	1.947	.214	2.160		1.800	.187	1.986

Sources: RAIS 1990-91 and 1996-97 (1-percent random sample), workers nationwide of any gender or age; SECEX 1990-91 and 1996-97.
Note: Job accessions in Brazil within one year after separation. Employments are last employments of year (highest paying job if many), scaled (by 100) to population equivalents.

	Employment			Separations			Accessions		
	Overall	5th cmp. adv. qntl.	$\begin{array}{r} \text { Ex- } \\ \text { porter } \end{array}$	Overall	5th cmp. adv.qntl.	$\begin{array}{r} \text { Ex- } \\ \text { porter } \end{array}$	Overall	5th cmp. adv. qntl.	$\begin{array}{r} \text { Ex- } \\ \text { porter } \end{array}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Worker characteristics									
Female worker	. 34	. 28	. 24	. 29	. 28	. 27	. 30	. 28	. 27
Pot. lab. force exp. ${ }^{a}$	19.87	19.72	19.31	18.56	18.84	18.83	17.18	17.50	16.17
Tenure at plant ${ }^{\text {a }}$	1.00	. 66	1.20	. 39	. 35	. 63			
Middle School or less	. 64	. 83	. 66	. 75	. 87	. 76	. 72	. 86	. 74
Some High School	. 24	. 13	. 22	. 19	. 10	. 17	. 21	. 11	. 19
Some College	. 03	. 01	. 04	. 02	. 009	. 03	. 02	. 009	. 03
College Degree	. 09	. 02	. 08	. 04	. 01	. 04	. 04	. 01	. 04
Occupations									
Prof. or Manag'l.	. 14	. 05	. 10	. 08	. 04	. 07	. 08	. 03	. 05
Tech'l. or Superv.	. 21	. 08	. 14	. 16	. 07	. 10	. 16	. 06	. 09
Unsk. Wh. Collar	. 16	. 09	. 10	. 16	. 08	. 09	. 16	. 08	. 08
Skilled BI. Collar	. 30	. 64	. 50	. 38	. 67	. 58	. 36	. 67	. 58
Unsk. Bl. Collar	. 13	. 12	. 10	. 16	. 12	. 14	. 17	. 13	. 16
Job characteristics									
Jobs at private firms	. 74	. 97	. 87	. 87	. 97	. 93	. 85	. 97	. 92
Outsourceable job	. 23	. 23	. 26	. 24	. 26	. 25	. 24	. 25	. 23
Obs. (1\% sample)	3,037,277	170,400	440,582	888,597	62,905	112,394	947,579	63,439	100,091

${ }^{a}$ In years.
Sources: RAIS 1990-98 (1-percent random sample), workers nationwide of any gender or age, in any sector. Note: Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Sector information at subsector IBGE level.

Table 20: Employment by Sector and Experience Cohort

	1986	1990	1994	1998
Inexperienced 1998				
1st Comp adv. Quintile				. 052
2nd Comp adv. Quintile				. 040
3rd Comp adv. Quintile				. 027
4th Comp adv. Quintile				. 029
5th Comp adv. Quintile				. 038
Nontraded				. 815
Inexperienced 1994				
1st Comp adv. Quintile			. 056	. 052
2nd Comp adv. Quintile			. 043	. 043
3rd Comp adv. Quintile			. 017	. 031
4th Comp adv. Quintile			. 042	. 029
5th Comp adv. Quintile			. 039	. 037
Nontraded			. 803	. 808
Inexperienced 1990				
1st Comp adv. Quintile		. 064	. 060	. 051
2nd Comp adv. Quintile		. 052	. 049	. 043
3rd Comp adv. Quintile		. 023	. 021	. 030
4th Comp adv. Quintile		. 030	. 039	. 026
5th Comp adv. Quintile		. 032	. 038	. 034
Nontraded		. 798	. 793	. 816
Inexperienced 1986				
1st Comp adv. Quintile	. 071	. 068	. 053	. 042
2nd Comp adv. Quintile	. 053	. 059	. 053	. 042
3rd Comp adv. Quintile	. 028	. 023	. 026	. 030
4th Comp adv. Quintile	. 035	. 042	. 044	. 030
5th Comp adv. Quintile	. 035	. 032	. 035	. 031
Nontraded	. 779	. 775	. 790	. 824
Experienced 1986				
1st Comp adv. Quintile	. 079	. 072	. 060	. 049
2nd Comp adv. Quintile	. 060	. 056	. 042	. 035
3rd Comp adv. Quintile	. 047	. 040	. 032	. 040
4th Comp adv. Quintile	. 066	. 062	. 099	. 086
5th Comp adv. Quintile	. 059	. 057	. 062	. 052
Nontraded	. 688	. 712	. 705	. 738

Sources: RAIS 1986, 1990, 1994 and 1998 (1-percent random sample), workers nationwide of any gender or age; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage at subsector IBGE level.
Note: Inexperienced workers have less than 4 years of potential labor force experience. Experienced workers in 1986 have 4 or more years of potential labor force experience in 1986.

Table 21: Employment by Sector and Current Experience

	1986	1990	1994	1998
				Inexperienced 98
1st Comp adv. Quintile				. 052
2nd Comp adv. Quintile				. 040
3rd Comp adv. Quintile				. 027
4th Comp adv. Quintile				. 029
5th Comp adv. Quintile				. 038
Nontraded				. 815
			Inexperienced 94	Experienced 98
1st Comp adv. Quintile			. 056	. 049
2nd Comp adv. Quintile			. 043	. 035
3rd Comp adv. Quintile			. 017	. 040
4th Comp adv. Quintile			. 042	. 082
5th Comp adv. Quintile			. 039	. 050
Nontraded			. 803	. 743
		Inexperienced 90	Experienced 94	
1st Comp adv. Quintile		. 064	. 060	
2nd Comp adv. Quintile		. 052	. 043	
3rd Comp adv. Quintile		. 023	. 031	
4th Comp adv. Quintile		. 030	. 095	
5th Comp adv. Quintile		. 032	. 060	
Nontraded		. 798	. 711	
	Inexperienced 86	Experienced 90		
1st Comp adv. Quintile	. 071	. 072		
2nd Comp adv. Quintile	. 053	. 056		
3rd Comp adv. Quintile	. 028	. 040		
4th Comp adv. Quintile	. 035	. 061		
5th Comp adv. Quintile	. 035	. 056		
Nontraded	. 779	. 715		
	Experienced 86			
1st Comp adv. Quintile	. 079			
2nd Comp adv. Quintile	. 060			
3rd Comp adv. Quintile	. 047			
4th Comp adv. Quintile	. 066			
5th Comp adv. Quintile	. 059			
Nontraded	. 688			

Sources: RAIS 1986, 1990, 1994 and 1998 (1-percent random sample), workers nationwide of any gender or age; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage at subsector IBGE level.
Note: Inexperienced workers have less than 4 years of potential labor force experience. Experienced workers in each year have 4 or more years of potential labor force experience, so composition is not comparable to inexperienced workers in preceding period (across columns) but is comparable to inexperienced workers in same period (across rows).

Table 22: Multinomial Logit Estimation: Reallocation, controlling for Displacement Fixed Effect

Transition to:	Manufacturing		Nontraded	Failure
	Same sector	Other sector		
	(1)	(2)	(3)	(4)
Product Market Tariff	$\begin{aligned} & \hline-2.711 \\ & (.056)^{* * *} \end{aligned}$	$\begin{aligned} & -3.946 \\ & (.065)^{* * *} \end{aligned}$	$\begin{aligned} & -1.127 \\ & (.051)^{* * *} \end{aligned}$	$\begin{gathered} -.862 \\ (.051)^{* * *} \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & 3.604 \\ & (.080)^{* * *} \end{aligned}$	$\begin{gathered} 6.484 \\ (.092)^{* * *} \end{gathered}$	$\frac{1.146}{(.076)^{* * *}}$	$\begin{gathered} 1.272 \\ (.076)^{* * *} \end{gathered}$
Exporter Status	$\begin{gathered} .284 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .417 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .409 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .467 \\ (.002)^{* * *} \end{gathered}$
Sector-level covariates				
FDI Flow (USD billion)	$\stackrel{-.112}{(.003)^{* * *}}$	$\stackrel{-.098}{(.004)^{* * *}}$	$\frac{-.140}{(.003)^{* * *}}$	$\begin{gathered} -.136 \\ (.003)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -2.080 \\ & (.084)^{* * *} \end{aligned}$	$\begin{gathered} .824 \\ (.091)^{* * *} \end{gathered}$	$\stackrel{-.974}{(.074)^{* * *}}$	$\begin{aligned} & -1.141 \\ & (.078)^{* * *} \end{aligned}$
Plant-level covariates				
Log Employment	$\begin{gathered} -.484 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} -.394 \\ (.0009)^{* * *} \end{gathered}$	$\stackrel{-.471}{(.0007)^{* * *}}$	$\stackrel{-.511}{(.0007)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} .789 \\ (.007)^{* * *} \end{gathered}$	$\underset{(.008)^{* * *}}{.685}$	$\begin{gathered} 1.233 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .905 \\ (.006)^{* * *} \end{gathered}$
Worker-level covariates				
Prof. or Manag'l. Occ.	$\begin{gathered} -.176 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.464 \\ (.008)^{* * *} \end{gathered}$	$\stackrel{-.343}{(.005)^{* * *}}$	$\begin{gathered} -.084 \\ (.005)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.294 \\ (.005)^{* * *} \end{gathered}$	$\frac{-.417}{(.006)^{* * *}}$	$\frac{-.112}{(.004)^{* * *}}$	$\begin{gathered} -.113 \\ (.004)^{* * *} \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.625 \\ (.006)^{* * *} \end{gathered}$	$\frac{-.428}{(.006)^{* * *}}$	$\begin{aligned} & -.048 \\ & (.004)^{* * *} \end{aligned}$	$\begin{aligned} & -.247 \\ & (.004)^{* * *} \end{aligned}$
Skilled Bl. Collar Occ.	$\frac{.228}{(.003)^{* * *}}$	$\begin{gathered} .048 \\ (.003)^{* * *} \end{gathered}$	$\frac{-.131}{(.003)^{* * *}}$	$\begin{gathered} -.024 \\ (.003)^{* * *} \end{gathered}$
Obs. Pseudo R^{2}	25,435,160			

Sources: RAIS 1990-98 (10-percent random sample), workers nationwide of any gender or age, separated from or remaining in manufacturing job; and complementary data.
Note: Baseline category is no transition (continuous employment with no reported separation in a given year). Multinomial logit estimates of employment transitions. Separations exclude transfers, deaths, and retirements; accessions exclude transfers. Additional regressors (not reported): estimate of the worker-fixed displacement effect from Table 4 (column 3), worker and plant-level workforce education, sector effects and year effects. Sector information at subsector IBGE level. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

3 Labor Market Statistics

Table 23: Separation and Accession Rates

	Separations				Accessions			
	nationwide		metropolitan		nationwide		metropolitan	
	Any sec.	Manuf.						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1986	. 315	. 299	. 332	. 301	. 332	. 319	. 348	. 322
1987	. 319	. 310	. 340	. 318	. 323	. 288	. 340	. 293
1988	. 303	. 278	. 327	. 283	. 320	. 271	. 341	. 270
1989	. 295	. 276	. 318	. 286	. 310	. 280	. 332	. 290
1990	. 318	. 316	. 341	. 325	. 281	. 234	. 300	. 238
1991	. 302	. 294	. 320	. 305	. 283	. 247	. 303	. 252
1992	. 278	. 266	. 297	. 269	. 258	. 207	. 276	. 202
1993	. 264	. 248	. 283	. 247	. 271	. 236	. 285	. 232
1994	. 277	. 260	. 296	. 259	. 284	. 249	. 298	. 240
1995	. 310	. 311	. 331	. 310	. 296	. 257	. 316	. 251
1996	. 286	. 273	. 308	. 275	. 286	. 239	. 305	. 233
1997	. 285	. 271	. 300	. 269	. 296	. 252	. 307	. 240
1998	. 283	. 263	. 297	. 269	. 282	. 221	. 289	. 209

Source: RAIS 1986-98. Male workers nationwide (1% random sample) and in metropolitan areas only (5% random sample), 25 to 64 years old (in highest paying job if many). Separation and accession rates exclude transfers, deaths, and retirements and are relative to totals of first and last observed employments in a given year.

Sources: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job; not rehired into a formal-sector job within 48 months (left graph) or rehired into a formal-sector job within 48 months (right graph). Product tariffs from Kume et al. (2003), employment weighted at Nível 50 sector level.

Figure 6: Tariffs and national labor market performance

Sources: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 36 months. Product tariffs from Kume et al (2003), employment weighted at Nível 50 sector level.

Figure 7: Product market tariffs and mean duration of formal-sector reallocation within 36 months

Sources: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 48 months. Product tariffs from Kume et al. (2003), employment weighted at Nível 50 sector level.

Figure 8: Product market tariffs and mean duration of formal-sector reallocation within 48 months

3.1 Employment allocation

Table 24: Employment Allocation by Subsector

Sectorand subsector IBGE		Employment share		
		1986	1990	1997
		(1)	(2)	(3)
Primary				
1	Mining and quarrying	. 007	. 006	. 004
25	Agriculture, farming, hunting, forestry and fishing	. 015	. 016	. 041
Manufacturing				
2	Manufacture of non-metallic mineral products	. 016	. 013	. 011
3	Manufacture of metallic products	. 030	. 024	. 021
4	Manufacture of machinery, equipment and instruments	. 020	. 016	. 011
5	Manufacture of electrical and telecommunications equipment	. 016	. 014	. 008
6	Manufacture of transport equipment	. 019	. 016	. 013
7	Manufacture of wood products and furniture	. 019	. 015	. 015
8	Manufacture of paper and paperboard, and publishing	. 014	. 014	. 013
9	Manufacture of rubber, tobacco, leather, and products n.e.c.	. 019	. 016	. 009
10	Manufacture of chemical and pharmaceutical products	. 024	. 022	. 020
11	Manufacture of apparel and textiles	. 042	. 035	. 026
12	Manufacture of footwear	. 012	. 010	. 008
13	Manufacture of food, beverages, and ethyl alcohol	. 040	. 039	. 041
Commerce				
16	Retail trade	. 106	. 103	. 127
17	Wholesale trade	. 024	. 025	. 027
Services				
18	Financial intermediation and insurance	. 038	. 034	. 025
19	Real estate and business services	. 074	. 073	. 079
20	Transport, storage and telecommunications	. 050	. 044	. 057
21	Hotels and restaurants, repair and maintenance services	. 101	. 101	. 084
22	Medical, dental and veterinary services	. 014	. 017	. 039
23	Education	. 008	. 009	. 036
Other				
14	Electricity, gas and water supply	. 013	. 014	. 014
15	Construction	. 045	. 041	. 049
24	Public administration and social services	. 209	. 206	. 224
26	Activities n.e.c.	. 025	. 077	. 001
Total employment (thousands of workers)		22,164	23,174	24,104

Source: RAIS 1986, 1990 and 1997, universe of workers. Employment on Dec 31. Slight differences to Table 25 are due to random sampling errors.

Table 25: Employment By Sector

	Agric.	Mining	Manuf.	Comm.	Services	Other	Total ${ }^{\text {a }}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Allocation of workers, nationwide (RAIS population)						
1990	. 016	. 006	. 234	. 128	. 278	. 338	23.174
1998	. 041	. 004	. 183	. 154	. 320	. 299	24.492
Allocation of workers, nationwide							
1990	. 015	. 006	. 238	. 128	. 280	. 333	22.844
1998	. 041	. 004	. 183	. 154	. 320	. 299	24.439
Allocation of prime-age male workers, nationwide							
1990	. 019	. 010	. 263	. 111	. 284	. 314	10.763
1998	. 057	. 007	. 207	. 134	. 308	. 286	11.640
Allocation of prime-age male workers, metropolitan areas							
1990	. 007	. 007	. 270	. 104	. 309	. 302	5.965
1998	. 017	. 005	. 198	. 125	. 369	. 285	6.057
Allocation of prime-age male workers, PME (formal) ${ }^{\text {b }}$							
1990	. 005		. 359	. 110	. 394	. 131	
1998	. 004		. 301	. 115	. 471	. 109	
Allocation of male workers, metropolitan areas							
1990	. 008	. 007	. 274	. 123	. 308	. 281	8.057
1998	. 017	. 005	. 202	. 145	. 369	. 263	7.482
Allocation of male workers, São Paulo city							
1990	. 002	. 002	. 372	. 122	. 288	. 214	2.932
1998	. 004	. 002	. 253	. 151	. 371	. 219	2.627

[^2]Sources: RAIS 1990 and 1998, employment on Dec 31. Metropolitan information based on 5\%, nationwide information on 1% random sample. PME 1990 and 1998 (metropolitan prime-age males with formal employment).

Table 26: Employment by Sector and Formality Status

	Agric.	Manuf.	Comm.	Services	Other	Total ${ }^{\text {a }}$
	(1)	(2)	(3)	(4)	(5)	(6)
Allocation nationwide (RAIS universe)						
1990	. 016	. 240	. 128	. 278	. 338	23,174
1998	. 041	. 187	. 154	. 320	. 299	24,492
Allocation nationwide (RAIS prime-age males)						
1990	. 019	. 273	. 111	. 284	. 314	10,763
1998	. 057	. 214	. 134	. 308	. 286	11,640
Allocation in metropolitan areas (RAIS prime-age males)						
1990	. 007	. 277	. 104	. 309	. 302	5,965
1998	. 017	. 203	. 125	. 369	. 285	6,057
Informality in metropolitan areas (PME prime-age males)						
1990	. 159	. 063	. 109	. 117	. 298	
1998	. 232	. 120	. 154	. 169	. 341	

[^3]Sources: RAIS 1990 and 1998, employed on December 31; if indicated, male workers nationwide (1% random sample) and in metropolitan areas (5% random sample), 25 to 64 years old. PME 1990 and 1998, male workers 25 to 64 years old, and employed at September interview. Manufacturing includes mining.

Source: PME 1986-98, male workers, 25 years or older and employed in metropolitan area.

Figure 9: Sector allocation of PME workers

Source: PME 1986-98, male workers, 25 years or older and formally employed in metropolitan area.

Figure 10: Sector allocation of PME workers with formal employment

Source: PME 1986-98, male workers, 25 years or older and formally employed in metropolitan area.

Figure 11: Formal work status shares by sector

Table 27: Employment Shares By Firm Exporting Status and Sector

	Primary	Manuf.	Comm.	Services	Other	Total
	(1)	(2)	(3)	(4)	(5)	(6)
Allocation of prime-age male workers, nationwide						
Nonexporter	.882	.494	.935	.937	.930	.830
Exporter	.118	.506	.065	.063	.070	.170
	Allocation of prime-age male workers, metropolitan areas					
Nonexporter	.760	.390	.687	.913	.898	.778
Exporter	.240	.610	.113	.087	.102	.222

Source: RAIS 1990-2001 and SECEX 1990-2001. Metropolitan worker information based on 5\%, and nationwide worker information on 1% random sample. Employment shares refer to last employment of year (highest paying job if many).

3.2 Labor market experience, overall

Source: RAIS 1986-93 (1\% random sample), workers nationwide, employed on Dec 31, 1986 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 12: Labor market experience of 1986 workers

Source: RAIS 1990-97 (1\% random sample), workers nationwide, employed on Dec 31, 1990 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 13: Labor market experience of 1990 workers

Source: RAIS 1994-2001 (1\% random sample), workers nationwide, employed on Dec 31, 1994 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 14: Labor market experience of 1994 workers

Source: RAIS 1986-93 (1\% random sample), workers employed in São Paulo state on Dec 31, 1986 and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 15: Labor market experience of 1986 workers, São Paulo state

Source: RAIS 1990-97 (1\% random sample), workers employed in São Paulo state on Dec 31, 1990 and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 16: Labor market experience of 1990 workers, São Paulo state

Table 28: Annual Occupation Transitions 1986-97

Year t	1986	1988	1990	1992	1994	1996
Year $t+1$	(1)	(2)	(3)	(4)	(5)	(6)
Employed						
in same job	.858	.850	.860	.859	.847	.854
at same plant but in new job	.019	.019	.019	.021	.020	.014
at same firm but new plant	.006	.005	.005	.006	.005	.005
at new firm	.087	.090	.075	.077	.090	.084
Retired	.001	.001	.001	.001	.002	.002
Unaccounted	.029	.034	.039	.036	.036	.041

Source: RAIS 1986-97 (1\% random sample). Frequencies based on last employment of year (highest paying job if many); continuations at same firm exclude continuations at same establishment.

Source: RAIS 1986-93 (1\% random sample), workers nationwide, employed on Dec 31, 1986. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 17: Occupational experience of 1986 workers

Source: RAIS 1990-97 (1\% random sample), workers nationwide, employed on Dec 31, 1990. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 18: Occupational experience of 1990 workers

Source: RAIS 1994-2001 (1\% random sample), workers nationwide, employed on Dec 31, 1994. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 19: Occupational experience of 1994 workers

3.3 Labor market experience of prime-age male workers nationwide

Source: RAIS 1986-97 (1\% random sample), male workers, 25 years or older and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 20: Annual employment transitions across states

Source: RAIS 1986-93 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1986 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 21: Labor market experience of 1986 workers

Source: RAIS 1990-97 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1990 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 22: Labor market experience of 1990 workers

Source: RAIS 1994-2001 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1994 and with regional information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 23: Labor market experience of 1994 workers

Source: RAIS 1986-97 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment in any sector (highest paying job if many). Separation and accession rates exclude transfers, deaths, and retirements and are relative to totals of first and last observed employments in a given year.

Figure 24: Separations and accessions in any sector

Source: RAIS 1986-97 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment in subsector IBGE manufacturing (highest paying job if many). Separation and accession rates exclude transfers, deaths, and retirements and are relative to totals of first and last observed employments in a given year.

Figure 25: Separations and accessions in manufacturing

Table 29: Annual Occupation Continuations and Transitions 1986-97

Year t		1986	1988	1990	1992	1994
Year $t+1$	(1)	(2)	(3)	(4)	(5)	(6)
Employed						
\quad in same occupation	.867	.859	.864	.859	.850	.856
at same establishment in new occupation	.018	.018	.019	.020	.020	.013
at same firm but new establishment	.007	.006	.006	.007	.006	.005
at new firm	.079	.084	.074	.078	.087	.083

Source: RAIS 1986-97 (1\% random sample), male workers, 25 years or older. Frequencies based on last employment of year (highest paying job if many); continuations at same firm exclude continuations at same establishment. Occupations are defined at the CBO 3-digit base-group level with 354 categories, which roughly correspond to the 4-digit ISCO-88 unit-group level.

Source: RAIS 1986-93 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1986. Frequencies based on last employment of year (highest paying job if many); continuations at same firm exclude continuations at same establishment. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 26: Occupational experience of 1986 workers

Source: RAIS 1990-97 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1990. Frequencies based on last employment of year (highest paying job if many); continuations at same firm exclude continuations at same establishment. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 27: Occupational experience of 1990 workers

Source: RAIS 1994-2001 (1\% random sample), male workers, 25 years or older and employed on Dec 31, 1994. Frequencies based on last employment of year (highest paying job if many); continuations at same firm exclude continuations at same establishment. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job (and exclude unaccounted workers).

Figure 28: Occupational experience of 1994 workers
Table 30: Industry and Occupation Based Log Demand Shifts, 1986-2001

(in \%)	Between Industry				Within Industry				Overall Industry-Occupation			
	86-90	90-97	97-01	86-01	86-90	90-97	97-01	86-01	86-90	90-97	97-01	86-01
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Economy wide												
Illiterate or Primary Dropout	-0.1	4.7	-0.1	4.5	-2.2	-0.2	-1.0	-3.3	-2.3	4.5	-1.1	1.1
Primary School Graduate	-2.1	-0.1	-1.7	-3.9	-1.4	0.5	-1.5	-2.4	-3.6	0.4	-3.2	-6.4
Middle School Graduate	-1.9	-0.9	-0.5	-3.3	-0.1	1.5	-1.2	0.1	-2.0	0.6	-1.8	-3.1
High School Graduate	0.3	-1.7	-0.8	-2.3	1.1	0.9	0.2	2.2	1.4	-0.9	-0.6	-0.1
College Graduate	3.3	0.4	2.9	6.6	1.3	-2.4	2.5	1.4	4.6	-2.0	5.4	8.1
Traded-goods sectors												
Illiterate or Primary Dropout	-3.0	3.7	-1.7	-0.9	-0.7	-0.2	-0.2	-1.1	-3.7	3.6	-1.9	-2.0
Primary School Graduate	-3.8	-2.0	-2.4	-8.2	-0.4	0.2	-0.6	-0.7	-4.2	-1.8	-3.0	-9.0
Middle School Graduate	-3.9	-4.0	-2.6	-10.6	0.0	0.3	-0.5	-0.2	-3.9	-3.8	-3.1	-10.7
High School Graduate	-3.7	-4.4	-2.4	-10.5	0.5	-0.1	0.2	0.7	-3.2	-4.5	-2.1	-9.8
College Graduate	-3.6	-4.6	-2.1	-10.4	0.5	-0.5	1.4	1.4	-3.1	-5.1	-0.7	-8.9
Nontraded-output sectors												
Illiterate or Primary Dropout	3.6	0.4	1.9	5.9	-1.5	0.1	-0.7	-2.2	2.1	0.4	1.2	3.7
Primary School Graduate	2.8	2.7	1.5	7.0	-1.0	0.3	-0.9	-1.6	1.9	2.9	0.6	5.4
Middle School Graduate	2.3	3.3	2.3	7.9	-0.2	1.2	-0.7	0.3	2.1	4.6	1.6	8.3
High School Graduate	3.2	1.9	1.2	6.3	0.6	0.9	0.0	1.5	3.9	2.8	1.2	7.8
College Graduate	5.2	3.3	3.9	12.4	0.8	-1.8	1.4	0.4	6.0	1.5	5.3	12.8

[^4]Table 31: Between and Within Industry and Occupation Shifts in Relative EmPLOYMENT, 1986-2001

	Industry			Industry-occupation		
	between	within		between	within	Overall
	(1)	(2)		(3)	(4)	(5)
Illiterate or Primary Dropout	.073	-.084		.049	-.061	-.011
Primary School Graduate	-.018	.012		-.036	.030	-.006
Middle School Graduate	-.016	.045		-.014	.044	.030
High School Graduate	-.007	.039		.011	.021	.032
College Graduate	.094	-.055	.106	-.066	.040	

Source: RAIS 1986-2001 (1\% random sample), male workers, 25 years or older. Percentage changes in relative employment Katz and Murphy (1992), based on 25 subsector IBGE (Table 157) and 5 occupation categories (Table 160).

Table 32: Between and Within Industry and Occupation Shifts in Relative EmPLOYMENT, 1990-1998

	Industry			Industry-occupation			
			between	within	Overall		
	between	within		(2)		(3)	(4)
Illiterate or Primary Dropout	.053	-.072		.054	-.073	-.019	
Primary School Graduate	-.011	.0003		.013	-.023	-.010	
Middle School Graduate	-.017	.030		.011	.002	.013	
High School Graduate	-.024	.032		-.001	.010	.008	
College Graduate	.114	-.102		.091	-.080	.011	

Source: RAIS 1990-98 (1\% random sample), male workers, 25 years or older. Percentage changes in relative employment Katz and Murphy (1992), based on 25 subsector IBGE (Table 157) and 5 occupation categories (Table 160).

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Mean years of schooling weighted by worker numbers.

Figure 29: Schooling intensity of occupations

Source: RAIS 1986-2001 (1% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31 st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Mean years of schooling weighted by labor efficiency units.

Figure 30: Schooling intensity of occupations, efficiency unit weighted

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded-goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded-output industries are all other sectors. Mean years of schooling weighted by worker numbers within occupations, less mean years of schooling weighted by worker numbers across all occupations.

Figure 31: Difference between schooling intensity of occupations and annual mean schooling level

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on worker numbers.

Figure 32: Occupational workforce composition

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on labor efficiency units.

Figure 33: Occupational workforce composition in efficiency units

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on worker numbers.

Figure 34: Workforce composition by education category

Source: RAIS 1986-2001 (1% random sample), male workers nationwide, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on labor efficiency units.

Figure 35: Workforce composition by eduction category in efficiency units
3.4 Labor market experience of prime-age male workers in metropolitan areas

Source: RAIS 1986-97 (5\% random sample), male workers, 25 years or older, employed in metropolitan area and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 36: Annual employment transitions across municipalities

Source: RAIS 1986-93 (5\% random sample), male workers, 25 years or older, employed in metropolitan area on Dec 31, 1986 and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 37: Labor market experience of 1986 workers

Source: RAIS 1990-97 (5\% random sample), male workers, 25 years or older, employed in metropolitan area on Dec 31, 1990 and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 38: Labor market experience of 1990 workers

Source: RAIS 1994-2001 (5\% random sample), male workers, 25 years or older, employed in metropolitan area on Dec 31, 1994 and with municipality information on employer. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job.

Figure 39: Labor market experience of 1994 workers

RAIS 1986-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment in any sector (highest paying job if many). Separation and accession rates exclude transfers, deaths, and retirements and are relative to totals of first and last observed employments in a given year.

Figure 40: Separations and accessions in any sector

RAIS 1986-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment in subsector IBGE manufacturing (highest paying job if many). Separation and accession rates exclude transfers, deaths, and retirements and are relative to totals of first and last observed employments in a given year.

Figure 41: Separations and accessions in manufacturing

From formal RAIS job to being

From formal PME job to being

Source (left graph): RAIS 1986-97 (5\% random sample), male workers, 25 years or older and employed in metropolitan area. Frequencies based on last employment of year (highest paying job if many); continuations at same firm include regional transfers. Frequencies exclude workers with prior retirement or death, or age 65 or above in earlier job. Source (right graph): PME 1986-97, male workers, 25 years or older and employed in metropolitan area (annual transitions between 4th and 8th interview).

Figure 42: Annual labor market and work status transitions, 1986-97

Source: PME 1986-98, male workers, 25 years or older and employed in metropolitan area.

Figure 43: Work status of $\boldsymbol{P M E}$ workers

From formal manufacturing employment to being

Source: PME 1986-97, male workers, 25 years or older and formally employed in metropolitan area manufacturing in initial year (annual transitions between 4th and 8th interview).

Figure 44: Annual work status transitions from formal manufacturing employment, 1986-97

From informal employment to being

Source: PME 1986-97, male workers, 25 years or older and informally employed in metropolitan area in initial year (annual transitions between 4th and 8th interview).

Figure 45: Annual work status transitions from informal employment, 1986-97
Table 33: Industry and Occupation Based Log Demand Shifts, 1986-2001

in percentages	Between Industry				Within Industry				Overall Industry-Occupation			
	86-90	90-97	97-01	86-01	86-90	90-97	97-01	86-01	86-90	90-97	97-01	86-01
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
All sectors												
Illiterate or Primary Dropout	-0.3	2.0	-2.8	-1.1	-1.8	0.5	-1.3	-2.6	-2.1	2.5	-4.0	-3.6
Primary School Graduate	-1.8	-1.7	-3.1	-6.6	-1.4	1.0	-2.9	-3.3	-3.2	-0.7	-6.0	-9.9
Middle School Graduate	-1.5	-0.4	-1.0	-2.9	-0.5	1.8	-2.0	-0.6	-1.9	1.4	-2.9	-3.5
High School Graduate	-0.1	0.2	0.3	0.4	0.5	0.8	0.6	1.9	0.4	0.9	0.9	2.3
College Graduate	2.7	1.0	3.8	7.5	1.5	-2.9	3.4	2.1	4.2	-1.9	7.3	9.6
Traded goods sectors												
Illiterate or Primary Dropout	-3.6	-2.0	-3.7	-9.3	-0.7	-0.9	-0.7	-2.3	-4.3	-2.9	-4.3	-11.6
Primary School Graduate	-4.0	-4.9	-3.5	-12.5	-0.6	0.1	-1.0	-1.5	-4.6	-4.9	-4.5	-14.0
Middle School Graduate	-3.8	-5.3	-3.3	-12.4	-0.3	0.3	-0.7	-0.7	-4.1	-5.1	-4.0	-13.2
High School Graduate	-3.5	-5.1	-2.8	-11.4	0.1	0.2	0.5	0.8	-3.4	-4.9	-2.3	-10.6
College Graduate	-3.4	-5.4	-2.5	-11.3	1.1	-0.1	1.7	2.6	-2.3	-5.6	-0.8	-8.7
Nontraded goods sectors												
Illiterate or Primary Dropout	3.2	3.9	0.9	7.9	-1.1	1.3	-0.6	-0.4	2.0	5.2	0.2	7.5
Primary School Graduate	3.1	4.3	1.2	8.7	-0.8	1.0	-1.8	-1.5	2.4	5.3	-0.6	7.1
Middle School Graduate	2.7	5.3	2.6	10.6	-0.2	1.5	-1.2	0.2	2.6	6.8	1.4	10.8
High School Graduate	3.0	4.6	2.8	10.4	. 4	0.6	0.1	1.1	3.4	5.2	3.0	11.5
College Graduate	5.0	4.8	5.4	15.2	. 7	-2.5	2.0	0.1	5.6	2.4	7.3	15.3

[^5]Table 34: Between and Within Industry and Occupation Shifts in Relative EmPLOYMENT, 1986-2001

| | Industry | | | Industry-occupation | | |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: | ---: |
| | between | within | | between | within | Overall |
| | (1) | (2) | | (3) | (4) | (5) |
| Illiterate or Primary Dropout | .008 | -.028 | | -.011 | -.008 | -.019 |
| Primary School Graduate | -.049 | .036 | | -.077 | .064 | -.013 |
| Middle School Graduate | -.015 | .040 | | -.021 | .045 | .024 |
| High School Graduate | .017 | .013 | | .033 | -.004 | .029 |
| College Graduate | .097 | -.058 | | .117 | -.078 | .038 |

Source: RAIS 1986-97 (5\% random sample), male workers, 25 years or older, employed in metropolitan area. The between demand shift measures for education group k are of the form $\Delta D_{k}=\sum_{j} \alpha_{j k}\left(\Delta E_{j} / E_{k}\right)$, where $\alpha_{j k}$ is the average share for group k of employment in sector j over the period 1986-2001, E_{j} is the share of aggregate employment in sector j, and E_{k} is the average share of total employment of group k over the period 1986-2001 Katz and Murphy (1992). In column 1, j indexes 26 subsector IBGE industries (Table 157). In column 3, j indexes 130 industry-occupation cells using 5 occupation categories (Table 160). In column 5 , the overall relative employment change measure is of the form $\Delta D_{k}=\Delta E_{k} / E_{k}$. In columns 2 and 4, the within demand shift measures for group k are the differences of the overall (column 5) and between measures (columns 1 and 3). Employment is measured in efficiency units. Employment is measured in efficiency units.

Table 35: Between and Within Industry and Occupation Shifts in Relative EmPLOYMENT, 1990-1998

| | Industry | | | Industry-occupation | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | between | within | | between | within | Overall |
| | (1) | (2) | | (3) | (4) | (5) |
| Illiterate or Primary Dropout | .022 | -.046 | | .024 | -.048 | -.024 |
| Primary School Graduate | -.027 | .013 | | -.022 | .008 | -.014 |
| Middle School Graduate | -.014 | .024 | | .002 | .008 | .010 |
| High School Graduate | -.004 | .011 | | .036 | -.030 | .007 |
| College Graduate | .029 | -.020 | | .030 | -.020 | .009 |

[^6]

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Mean years of schooling weighted by worker numbers.

Figure 46: Schooling intensity of occupations

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Mean years of schooling weighted by labor efficiency units.

Figure 47: Schooling intensity of occupations, efficiency unit weighted

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on worker numbers.

Figure 48: Occupational workforce composition

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on labor efficiency units.

Figure 49: Occupational workforce composition in efficiency units

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on worker numbers.

Figure 50: Workforce composition by education category

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with employment on December 31st. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Shares based on labor efficiency units.

Figure 51: Workforce composition by education category in efficiency units

4 Reallocation Durations

Table 36: Formal-sector Reallocation Time Spans 1990-97

	Mean 1990-97		1990		1997	
	nation	metro	nation	metro	nation	metro
	(1)	(2)	(3)	(4)	(5)	(6)
within						
same month	. 146	. 597	. 163	. 615	. 138	. 576
1 year	. 627	. 353	. 663	. 351	. 614	. 361
1 to 2 years	. 134	. 031	. 101	. 021	. 135	. 037
2 to 3 years	. 058	. 012	. 045	. 008	. 065	. 015
3 to 4 years	. 035	. 007	. 027	. 005	. 048	. 011
Total (thsd) ${ }^{\text {a }}$	29,660	21,878	4,195	3,113	3,682	2,630

${ }^{a}$ Total reallocation (thousand workers), scaled to population equivalent.
Source: RAIS 1990-2001. Male workers nationwide (1\% random sample) or in metropolitan areas only (5\% random sample), 25 to 64 years old (in highest paying job if many), displaced from a formal-sector job between 1990 and 1997 and rehired into a formal-sector job within 48 months (regression samples with subsector IBGE and CNAE sector information).

4.1 Reallocation durations nationwide

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and rehired into a formal-sector job within 36 months.

Figure 52: Mean duration of formal-sector reallocation within 36 months

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and rehired into a formal-sector job within 48 months.

Figure 53: Mean duration of formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 36 months.

Figure 54: Mean duration of formal-sector reallocation to a plant with no sample absence within 36 months

Months to re-employment ----- Linear pred. 1/86-12/89 Linear pred. 1/90-12/92 - - - - Linear pred. 1/93-12/98

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 48 months.

Figure 55: Mean duration of formal-sector reallocation to a plant with no sample absence within 48 months

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and not rehired into a formal-sector job within 48 months.

Figure 56: Share of displaced workers without formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (1\% random sample), workers nationwide, displaced from a formal-sector job and not rehired into a formal-sector job within 60 months.

Figure 57: Share of displaced workers without formal-sector reallocation within 60 months

4.2 Reallocation durations for prime-age male workers nationwide

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 36 months.

Figure 58: Mean duration of formal-sector reallocation within 36 months

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 48 months.

Figure 59: Mean duration of formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 36 months.

Figure 60: Mean duration of formal-sector reallocation to a plant with no sample absence within 36 months

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 48 months.

Figure 61: Mean duration of formal-sector reallocation to a plant with no sample absence within 48 months

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 48 months.

Figure 62: Share of displaced workers without formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 60 months.

Figure 63: Share of displaced workers without formal-sector reallocation within $\mathbf{6 0}$ months

Table 37: Formal-sector Reallocation Time Spans 1990-97

	1990	1991	1992	1993	1994	1995	1996	1997	Mean
Reallocation	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
within									
same month	.163	.154	.136	.140	.148	.144	.139	.138	.146
1 year	.663	.625	.608	.620	.643	.619	.616	.614	.627
1 to 2 years	.101	.126	.150	.153	.124	.143	.150	.135	.134
2 to 3 years	.045	.058	.072	.056	.053	.062	.057	.065	.058
3 to 4 years	.027	.036	.033	.030	.032	.033	.038	.048	.035
Total $(\text { thsd })^{a}$	4,195	3,809	3,385	3,280	3,572	4,093	3,645	3,682	29,660

${ }^{a}$ Total reallocation (thousand workers), scaled to population equivalent.
Source: RAIS 1990-2001. Male workers nationwide (1% random sample), 25 to 64 years old (in highest paying job if many), displaced from a formal-sector job between 1990 and 1997 and rehired into a formal-sector job within 48 months (regression sample with subsector IBGE information).

4.3 Reallocation durations for prime-age male workers in metropolitan areas

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 36 months.

Figure 64: Mean duration of formal-sector reallocation within 36 months

$$
\begin{array}{|lll|}
\hline \simeq & \text { Months to re-employment } & ----- \text { Linear pred. } 1 / 86-12 / 89 \\
& \text { Linear pred. } 1 / 90-12 / 92 & ---- \text { Linear pred. } 1 / 93-12 / 98 \\
\hline
\end{array}
$$

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job within 48 months.

Figure 65: Mean duration of formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 36 months.

Figure 66: Mean duration of formal-sector reallocation to a plant with no sample absence within 36 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and rehired into a formal-sector job at a plant with no sample absence within 48 months.

Figure 67: Mean duration of formal-sector reallocation to a plant with no sample absence within 48 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 12 months.

Figure 68: Share of displaced workers without formal-sector reallocation within $\mathbf{1 2}$ months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 24 months.

Figure 69: Share of displaced workers without formal-sector reallocation within 24 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 36 months.

Figure 70: Share of displaced workers without formal-sector reallocation within 36 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 48 months.

Figure 71: Share of displaced workers without formal-sector reallocation within 48 months

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, displaced from a formal-sector job and not rehired into a formal-sector job within 60 months.

Figure 72: Share of displaced workers without formal-sector reallocation within $\mathbf{6 0}$ months

Table 38: Formal-sector Reallocation Time Spans 1990-97

	1990	1991	1992	1993	1994	1995	1996	1997	Mean
Reallocation	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
within									
same month	.615	.606	.602	.600	.596	.593	.584	.576	.597
1 year	.351	.348	.344	.349	.358	.354	.359	.361	.353
1 to 2 years	.021	.028	.034	.034	.029	.033	.035	.037	.031
2 to 3 years	.008	.012	.014	.011	.011	.013	.014	.015	.012
3 to 4 years	.005	.007	.006	.006	.006	.007	.007	.011	.007
Total $(\text { thsd })^{a}$	3,113	2,836	2,514	2,418	2,604	3,040	2,722	2,630	21,878

${ }^{a}$ Total reallocation (thousand workers), scaled to population equivalent.
Source: RAIS 1990-2001. Male workers in metropolitan areas (5\% random sample), 25 to 64 years old (in highest paying job if many), displaced from a formal-sector job between 1990 and 1997 and rehired into a formal-sector job within 48 months (regression sample with subsector IBGE information).

5 Comparative Advantage, Labor-Market Rigidity, Trade Protection, and Productivity

Table 39: Tradeable Goods Sectors

	Sector (Nivel 50)	Comp. Adv. 1990	$\begin{aligned} & \text { ERP } \\ & 1990 \end{aligned}$	Capital/ worker 1990	$\begin{array}{r} \text { Ann. } \\ \text { LP chg. } \\ \text { 1990-98 } \end{array}$	Prv. job sh. chg. 1995-98
		(1)	(2)	(3)	(4)	(5)
	5th quintile					
30	Food fats and oils processing and refining	12.427	. 209	57.380	. 064	-. 031
2	Mining of minerals (excl. combustibles)	7.526	. 029			103
27	Meat processing (incl. slaughter)	4.769	. 506	10.856	. 034	. 021
29	Sugar processing	4.309	. 347	28.357	. 019	-. 003
25	Coffee processing	3.481	. 468	13.238	. 067	. 057
26	Plant product processing (incl. tobacco)	3.326	. 507	17.866	. 030	. 024
	4th quintile					
5	Iron and steel products manufacturing	2.912	. 191	166.399	. 083	. 015
24	Footwear, leather and fur products manuf.	2.306	. 364	6.011	. 049	. 046
31	Other food products and beverages manuf.	2.062	. 697	16.733	. 051	. 024
6	Nonferrous metal products manufacturing	1.923	. 146	70.420	. 118	. 043
1	Agriculture, fishing, hunting and forestry	1.643				. 045
7	Metal products manufacturing n.e.c.	1.426	. 405	13.891	. 075	. 035
	3rd quintile					
4	Nonmetallic mineral products manufact.	1.122	. 360	24.980	. 093	. 044
14	Wood products and furniture manufact.	. 939	. 273	13.071	. 061	. 036
16	Rubber products manufacturing	. 903	. 524	14.036	. 081	. 034
17	Non-petrochemical chemicals manufact.	. 883	. 351	53.970	. 032	. 038
13	Vehicle parts and other transp. eqpt. manf.	. 802	. 409	20.386	. 148	. 014
	2nd quintile					
12	Automobiles, trucks and buses manufact.	. 746	. 989	23.712	. 183	. 005
18	Petrochem. products manuf. and refining	. 741	. 311	132.787	. 079	. 193
21	Plastics products manufacturing	. 708	. 466	16.619	. 073	. 040
15	Paper and pulp manufact., publishing	. 635	. 224	59.306	. 121	. 041
22	Textiles manufacturing	. 616	. 689	13.683	. 069	. 035
19	Miscellaneous chemical products manufact.	. 610	. 316	34.430	. 077	. 019
	1st quintile					
23	Apparel and apparel accessories manufact.	. 539	. 870	5.955	. 161	. 035
8	Machinery and comm. installations manuf.	. 507	. 450	18.714	. 124	. 041
11	Electronic eqpt. and communic. app. manf.	453	. 417	14.717	. 237	. 007
10	Electrical eqpt. and components manufact.	. 432	. 496	14.907	. 201	. 032
20	Pharmaceutical products manufacturing	. 294	. 372	18.330	. 075	. 068
28	Dairy products processing	. 012	. 661	14.297	. 022	. 039
3	Petroleum and gas extraction, coal mining	. 011	-. 241			-. 202

Sources: UN Comtrade 1990; product tariffs from Kume et al. (2003); PIA firms 1990-98; RAIS employeremployee records 1995-98. Balassa (1965) comparative advantage of sector i in year t : BADV ${ }_{i, t} \equiv$ $\left(X_{i, t}^{\text {Brazil }} / \sum_{k} X_{k, t}^{\mathrm{Brazil}}\right) /\left(X_{i, t}^{\mathrm{W} \text { orld }} / \sum_{k} X_{k, t}^{\mathrm{World}}\right)$, where $X_{i, t}$ are exports. Effective rate of protection (ERP): $\left(\tau_{i, t}^{Y}-\right.$ $\left.\tau_{i, t}^{M} \alpha_{i, t}\right) /\left(1-\alpha_{i, t}\right)$, where $\tau_{i, t}^{Y}$ is product tariff, $\tau_{i, t}^{M}$ input tariff, and $\alpha_{i, t}$ is value added. Capital-labor ratio in thousand 8/1994 BRL (equiv. to 8/94 USD) per worker. Annual labor productivity (LP) change: $\left(L P_{i, t} / L P_{i, t-8}\right)^{1 / 8}-1$ (inferring labor productivity at changing capital stocks from Olley and Pakes (1996) \log total factor productivity estimates). Private job share change: $s_{i, t}-s_{i, t-3}$, where $s_{i, t}$ is share of jobs at privately-owned plants in total jobs.

Table 40: Subsector ibge and Nível 50 Comparison

Subsector IBGE		Adv.		
Nível 50	1990	97	90	97
1 Mining and quarrying	. 976	. 846	3	3
2 Mining of minerals	7.526	7.366	5	5
3 Extraction of petroleum and gas, mining of coal	. 011	. 024	1	1
2 Manufacture of non-metallic mineral products	. 994	1.047	3	3
4 Manufacture of nonmetallic mineral products	1.122	1.242	3	3
3 Manufacture of metallic products	1.696	1.498	4	4
5 Manufacture of iron and steel products	2.912	2.170	4	4
6 Manufacture of nonferrous metal products	1.923	1.669	4	4
7 Manufacture of metal products n.e.c.	1.426	1.267	4	3
4 Manufacture of machinery, equipment and instruments	. 461	. 575	1	1
8 Manufacture of machinery and commercial equipment	. 507	. 650	1	2
5 Manufacture of electrical and telecomm. equipment	. 523	. 611	1	2
10 Manufacture of electrical equipment and components	. 432	. 467	1	1
11 Manufacture of electronic and communication equipment	. 453	. 487	1	1
6 Manufacture of transport equipment	1.044	. 967	4	3
12 Manufacture of automobiles, trucks and buses	. 746	1.020	2	3
13 Manufacture of vehicle parts and transportation eqpmt.	. 802	. 775	3	2
7 Manufacture of wood products and furniture	. 871	1.251	3	4
14 Manufacture of wood products and furniture	. 939	1.522	3	4
8 Manufacture of paper and paperboard, and publishing	. 632	. 517	2	1
15 Manufacture of paper and pulp, and publishing	. 635	. 519	2	2
9 Manufacture of rubber, leather and products n.e.c.	. 624	. 807	2	2
16 Manufacture of rubber products	. 903	1.062	3	3
32 Manufacture of miscellaneous other products n.e.c.	. 834	. 731	3	2
10 Manufacture of chemical and pharmaceutical products	. 662	. 613	2	2
17 Manufacture of non-petrochemical chemicals	. 883	. 900	3	3
18 Manufacture of petrochemical products and petroleum	. 741	. 518	2	1
19 Manufacture of miscellaneous chemical products	. 610	. 786	2	3
20 Manufacture of pharmaceutical products and detergents	. 294	. 344	1	1
21 Manufacture of plastics products	. 708	. 691	2	2
11 Manufacture of apparel and textiles	. 621	. 452	1	1
22 Manufacture of textiles	. 616	. 650	2	2
23 Manufacture of apparel and apparel accessories	. 539	. 205	1	1
12 Manufacture of footwear	3.051	2.562	5	5
24 Manufacture of footwear and leather and fur products	2.306	2.386	4	4
13 Manufacture of food, beverages, and ethyl alcohol	3.224	3.443	5	5
25 Processing of coffee	3.481	2.833	5	5
26 Processing of plant products	3.326	3.496	5	5
27 Processing of meat, including slaughter	4.769	5.783	5	5
28 Processing of dairy products	. 012	. 045	1	1
29 Processing of sugar	4.309	10.085	5	5
30 Processing and refining of food fats and oils	12.427	10.151	5	5
31 Manufacture of other food products and beverages	2.062	1.852	4	4
25 Agriculture, hunting, forestry and fishing	1.419	2.025	4	4
1 Agriculture, fishing, hunting and forestry	1.643	2.468	4	4

Source: UN Comtrade 1990. Balassa (1965) comparative advantage of sector i in year $t: B A D V_{i, t} \equiv$ $\left(X_{i, t}^{\text {Brazil }} / \sum_{k} X_{k, t}^{\text {Brazil }}\right) /\left(X_{i, t}^{\text {World }} / \sum_{k} X_{k, t}^{\text {World }}\right)$, where $X_{i, t}$ are\&xports (5th quintile: strongest adv.).

Table 41: Subsector ibge and cnae Comparison

Subsector IBGE	Con	Adv.		
CNAE (2-digit) level	1990	97	90	97
1 Mining and quarrying	. 976	. 846	3	3
10 Coal Mining	. 015	. 027	1	1
11 Petroleum and Gas Extraction	. 0005	. 002	1	1
13 Metallic Mineral Mining	11.316	11.023	5	5
14 Nonmetallic Mineral Mining	. 853	. 801	3	3
2 Manufacture of non-metallic mineral products	. 994	1.047	3	3
26 Nonmetallic Mineral Product Manufacturing	. 950	1.124	4	4
3 Manufacture of metallic products	1.696	1.498	4	4
27 Metals Production and Basic Processing	2.362	1.941	5	4
28 Metal Product Manufacturing (excluding machinery)	1.445	1.264	5	4
4 Manufacture of machinery, equipment and instruments	. 461	. 575	1	1
29 Machinery and Equipment Manufacturing	. 540	. 652	2	3
30 Office Machinery and Data Processing Equipment Manuf.	. 142	. 114	1	1
33 Medical, Therapeutic and Optical Equipment Manufact.	. 273	. 225	1	2
5 Manufacture of electrical and telecomm. equipment	. 523	. 611	1	2
31 Electrical Machinery, Equipment and Supplies Manuf.	. 466	. 481	2	2
32 Electronic Component and Comm. Apparatus Manufacturing	. 318	. 205	2	1
6 Manufacture of transport equipment	1.044	. 967	4	3
34 Motor Vehicle Manufacturing	. 674	. 997	3	3
35 Other Transportation Equipment Manufacturing	. 995	. 884	4	3
7 Manufacture of wood products and furniture	. 871	1.251	3	4
20 Wood Products Manufacturing	. 931	1.672	4	4
36 Furniture and Miscellaneous Manufacturing	. 436	. 611	2	2
8 Manufacture of paper and paperboard, and publishing	. 632	. 517	2	1
21 Pulp, Paper and Paper Products Manufacturing	1.261	1.400	4	4
22 Publishing, Printing and Reproduction of Recording	. 262	. 173	1	1
9 Manufacture of rubber, leather and products n.e.c.	. 624	. 807	2	2
16 Tobacco Product Manufacturing	. 805	4.208	3	5
25 Rubber and Plastics Product Manufacturing	. 944	1.079	4	4
37 Recycling	. 231	. 433	1	2
10 Manufacture of chemical and pharmaceutical products	. 662	. 613	2	2
23 Coal Products Manufacturing and Petroleum Refining	. 718	. 352	3	2
24 Chemical Products Manufacturing	. 652	. 697	3	3
11 Manufacture of apparel and textiles	. 621	. 452	1	1
17 Textile Products Manufacturing	. 715	. 651	3	3
18 Apparel Manufacturing	. 556	. 221	2	1
12 Manufacture of footwear	3.051	2.562	5	5
19 Leather Processing and Leather Products Manufacturing	2.523	2.646	5	5
13 Manufacture of food, beverages, and ethyl alcohol	3.224	3.443	5	5
15 Food and Beverage Manufacturing	3.213	3.428	5	5
25 Agriculture, hunting, forestry and fishing	1.419	2.025	4	4
1 Crop and Plant Growing and Animal Farming	2.004	3.023	5	5
2 Forestry and Logging	1.185	2.258	4	5
5 Fishing	. 453	. 251	2	2

Source: UN Comtrade 1990. Balassa (1965) comparative advantage of sector i in year t : BADV $V_{i, t} \equiv$ $\left(X_{i, t}^{\text {Brail }} / \sum_{k} X_{k, t}^{\text {Brazil }}\right) /\left(X_{i, t}^{\text {World }} / \sum_{k} X_{k, t}^{\text {World }}\right)$, where $X_{i, t}$ are exports (5th quintile: strongest adv.).

Table 42: Tradeable Goods Sectors

	Comp. adv.	Exp. ind.	Tariff		Imp.
pen.					
	(1)	(2)	(3)	(4)	(5)
1 Mining \& quarrying	.861	.407			
2 Manufacture of non-metallic mineral products	1.120	.288	.294	.252	.019
3 Manufacture of metallic products	1.697	.540	.228	.205	.046
4 Manufacture of machinery, equipment, instruments	.551	.615	.323	.302	.110
5 Manufacture of electrical \& telecom. equipment	.576	.669	.367	.325	.168
6 Manufacture of transport equipment	1.041	.785	.458	.345	.103
7 Manufacture of wood products \& furniture	1.064	.291	.228	.224	.011
8 Manufacture of pulp \& paper, and publishing	.608	.386	.238	.243	.037
9 Manufacture of rubber, leather and prod. n.e.c.	.696	.593	.412	.369	.064
10 Manufacture of chemical \& pharmaceutical prod.	.731	.592	.244	.198	.079
11 Manufacture of apparel \& textiles	.533	.534	.470	.401	.037
12 Manufacture of footwear	3.318	.670	.328	.307	.066
13 Manufacture of food, beverages, \& ethyl alcohol	3.012	.411	.273	.188	.021
25 Agriculture, hunting, forestry \& fishing	1.553	.083			

Sources: UN Comtrade 1986-98; SECEX 1990-98 exporter status (weighted by nationwide RAIS jobs of prime-age male workers); product 1986-98 tariffs from Kume et al. (2003) (weighted with IBGE input-output matrix for input tariffs); import penetration 1986-98 from Ramos and Zonenschain (2000).

5.1 Comparative advantage

Sources: UN Comtrade 1986-98. Sectors at Nível 50 ranked by Balassa comparative advantage FE (for sector definitions see Table 39, p. 80). Estimates of Balassa comparative advantage fixed effects (FE) from sector-fixed effects regression on output tariffs, input tariffs and year indicators (Table 44 column 2, p. 91).

Figure 73: Balassa Comparative Advantage

Sources: IFS (IMF) and IBGE national accounts Ramos and Zonenschain (2000). Estimates of netexports based comparative advantage fixed effects (FE) from sector-fixed effects regression on output tariffs, input tariffs and year indicators (Table 45 column 2, p. 92). Sectors at Nível 50 ranked by net-exports based comparative advantage FE (for sector definitions see Table 39, p. 80).

Figure 74: Net-exports Based Comparative Advantage

Sources: Own calculations of Balassa comparative advantage, based on UN Comtrade 1990-97. Balassa (1965) comparative advantage of sector i in year t is

$$
B A D V_{i, t} \equiv \frac{X_{i, t}^{\text {Brazil }} / \sum_{k} X_{k, t}^{\text {Brazil }}}{X_{i, t}^{\text {World }} / \sum_{k} X_{k, t}^{\text {World }}}
$$

where $X_{i, t}$ are exports. Relative change of Brazil component (numerator) is weighted average of pure contribution and the part not explained by world component (denominator):

$$
\frac{1}{2} \frac{S_{i, t}^{\text {Brazil }}-S_{i, t-1}^{\text {Brazil }}}{S_{i, t-1}^{\text {Brazil }}}+\frac{1}{2}\left(\frac{B A D V_{i, t}-B A D V_{i, t-1}}{B A D V_{i, t-1}}-\frac{S_{i, t}^{W o r l d}-S_{i, t-1}^{\text {World }}}{S_{i, t-1}^{\text {orld }}}\right)
$$

where $S_{i, t}^{j} \equiv X_{i, t}^{j} / \sum_{k} X_{k, t}^{j}$. Relative change of world component is complement. Sectors at Nível 50 ranked by Balassa comparative advantage 1990 (for sector definitions see Table 39).

Figure 75: Balassa Comparative Advantage Changes 1990-97

Sources: Own calculations of Balassa comparative advantage, based on UN Comtrade 1986-97. Balassa (1965) comparative advantage of sector i in year t is

$$
B A D V_{i, t} \equiv \frac{X_{i, t}^{\text {Brazil }} / \sum_{k} X_{k, t}^{\text {Brazil }}}{X_{i, t}^{\text {World }} / \sum_{k} X_{k, t}^{\text {World }}}
$$

where $X_{i, t}$ are exports. Relative change of Brazil component (numerator) is weighted average of pure contribution and the part not explained by world component (denominator):

$$
\frac{1}{2} \frac{S_{i, t}^{\text {Brazil }}-S_{i, t-1}^{\text {Brazil }}}{S_{i, t-1}^{\text {Brazil }}}+\frac{1}{2}\left(\frac{B A D V_{i, t}-B A D V_{i, t-1}}{B A D V_{i, t-1}}-\frac{S_{i, t}^{W o r l d}-S_{i, t-1}^{\text {World }}}{S_{i, t-1}^{\text {orld }}}\right)
$$

where $S_{i, t}^{j} \equiv X_{i, t}^{j} / \sum_{k} X_{k, t}^{j}$. Relative change of world component is complement. Sectors at Nível 50 ranked by Balassa comparative advantage 1986 (for sector definitions see Table 39).

Figure 76: Balassa Comparative Advantage Changes 1986-97

5.2 Labor-market rigidity

Table 43: Labor Market Rigidity Comparisons

	Rigidity and Difficulty Indices				Firing costs ${ }^{a}$
	Hiring difficulty	Hours rigidity	Firing difficulty	Employment rigidity	
	(1)	(2)	(3)	(4)	(5)
Brazil	67.0	80.0	70.0	72.0	165.0
Trade partners weighted by trade volume ${ }^{b}$					
1990	25.2	42.0	22.7	29.9	43.3
1997	28.1	45.3	24.4	32.4	47.6
weighted by source-country imports					
1990	23.2	42.9	21.7	29.1	46.8
1997	27.2	44.3	23.6	31.6	46.0
weighted by destination-country exports					
1990	26.4	41.5	23.4	30.3	41.2
1997	29.1	46.4	25.2	33.4	49.5

[^7]Source: Botero, Djankov, La Porta, Lopez de Silanes and Shleifer (2004) labor market rigidity measures.
Note: A higher index and a higher rank indicate a more rigid labor market. Trade partner averages weighted by WTF (NBER) bilateral trade data for 1990 and 1997.

5.3 Tariff schedules

Source: Product tariffs from Kume et al. (2003) and input-output matrices (IBGE). Sectors at Nível 50 ordered by 1990 product tariff (for sector definitions see Table 40 , p. 81). The effective rate of protection is $E R P \equiv$ $\left(\tau_{P}-\alpha \tau_{I}\right) /(1-\alpha)$, where τ_{P} are product and τ_{I} intermediate-input tariffs, using sectoral value-added from PIA as a share α of sales.

Figure 77: Manufacturing tariffs and effective rates of protection

5.4 Comparative advantage and tariff correlations

Table 44: Balassa Comparative Advantage and Tariff Correlations

$B A D V_{i, t}$	Sector FE		OLS	
	1986-98	1990-98	1986-98	1990-98
	(1)	(2)	(3)	(4)
Product Market Tariff	$\begin{gathered} -1.271 \\ (1.324) \end{gathered}$	$\begin{gathered} .178 \\ (1.326) \end{gathered}$	$\begin{array}{r} -1.587 \\ (1.713) \end{array}$	$\begin{aligned} & -2.929 \\ & (2.058) \end{aligned}$
Intm. Input Tariff	$\underset{(1.331)^{*}}{2.332}$	$\begin{gathered} .402 \\ (2.163) \end{gathered}$	$\begin{aligned} & -3.864 \\ & (2.132)^{*} \end{aligned}$	$\begin{gathered} -14.130 \\ (3.409)^{* * *} \end{gathered}$
Const.	$\begin{aligned} & 1.265 \\ & (.578)^{* *} \end{aligned}$	$\frac{1.777}{(.621)^{* * *}}$	$\begin{aligned} & 4.833 \\ & (.771)^{* * *} \end{aligned}$	$\begin{aligned} & 4.293 \\ & (.564)^{* * *} \end{aligned}$
Obs.	390	270	390	270
R^{2} (within for FE regressions)	. 080	. 026	. 067	. 142
p-value: Joint test for zero year indicators	. 262	. 850	. 560	. 391

Sources: Balassa comparative advantage based on UN Comtrade 1986-98, ad-valorem tariffs based on Kume et al. (2003), combined with input-output matrices (IBGE) for input tariffs. Controlling for year effects (joint χ^{2} test). Balassa (1965) comparative advantage of sector i in year t is

$$
B A D V_{i, t} \equiv \frac{X_{i, t}^{\text {Brazil }} / \sum_{k} X_{k, t}^{\text {Brazil }}}{X_{i, t}^{\text {World }} / \sum_{k} X_{k, t}^{\text {World }}}
$$

where $X_{i, t}$ are exports. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 45: Net-Exports Based Comparative Advantage and Tariff Correlations

$N X A D V_{i, t}$	Sector FE		OLS	
	1986-98	1990-98	1986-98	1990-98
	(1)	(2)	(3)	(4)
Product Market Tariff	$\begin{aligned} & .053 \\ & (.059) \end{aligned}$	$\xrightarrow[(.076)^{* * *}]{.236}$	$. .484$	$\begin{gathered} .503 \\ (.140)^{* * *} \end{gathered}$
Intm. Input Tariff	$\begin{gathered} -.015 \\ (.059) \end{gathered}$	$\begin{aligned} & -.087 \\ & (.124) \end{aligned}$	$\stackrel{-.602}{(.155)^{* * *}}$	$\begin{aligned} & -1.341 \\ & (.231)^{* * *} \end{aligned}$
Const.	$\begin{gathered} .978 \\ (.037)^{* * *} \end{gathered}$	$\begin{gathered} .944 \\ (.040)^{* * *} \end{gathered}$	$\begin{gathered} 1.048 \\ (.056)^{* * *} \end{gathered}$	$\begin{aligned} & 1.070 \\ & (.036)^{* * *} \end{aligned}$
Obs.	387	267	387	267
R^{2} (within for FE regressions)	. 005	. 055	. 042	. 116
p-value: Joint test for zero year indicators	1	. 807	1	. 875

Sources: Comparative advantage and ad-valorem tariffs based on input-output matrices and national accounting data from Ramos and Zonenschain (2000), and on nominal product tariff data from Kume et al. (2003). Controlling for year effects (joint χ^{2} test). Comparative advantage is relative net exports of sector i in year t :

$$
N X A D V_{i, t} \equiv 1+\frac{X_{i, t}-M_{i, t}}{Y_{i, t}}
$$

where $M_{i, t}$ are imports, $X_{i, t}$ are exports and $Y_{i, t}$ is output. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Sources: UN Comtrade 1986 for Balassa comparative advantage and product tariffs 1986 from Kume et al. (2003). Sectors at Nível 50 ranked by Balassa comparative advantage in 1986 (for sector definitions see Table 39, p. 80).

Figure 78: Balassa Comparative Advantage and Product Tariffs 1986

Sector (Nivel 50)

$$
— — \text { Balassa Comp. Adv. } 90 \quad-\quad \text { Product Tariffs } 90
$$

Sources: UN Comtrade 1990 for Balassa comparative advantage and product tariffs 1990 from Kume et al. (2003). Sectors at Nível 50 ranked by Balassa comparative advantage in 1990 (for sector definitions see Table 39, p. 80).

Figure 79: Balassa Comparative Advantage and Product Tariffs 1990

Sources: IFS (IMF) and IBGE national accounts Ramos and Zonenschain (2000) for net-exports based comparative advantage, and on product tariffs 1990 from Kume et al. (2003). Sectors at Nível 50 ranked by net-exports based comparative advantage in 1990 (for sector definitions see Table 39, p. 80).

Figure 80: Net-exports Based Advantage and Product Tariffs 1990

5.5 Productivity decompositions

Table 46: Productivity Change and Market Shares

	TFP (output shares)					Labor Productivity (empl. shares)				
	total	shift	cov.	entry	exit	total	shift	cov.	entry	exit
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1987	. 018	-. 042	. 065	-. 017	. 012	. 053	. 091	-. 019	-. 026	. 008
1988	. 085	. 029	. 046	-. 001	. 010	-. 079	-. 049	-. 017	-. 021	. 009
1989	-. 025	-. 122	. 084	-. 017	. 031	. 026	. 057	-. 044	-. 024	. 036
1990	-. 241	-. 297	. 066	-. 032	. 021	-. 123	-. 074	-. 035	-. 034	. 021
1992	. 146	. 043	. 075	-. 015	. 043	. 159	. 190	-. 058	-. 016	. 043
1993	. 048	-. 042	. 072	-. 012	. 031	. 118	. 122	-. 032	-. 007	. 035
1994	-. 076	-. 139	. 053	-. 011	. 022	-. 024	. 002	-. 039	-. 009	. 022
1995	. 015	-. 021	. 033	-. 007	. 011	. 056	. 100	-. 045	-. 008	. 009
1996	. 144	. 026	. 100	-. 002	. 019	. 298	. 310	-. 039	-. 002	. 029
1997	. 019	-. 008	. 033	-. 007	. 000	. 118	. 144	-. 029	-. 007	. 010
1998	. 016	. 012	. 022	-. 007	-. 012	. 064	. 098	-. 041	-. 001	. 007

Source: PIA firms 1986-98 (1991 missing); log total factor productivity estimates from Muendler (2004) based on Olley and Pakes (1996) estimation (at Nível 50), inferring labor productivity at changing capital stocks. Alternative productivity change decomposition, similar to Haltiwanger (1997): $\Delta y_{t}=\sum_{i \in C}\left[\theta_{i, t-1} \Delta y_{i t}+\Delta \theta_{i, t}\left(y_{i, t-1}-y_{t-1}\right)\right]+$ $\sum_{i \in C} \Delta \theta_{i, t} \Delta y_{i t}+\sum_{i \in N} \theta_{i t}\left(y_{i t}-y_{t-1}\right)+\sum_{i \in X}-\theta_{i, t-1}\left(y_{i, t-1}-y_{t-1}\right)$, where y_{t} is mean log productivity and Δ denotes annual change. Second decomposition term is raw (covariance) moment.

Table 47: Productivity Cross-Sections and Annual Changes

	TFP and Output shares				Labor Prod. and Employment shares			
	Cross section			Ann. chg. raw cov.	Cross section			Ann. chg. raw cov.
	wgtd.	unwgtd.	cov.		wgtd.	unwgtd.	cov.	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1986	1.018	. 924	. 095		1.011	1.019	-. 008	
1987	1.020	. 931	. 089	. 065	1.016	1.023	-. 007	-. 019
1988	1.030	. 913	. 117	. 046	1.009	1.002	. 007	-. 017
1989	1.027	. 916	. 112	. 084	1.011	1.008	. 004	-. 044
1990	1.000	. 899	. 101	. 066	1.000	. 997	. 003	-. 035
1992	1.017	. 911	. 105	. 075	1.015	1.008	. 007	-. 058
1993	1.022	. 921	. 101	. 072	1.026	1.017	. 009	-. 032
1994	1.013	. 918	. 096	. 053	1.023	1.019	. 005	-. 039
1995	1.015	. 915	. 100	. 033	1.029	1.022	. 006	-. 045
1996	1.031	. 903	. 129	. 100	1.056	1.031	. 025	-. 039
1997	1.034	. 908	. 126	. 033	1.067	1.038	. 029	-. 029
1998	1.035	. 910	. 125	. 022	1.073	1.043	. 030	-. 041

Source: PIA firms 1986-98 (1991 missing); log total factor productivity estimates from Muendler (2004) based on Olley and Pakes (1996) estimation (at Nível 50), inferring labor productivity at changing capital stocks. Cross-sectional productivity decomposition as in Olley and Pakes (1996): $y_{t}=\bar{y}_{t}+\sum_{i} \bar{\Delta} \theta_{i t} \bar{\Delta} y_{i t}$, where y_{t} is weighted and \bar{y}_{t} is unweighted mean log productivity and $\bar{\Delta}$ denotes deviations from cross-section means (rebased to unity in 1990). Annual productivity change correlation $\sum_{i \in C} \Delta \theta_{i, t} \Delta y_{i, t}$ (raw covariance) from Haltiwanger (1997) decomposition, where Δ denotes annual change (not rebased).

Table 48: Productivity Change and Market Shares

	TFP (output shares)					Labor Productivity (empl. shares)				
	total	within	reall.	entry	exit	total	within	reall.	entry	exit
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1987	. 018	. 016	. 006	-. 017	. 012	. 053	. 069	. 002	-. 026	. 008
1988	. 085	. 009	. 067	-. 001	. 010	-. 079	-. 058	-. 009	-. 021	. 009
1989	-. 025	-. 085	. 047	-. 017	. 031	. 026	. 018	-. 005	-. 024	. 036
1990	-. 241	-. 231	. 001	-. 032	. 021	-. 123	-. 112	. 003	-. 034	. 021
1992	. 146	. 053	. 065	-. 015	. 043	. 159	. 155	-. 023	-. 016	. 043
1993	. 048	. 060	-. 031	-. 012	. 031	. 118	. 107	-. 017	-. 007	. 035
1994	-. 076	-. 086	-. 000	-. 011	. 022	-. 024	-. 006	-. 031	-. 009	. 022
1995	. 015	-. 032	. 043	-. 007	. 011	. 056	. 062	-. 007	-. 008	. 009
1996	. 144	-. 070	. 196	-. 002	. 019	. 298	. 074	. 197	-. 002	. 029
1997	. 019	. 036	-. 011	-. 007	. 000	. 118	. 108	. 008	-. 007	. 010
1998	. 016	. 040	-. 006	-. 007	-. 012	. 064	. 079	-. 021	-. 001	. 007

Source: PIA firms 1986-98 (1991 missing); log total factor productivity estimates from Muendler (2004) based on Olley and Pakes (1996) estimation (at Nível 50), inferring labor productivity at changing capital stocks. Productivity change decompositions as in Haltiwanger (1997): $\Delta y_{t}=\sum_{i \in C} \theta_{i, t-1} \Delta y_{i t}+\sum_{i \in C} \Delta \theta_{i, t}\left(y_{i, t-1}-y_{t-1}+\Delta y_{i t}\right)+$ $\sum_{i \in N} \theta_{i t}\left(y_{i t}-y_{t-1}\right)+\sum_{i \in X}-\theta_{i, t-1}\left(y_{i, t-1}-y_{t-1}\right)$, where y_{t} is mean \log productivity and Δ denotes annual change.

Table 49: Productivity Cross-Sections

	TFP (output shares)			Labor Productivity (empl. shares)		
	weighted	unweighted	covariance	weighted	unweighted	covariance
	(1)	(2)	(3)	(4)	(5)	(6)
1986	1.000	. 907	. 093	1.000	1.008	-. 008
1987	1.002	. 914	. 088	1.005	1.012	-. 007
1988	1.011	. 897	. 114	. 998	. 991	. 007
1989	1.009	. 899	. 110	1.000	. 997	. 003
1990	. 982	. 883	. 099	. 989	. 986	. 003
1992	. 998	. 895	. 103	1.003	. 997	. 006
1993	1.003	. 905	. 099	1.014	1.006	. 008
1994	. 995	. 901	. 094	1.012	1.007	. 005
1995	. 997	. 899	. 098	1.017	1.011	. 006
1996	1.013	. 886	. 126	1.044	1.019	. 025
1997	1.015	. 892	. 123	1.055	1.026	. 029
1998	1.017	. 894	. 123	1.061	1.031	. 030

Source: PIA firms 1986-98 (1991 missing); log total factor productivity estimates from Muendler (2004) based on Olley and Pakes (1996) estimation (at Nível 50), inferring labor productivity at changing capital stocks. Productivity decomposition as in Olley and Pakes (1996): $y_{t}=\bar{y}_{t}+\sum_{i} \Delta \theta_{i t} \Delta y_{i t}$, where y_{t} is weighted and \bar{y}_{t} is unweighted mean \log productivity and Δ denotes deviations from cross-section means (rebased to unity in 1986).

6 Labor Reallocation

6.1 Reallocation transitions for prime-age male workers nationwide

Table 50: Four-Year Sector Transitions and Failed Re-Accessions

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	23.7	7.5	3.2	8.8	2.9	30.9	23.0	100.0
2 nd quintile	8.5	20.2	3.1	6.4	4.2	33.9	23.7	100.0
3 rd quintile	4.0	4.1	17.2	12.8	2.4	31.6	27.9	100.0
4th quintile	3.8	3.7	9.1	25.2	5.2	29.3	23.7	100.0
5th quintile	2.3	3.0	2.3	12.9	23.5	33.4	22.5	100.0
Nontraded	1.7	1.7	1.8	4.5	2.6	57.8	29.9	100.0
Failure	3.7	3.0	5.2	15.0	7.1	66.1	. 0	100.0
Total	3.8	3.3	4.3	11.0	5.5	56.2	16.0	100.0
Stationary	3.4	3.1	4.0	9.7	4.9	52.9	21.9	100.0
Stationary, failure adj.	2.5	2.3	2.9	7.0	3.6	38.2	43.5	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Sources: RAIS 1986, 1990, 1994 and 1998 (1% random sample), male workers nationwide, 25 to 64 years old; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies refer to employments in Brazil four years after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector employment anywhere in Brazil after four years, excluding workers with retirement or death, or age 65 or above in past job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of 4-year failure-to-failure transitions from PME (63.6% of non-formal PME workers are in non-formal work status after three annual transitions, replacing the zero from RAIS).

Table 51: Continuations and Year-over-Year Transitions, 1986-2001

	To:	Primary	Manuf.	Comm.	Services	Other	Total
(in \%)	(1)	(2)	(3)	(4)	(5)	(6)	
From:	85.7	4.8	1.5	4.0	4.0	100.0	
Primary	1.1	89.1	2.4	4.4	3.0	100.0	
Manufacturing	.7	4.5	84.8	6.2	3.9	100.0	
Commerce	.8	3.3	2.5	87.2	6.2	100.0	
Services	1.1	2.2	1.7	6.3	88.6	100.0	
Other	5.3	24.7	12.3	28.9	28.8	100.0	
Total							

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old. Frequencies include continuations at same firm and job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 52: Year-over-Year Transitions, 1986-2001

To:	Primary	Manuf.	Comm.	Services	Other	Total
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)
Primary	48.3	15.3	5.5	14.2	16.8	100.0
Manufacturing	5.1	44.2	10.2	23.9	16.5	100.0
Commerce	2.5	14.0	41.5	26.5	15.6	100.0
Services	2.8	12.0	10.1	51.8	23.4	100.0
Other	3.2	8.3	5.7	23.4	59.3	100.0
Total	6.1	18.3	12.5	31.9	31.2	100.0

Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 53: Continuations and Year-over-Year Transitions Across Firms and SecTORS, 1990-2001

To:	Continuations or Transitions			Transitions		
	Nonexp.	Exporter	Total	Nonexp.	Exporter	Total
From: (in millions)	(1)	(2)	(3)	(4)	(5)	(6)
	Transitions Within or Across Sectors					
Nonexporter	100.845	4.488	105.333	9.915	. 780	10.695
Exporter	4.183	19.293	23.476	1.163	. 440	1.603
Transitions Within Sector only						
Nonexporter	62.318	2.511	64.828	. 397	. 023	. 420
Exporter	1.986	13.777	15.763	. 031	. 026	. 057

Source: RAIS 1990-2001 (1\% random sample), male workers nationwide, 25 to 64 years old; SECEX 1990-2001. Right panels present job accessions in Brazil within one year after separation; left panels include continuations at same firm. Employments are last employments of year (highest paying job if many), scaled (by 100) to population equivalents.

Table 54: Year-over-Year Transitions Across Firms and Sectors, 1990-91 and 1996-97

	Transitions 1990-91				Transitions 1996-97		
To:	Nonexp.	Exp.	Total		Nonexp.	Exp.	Total
From: (in millions)	(1)	(2)	(3)		(4)	(5)	(6)
Nonexporter	.816	.058	.874		.795	.060	.855
Exporter	.099	.030	.129		.106	.031	.137
Total	.915	.087	1.003		.901	.091	.992

Source: RAIS 1990-91 and 1996-97 (1\% random sample), male workers nationwide, 25 to 64 years old; SECEX 199091 and 1996-97. Job accessions in Brazil within one year after separation. Employments are last employments of year (highest paying job if many), scaled (by 100) to population equivalents.

Table 55: Year-over-Year Trade Sector Transitions and Failed Accessions, 1986-2001

$\begin{array}{lr} & \text { To: } \\ \text { From: } & \text { (in \%) }\end{array}$	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	14.6	7.4	3.1	6.2	2.8	35.3	30.7	100.0
2nd quintile	6.5	14.2	3.3	4.6	3.3	35.7	32.5	100.0
3 rd quintile	3.2	3.6	14.2	7.1	2.8	34.5	34.5	100.0
4th quintile	2.1	2.1	2.7	26.3	5.5	28.3	33.2	100.0
5 th quintile	1.9	2.7	1.7	11.2	19.5	32.5	30.4	100.0
Nontraded	1.3	1.5	1.3	3.3	1.8	57.9	32.9	100.0
Failure	3.0	3.1	3.4	11.3	5.0	74.1	. 0	100.0
Total	2.6	2.7	2.7	8.4	4.0	60.6	19.1	100.0
Stationary	2.3	2.5	2.3	7.4	3.6	57.1	24.8	100.0
Stationary, failure adj.	1.2	1.3	1.2	3.9	1.9	30.3	60.1	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (78.1% of non-formal PME workers are in non-formal work status after an annual transition, replacing the zero from RAIS).

Table 56: Year-over-Year CNAE Trade Sector Transitions and Failed AccesSIONS, 1986-98

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
To:	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	10.2	3.1	3.4	4.0	7.6	32.2	39.4	100.0
2nd quintile	4.0	8.5	6.0	5.9	4.6	35.6	35.4	100.0
3 rd quintile	3.0	6.6	9.4	6.4	5.4	32.1	37.2	100.0
4th quintile	2.7	3.2	4.0	11.0	9.0	30.0	40.2	100.0
5 th quintile	2.8	1.6	1.8	5.2	25.5	23.2	39.9	100.0
Nontraded	1.5	1.3	1.2	2.1	3.0	52.3	38.5	100.0
Failure	4.1	3.0	3.1	6.3	12.7	70.7	. 0	100.0
Total	3.0	2.4	2.5	4.6	8.9	55.8	22.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-98 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 57: Year-over-Year Trade Sector Transitions and Failed Accessions, 1990-91

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	12.5	9.4	4.9	3.1	2.9	30.9	36.4	100.0
2 nd quintile	8.3	10.9	3.1	2.8	2.9	34.4	37.6	100.0
3 rd quintile	3.0	2.6	14.2	4.4	2.9	34.4	38.5	100.0
4th quintile	4.6	2.8	5.6	9.9	4.2	39.2	33.7	100.0
5 th quintile	1.7	2.9	1.5	3.6	17.9	35.8	36.6	100.0
Nontraded	1.6	1.8	1.5	2.3	2.0	54.9	35.9	100.0
Failure	3.2	4.1	4.4	5.0	5.3	78.0	. 0	100.0
Total	2.9	3.3	3.2	3.7	4.0	59.7	23.2	100.0
Stationary	2.6	3.0	2.9	3.4	3.6	57.9	26.5	100.0
Stationary, failure adj.	1.3	1.5	1.4	1.7	1.8	28.7	63.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (1\% random sample), male workers nationwide, 25 to 64 years old; and PME 1990-1991. UN Comtrade 1990-91 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (79.3\% of non-formal PME workers are in non-formal work status after the 1990-91 transition, replacing the zero from RAIS).

Table 58: Year-over-Year CNAE Trade Sector Transitions and Failed AccesSIONS, 1990-91

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
To:	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	9.3	3.3	2.8	4.5	6.9	28.7	44.5	100.0
2nd quintile	3.2	10.1	8.5	6.1	5.1	31.9	35.1	100.0
3 rd quintile	4.1	5.7	8.3	5.7	5.0	30.5	40.7	100.0
4th quintile	2.3	2.9	4.4	11.1	5.5	26.3	47.6	100.0
5 th quintile	3.2	1.2	2.1	4.1	20.1	23.5	45.9	100.0
Nontraded	1.6	1.2	1.3	1.7	2.9	48.1	43.1	100.0
Failure	4.4	3.3	3.5	5.4	11.2	72.2	. 0	100.0
Total	3.1	2.5	2.7	4.0	7.4	53.7	26.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 59: Year-over-Year Trade Sector Transitions and Failed Accessions, 1996-97

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	19.9	4.3	1.2	4.0	2.1	29.2	39.3	100.0
2nd quintile	1.9	13.9	2.8	4.4	2.3	31.2	43.6	100.0
3 rd quintile	1.2	2.1	13.5	3.9	2.1	30.1	47.1	100.0
4th quintile	1.1	1.3	1.2	31.5	5.5	19.9	39.4	100.0
5 th quintile	1.8	1.6	1.1	19.0	17.6	28.7	30.2	100.0
Nontraded	. 9	1.2	. 9	2.7	1.7	55.9	36.8	100.0
Failure	2.9	2.8	2.6	13.4	6.2	72.1	. 0	100.0
Total	2.2	2.2	1.9	9.8	4.5	57.0	22.5	100.0
Stationary	1.9	2.0	1.6	8.9	3.9	54.6	27.2	100.0
Stationary, failure adj.	. 9	. 9	. 8	4.1	1.8	25.4	66.1	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (1\% random sample), male workers nationwide, 25 to 64 years old; and PME 1996-1997. UN Comtrade 1996-97 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (80.7\% of non-formal PME workers are in non-formal work status after the 1996-97 transition, replacing the zero from RAIS).

Table 60: Year-over-Year CNAE Trade Sector Transitions and Failed Acces-
Sions, 1996-97

From:	$\begin{array}{r} \text { To: } \\ \text { (in \%) } \end{array}$	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
		1st	2nd	3rd	4th	5th			
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{\text {a }}$									
1st quintile		10.5	2.6	3.0	3.8	11.7	25.7	42.7	100.0
2nd quintile		5.5	5.8	4.5	7.3	4.0	30.0	42.8	100.0
3rd quintile		1.6	6.1	6.3	6.7	3.2	26.0	50.0	100.0
4th quintile		1.7	4.2	2.4	9.9	11.0	25.1	45.7	100.0
5th quintile		3.0	1.0	. 8	1.9	32.8	18.0	42.4	100.0
Nontraded		1.6	1.2	. 7	1.5	2.6	48.8	43.6	100.0
Failure		4.3	2.9	2.9	4.5	15.6	69.7	. 0	100.0
Total		3.1	2.2	1.9	3.3	10.7	52.2	26.5	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 61: Year-over-Year Trade Sector Transitions, 1986-2001

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
To:	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	21.0	10.6	4.4	8.9	4.1	51.0	100.0
2nd quintile	9.6	21.1	4.8	6.8	4.8	52.9	100.0
3 rd quintile	4.9	5.4	21.8	10.9	4.3	52.8	100.0
4th quintile	3.1	3.1	4.0	39.3	8.2	42.3	100.0
5th quintile	2.8	3.9	2.5	16.1	28.0	46.8	100.0
Nontraded	2.0	2.2	2.0	4.8	2.7	86.3	100.0
Total	3.3	3.6	3.2	9.3	4.9	75.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-2001 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1986-2001 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 62: Year-over-Year CNAE Trade Sector Transitions, 1986-98

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
To:	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	16.8	5.1	5.6	6.7	12.6	53.2	100.0
2nd quintile	6.2	13.1	9.2	9.1	7.1	55.2	100.0
3 rd quintile	4.7	10.4	15.0	10.2	8.7	51.0	100.0
4th quintile	4.4	5.3	6.6	18.4	15.1	50.1	100.0
5 th quintile	4.7	2.6	3.0	8.6	42.4	38.7	100.0
Nontraded	2.5	2.1	1.9	3.5	4.9	85.0	100.0
Total	3.7	3.3	3.4	5.6	10.1	73.8	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-98 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1986-98 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 63: Year-over-Year Trade Sector Transitions, 1990-91

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	19.6	14.7	7.7	4.9	4.5	48.5	100.0
2nd quintile	13.3	17.5	4.9	4.5	4.7	55.1	100.0
3 rd quintile	5.0	4.2	23.1	7.1	4.7	55.9	100.0
4th quintile	7.0	4.2	8.4	14.9	6.4	59.1	100.0
5th quintile	2.7	4.6	2.3	5.7	28.3	56.4	100.0
Nontraded	2.4	2.8	2.3	3.6	3.2	85.7	100.0
Total	4.3	4.4	4.0	4.7	5.0	77.5	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 64: Year-over-Year CNAE Trade Sector Transitions, 1990-91

	Traded: Comp. adv. quintile ${ }^{a}$								Nontraded

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 65: Year-over-Year Trade Sector Transitions, 1996-97

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
To:	1st	2nd	3 rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	32.8	7.1	2.0	6.6	3.4	48.1	100.0
2nd quintile	3.4	24.7	4.9	7.7	4.0	55.2	100.0
3 rd quintile	2.2	4.0	25.5	7.3	4.0	56.9	100.0
4th quintile	1.8	2.2	2.0	51.9	9.1	32.9	100.0
5th quintile	2.5	2.3	1.5	27.2	25.3	41.2	100.0
Nontraded	1.5	1.9	1.4	4.2	2.6	88.4	100.0
Total	2.8	2.9	2.3	11.8	5.3	74.9	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

Table 66: Year-over-Year CNAE Trade Sector Transitions, 1996-97

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
To:	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{\text {a }}$							
1st quintile	14.5	6.3	5.5	7.9	6.8	59.0	100.0
2nd quintile	7.7	8.8	6.6	9.9	4.8	62.1	100.0
3 rd quintile	4.1	8.1	11.4	10.9	5.6	60.0	100.0
4th quintile	3.6	9.6	5.8	12.9	6.6	61.5	100.0
5th quintile	5.4	3.9	2.6	6.0	31.3	50.9	100.0
Nontraded	3.8	3.1	2.4	4.0	3.5	83.2	100.0
Total	4.6	4.2	3.5	5.4	5.9	76.4	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (1\% random sample), male workers nationwide, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in Brazil within one year after separation, based on last employment of year (highest paying job if many).

6.2 Reallocation transitions for prime-age male workers in metropolitan areas

Table 67: Four-Year Sector Transitions and Failed Re-Accessions

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	21.0	10.8	3.6	8.3	2.2	43.1	11.0	100.0
2nd quintile	9.1	24.1	3.8	5.9	2.8	43.9	10.4	100.0
3 rd quintile	7.3	6.1	13.8	12.4	2.5	45.0	12.8	100.0
4 th quintile	7.9	7.8	10.9	15.5	3.1	43.1	11.7	100.0
5 th quintile	4.5	6.4	3.3	7.2	19.2	47.2	12.2	100.0
Nontraded	3.8	4.1	2.4	4.0	2.3	68.6	14.9	100.0
Failure	4.4	4.0	3.8	9.8	6.5	71.5	. 0	100.0
Total	6.1	6.6	4.0	6.6	3.5	61.4	11.9	100.0
Stationary	5.5	6.1	3.7	6.2	3.5	62.9	12.2	100.0
Stationary, failure adj.	4.6	5.0	3.0	5.1	2.8	51.8	27.7	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986, 1990, 1994 and 1998 (5% random sample), male workers in metropolitan area, 25 to 64 years old; and PME 1986-1999. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies refer to employments in same metropolitan area four years after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector employment anywhere in Brazil after four years, excluding workers with retirement or death, or age 65 or above in past job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of 4-year failure-to-failure transitions from $P M E$ (63.6% of non-formal $P M E$ workers are in non-formal work status after three annual transitions, replacing the zero from RAIS).

Table 68: Continuations and Year-over-Year Transitions, 1986-2001

	To:	Primary	Manuf.	Comm.	Services	Other	Total
(in \%)	(1)	(2)	(3)	(4)	(5)	(6)	
From:	80.2	6.0	2.0	6.5	5.2	100.0	
Primary	.4	89.3	2.2	5.0	3.1	100.0	
Manufacturing	.3	5.8	81.4	8.0	4.5	100.0	
Commerce	.3	3.7	2.2	88.5	5.3	100.0	
Services	.4	2.7	1.6	6.3	89.0	100.0	
Other	1.6	27.4	9.6	32.7	28.7	100.0	
Total							

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. Frequencies include continuations at same firm and job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 69: Year-over-Year Transitions, 1986-2001

	To: (in \%)	Primary	Manuf.	Comm.	Services	Other	Total
From:	(1)	(2)	(3)	(4)	(5)	(6)	
Primary	31.2	16.7	7.3	21.7	23.0	100.0	
Manufacturing	1.7	42.4	10.8	27.7	17.4	100.0	
Commerce	1.4	17.2	34.8	29.9	16.8	100.0	
Services	1.3	15.7	10.8	50.2	21.9	100.0	
Other	1.9	12.8	8.2	28.5	48.6	100.0	
Total	2.2	22.0	13.0	35.6	27.2	100.0	

Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 70: Continuations and Year-over-Year Transitions Across Firms and SecTORS, 1990-2001

To:	Continuations or Transitions			Transitions		
	Nonexp.	Exporter	Total	Nonexp.	Exporter	Total
From: (in millions)	(1)	(2)	(3)	(4)	(5)	(6)
	Transitions Within or Across Sectors					
Nonexporter	18.245	1.217	19.462	1.455	. 165	1.620
Exporter	1.073	5.218	6.291	. 247	. 095	. 342
Transitions Within Sector only						
Nonexporter	13.130	. 743	13.872	. 345	. 026	. 371
Exporter	. 564	4.239	4.803	. 037	. 036	. 073

Source: RAIS 1990-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old; SECEX 19902001. Right panels present job accessions in same metropolitan area within one year after separation; left panels include continuations at same firm. Employments are last employments of year (highest paying job if many), scaled (by 20) to population equivalents.

Table 71: Year-over-Year Transitions Across Firms and Sectors, 1990-91 and 1996-97

| | Transitions 1990-91 | | | | Transitions 1996-97 | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| To: | Nonexp. | Exporter | Total | | Nonexp. | Exporter | Total |
| (in millions) | (1) | (2) | (3) | | (4) | (5) | (6) |
| Nonexporter | .123 | .014 | .137 | | .137 | .014 | .151 |
| Exporter | .024 | .008 | .031 | | .023 | .008 | .031 |

Source: RAIS 1990-91 and 1996-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old; SECEX 1990-91 and 1996-97. Job accessions in same metropolitan area within one year after separation. Employments are last employments of year (highest paying job if many), scaled (by 20) to population equivalents.

Table 72: Year-over-Year Trade Sector Transitions and Failed Accessions, 1986-2001

From: $\quad \begin{array}{r}\text { To: } \\ \text { (in \%) }\end{array}$	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{\text {a }}$								
1st quintile	13.4	10.5	3.4	6.5	2.8	46.0	17.3	100.0
2nd quintile	8.7	15.5	3.9	5.7	3.3	45.3	17.6	100.0
3 rd quintile	5.5	7.1	12.2	7.0	3.5	47.4	17.3	100.0
4th quintile	4.9	4.9	4.0	16.4	4.8	44.3	20.9	100.0
5 th quintile	3.4	4.7	2.4	8.7	18.2	44.1	18.5	100.0
Nontraded	2.6	2.9	1.9	3.3	2.1	65.0	22.2	100.0
Failure	3.4	3.9	2.9	8.1	4.4	77.4	. 0	100.0
Total	3.8	4.5	2.7	5.3	3.3	62.1	18.3	100.0
Stationary	3.6	4.2	2.6	5.3	3.3	63.2	17.9	100
Stationary, failure adj.	2.2	2.5	1.6	3.2	2.0	38.6	49.9	100

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old; and PME 19861999. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (78.1% of non-formal PME workers are in non-formal work status after an annual transition, replacing the zero from RAIS).

Table 73: Year-over-Year CNAE Trade Sector Transitions and Failed AccesSIONS, 1986-98

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
To:	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	11.4	5.5	5.6	5.0	4.5	47.7	20.3	100.0
2nd quintile	5.2	10.2	7.9	6.8	4.4	46.1	19.4	100.0
3 rd quintile	4.4	7.5	10.1	7.5	5.3	46.5	18.7	100.0
4th quintile	4.6	5.8	6.7	9.3	6.0	45.9	21.8	100.0
5th quintile	3.5	3.1	4.8	5.6	19.0	39.9	24.1	100.0
Nontraded	2.8	2.5	2.6	3.0	2.8	62.0	24.3	100.0
Failure	3.9	3.3	3.5	5.6	8.3	75.4	. 0	100.0
	3.6	3.6	3.8	4.3	4.9	59.7	20.1	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1986 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Transition frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 74: Year-over-Year Trade Sector Transitions and Failed Accessions, 1990-91

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	11.4	12.7	4.1	4.2	3.1	43.4	21.0	100.0
2nd quintile	10.9	12.4	4.6	3.9	2.6	46.4	19.2	100.0
3 rd quintile	4.5	4.8	8.8	5.6	3.7	52.9	19.5	100.0
4th quintile	10.0	5.7	9.7	6.7	2.3	47.7	18.0	100.0
5 th quintile	4.5	6.1	3.3	4.5	12.0	49.9	19.8	100.0
Nontraded	3.7	3.3	2.6	2.5	2.3	64.2	21.5	100.0
Failure	4.0	5.1	3.3	3.8	5.0	78.9	. 0	100.0
Total	5.3	5.2	3.7	3.3	3.0	61.1	18.4	100.0
Stationary	4.7	4.7	3.3	3.2	3.1	63.4	17.5	100.0
Stationary, failure adj.	2.8	2.8	2.0	1.9	1.9	38.0	50.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (5\% random sample), male workers in metropolitan area, 25 to 64 years old; and PME 19901991. UN Comtrade 1990-91 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (79.3\% of non-formal PME workers are in non-formal work status after the 1990-91 transition, replacing the zero from $R A I S$).

Table 75: Year-over-Year CNAE Trade Sector Transitions and Failed AccesSIONS, 1990-91

	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
To:	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	8.8	3.8	5.6	7.0	3.6	51.0	20.1	100.0
2nd quintile	5.3	8.4	8.2	8.7	2.6	46.6	20.3	100.0
3 rd quintile	5.4	7.0	10.2	6.8	5.0	44.3	21.2	100.0
4th quintile	5.1	4.9	7.6	7.4	3.5	43.2	28.3	100.0
5 th quintile	3.7	2.9	6.1	6.9	14.4	36.3	29.6	100.0
Nontraded	2.9	2.7	3.0	2.6	2.3	62.0	24.4	100.0
Failure	3.5	3.5	3.4	5.9	8.7	75.1	. 0	100.0
Total	3.8	3.6	4.3	4.3	4.1	59.0	20.9	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 76: Year-over-Year Trade Sector Transitions and Failed Accessions, 1996-97

From: \quad To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{\text {a }}$								
1st quintile	13.0	7.7	2.2	5.8	1.5	49.0	20.8	100.0
2nd quintile	3.1	16.5	3.0	5.0	3.0	46.1	23.3	100.0
3 rd quintile	2.3	2.8	12.3	4.3	1.8	51.6	25.1	100.0
4th quintile	2.8	2.5	2.5	21.8	3.3	40.9	26.1	100.0
5 th quintile	2.4	3.1	1.7	9.4	17.6	46.9	18.7	100.0
Nontraded	2.2	2.4	1.7	3.1	2.2	64.1	24.3	100.0
Failure	3.3	3.6	2.3	8.6	4.6	77.6	. 0	100.0
Total	2.9	3.5	2.2	5.4	3.2	62.1	20.7	100.0
Stationary	2.8	3.3	2.2	5.6	3.2	63.3	19.8	100.0
Stationary, failure adj.	1.5	1.8	1.2	3.0	1.7	34.5	56.2	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old; and PME 19961997. UN Comtrade 1996-97 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job. The stationary distribution is the normalized left eigenvector of the RAIS transition matrix associated with the eigenvalue of one; the failure adjusted stationary distribution is the eigenvector based on an estimate of annual failure-to-failure transitions from PME (80.7% of non-formal PME workers are in non-formal work status after the 1996-97 transition, replacing the zero from RAIS).

Table 77: Year-over-Year CNAE Trade Sector Transitions and Failed AccesSIONS, 1996-97

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Failure	Total
	1st	2nd	3rd	4th	5th			
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Traded: Comp. adv. ${ }^{a}$								
1st quintile	11.6	5.1	4.4	6.4	5.5	47.5	19.6	100.0
2nd quintile	5.8	6.6	4.9	7.4	3.6	46.4	25.3	100.0
3 rd quintile	3.0	6.2	8.4	8.1	4.1	44.3	25.9	100.0
4th quintile	2.6	7.1	4.0	9.5	4.8	45.3	26.7	100.0
5th quintile	3.6	2.6	1.7	4.1	21.3	34.3	32.4	100.0
Nontraded	2.6	2.2	1.7	2.8	2.5	58.5	29.8	100.0
Failure	3.8	2.4	3.4	5.0	9.9	75.5	. 0	100.0
Total	3.4	2.9	2.6	4.0	5.0	57.3	24.9	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector accessions anywhere in Brazil within a year, excluding workers with prior retirement or death, or age 65 or above in earlier job.

Table 78: Year-over-Year Trade Sector Transitions, 1986-2001

To.	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
To:	1st	2nd	3 rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	16.2	12.7	4.2	7.9	3.4	55.6	100.0
2nd quintile	10.6	18.8	4.7	7.0	4.0	55.0	100.0
3 rd quintile	6.6	8.6	14.8	8.4	4.2	57.3	100.0
4th quintile	6.1	6.1	5.0	20.7	6.1	56.0	100.0
5 th quintile	4.1	5.8	3.0	10.6	22.4	54.1	100.0
Nontraded	3.4	3.8	2.4	4.2	2.7	83.6	100.0
Total	5.0	5.8	3.4	6.2	4.0	75.7	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-2001 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1986-2001 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 79: Year-over-Year CNAE Trade Sector Transitions, 1986-98

	Traded: Comp. adv. quintile ${ }^{a}$								Nontraded

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1986-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1986-98 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 80: Year-over-Year Trade Sector Transitions, 1990-91

	Traded: Comp. adv. quintile ${ }^{\text {a }}$								Nontraded

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 81: Year-over-Year CNAE Trade Sector Transitions, 1990-91

From: \quad To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
	1st	2nd	3rd	4th	5th		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	11.0	4.8	7.1	8.8	4.5	63.8	100.0
2nd quintile	6.6	10.6	10.2	10.9	3.3	58.4	100.0
3 rd quintile	6.8	8.7	13.0	8.7	6.4	56.4	100.0
4th quintile	7.1	6.8	10.7	10.1	4.7	60.5	100.0
5th quintile	5.3	4.1	8.6	9.8	20.3	51.9	100.0
Nontraded	3.9	3.6	4.0	3.4	3.0	82.1	100.0
Total	5.0	4.7	5.9	5.4	4.4	74.6	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1990-91 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1990-91 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 82: Year-over-Year Trade Sector Transitions, 1996-97

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	16.5	9.7	2.8	7.3	1.9	61.8	100.0
2nd quintile	4.1	21.5	3.9	6.6	3.9	60.0	100.0
3 rd quintile	3.0	3.7	16.7	5.7	2.3	68.7	100.0
4th quintile	3.8	3.4	3.4	29.7	4.3	55.4	100.0
5 th quintile	3.0	3.9	2.1	11.6	21.7	57.7	100.0
Nontraded	2.9	3.2	2.3	4.1	2.9	84.6	100.0
Total	3.7	4.6	2.9	6.5	3.9	78.4	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at two-digit sector level (Subsector IBGE). Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

Table 83: Year-over-Year CNAE Trade Sector Transitions, 1996-97

To:	Traded: Comp. adv. quintile ${ }^{a}$					Nontraded	Total
	1st	2nd	3rd	4th	5th		
From: (in \%)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Traded: Comp. adv. ${ }^{a}$							
1st quintile	14.5	6.3	5.5	7.9	6.8	59.0	100.0
2nd quintile	7.7	8.8	6.6	9.9	4.8	62.1	100.0
3 rd quintile	4.1	8.1	11.4	10.9	5.6	60.0	100.0
4th quintile	3.6	9.6	5.8	12.9	6.6	61.5	100.0
5 th quintile	5.4	3.9	2.6	6.0	31.3	50.9	100.0
Nontraded	3.8	3.1	2.4	4.0	3.5	83.2	100.0
Total	4.6	4.2	3.5	5.4	5.9	76.4	100.0

${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
Source: RAIS 1996-97 (5\% random sample), male workers in metropolitan area, 25 to 64 years old. UN Comtrade 1996-97 for Balassa comparative advantage; defined at plant's four-digit CNAE sector affiliation in 1995. Frequencies are job accessions in same metropolitan area within one year after separation, based on last employment of year (highest paying job if many).

6.3 Reallocation transitions for prime-age male workers in São Paulo state

Table 84: Year-over-Year Sector Transitions of Male Workers Displaced From Traded Goods Sectors in 1990 or 1996

$\begin{array}{cc}\text { (in \%) } & \\ \text { Fo: }\end{array}$	Manufacturing Comparative advantage quintile ${ }^{a}$					Agric.	Comm.	Cnstr.	Srves.
	1st	2nd	3rd	4th	5th				
From:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Transitions 1990-91									
Manufacturing ${ }^{a}$									
1st quintile	22.67	9.65	8.06	6.98	1.91	1.93	6.36	7.55	34.90
2nd quintile	4.12	30.19	7.97	8.02	2.63	1.36	6.14	7.41	32.15
3 rd quintile	3.17	6.89	41.91	5.56	2.21	1.05	4.09	6.02	29.09
4th quintile	3.64	7.25	6.99	36.95	2.18	2.68	4.78	5.71	29.83
5th quintile	2.72	6.72	6.88	6.86	31.00	. 91	3.93	10.54	30.44
Agriculture	2.72	3.01	3.36	9.08	1.09	50.51	. 77	6.93	22.54
Total (all sectors)	3.23	6.94	8.41	7.42	2.57	2.73	8.19	16.46	44.05
Manufacturing ${ }^{\text {a }}$ (Transitions 1996-97									
Manufacturing ${ }^{a}$									
1st quintile	44.73	7.57	6.04	7.26	1.77	6.26	12.65	6.67	7.04
2nd quintile	3.57	49.64	7.38	7.89	1.82	2.92	14.41	5.78	6.60
3 rd quintile	2.80	8.10	50.30	8.02	2.09	2.90	10.97	6.44	8.36
4th quintile	1.86	5.68	4.14	53.04	1.67	17.30	7.86	3.69	4.76
5 th quintile	4.60	6.64	6.25	9.91	46.34	3.66	9.16	7.04	6.41
Agriculture	1.46	5.77	4.17	7.04	2.19	65.33	4.85	5.15	4.05
Total (all sectors)	4.59	10.84	9.28	12.62	3.24	7.56	24.92	16.70	10.25

[^8]Source: Displaced male workers in RAIS (São Paulo state) with employment on December 31st 1990 or 1996. Percentages count only displaced workers who are reabsorbed by December 31st 1991 or 1997.

6.4 Labor market performance

Table 85: Labor Market Performance at the Annual Horizon

	1986	1990	1992	1994	1998
Failed Reallocations (Shares)					
All workers	$\underset{(.002)^{* * *}}{.248}$	$\begin{gathered} .323 \\ (.002)^{* * *} \end{gathered}$	$\underset{(.002)^{* * *}}{.410}$	$\begin{gathered} .369 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .459 \\ (.002)^{* * *} \end{gathered}$
Young workers	$\begin{aligned} & .235 \\ & (.009)^{* * *} \end{aligned}$	$\begin{gathered} .303 \\ (.010)^{* * *} \end{gathered}$	$\underset{(.011)^{* * *}}{.354}$	$\stackrel{.326}{(.011)^{* * *}}$	$\begin{aligned} & .366 \\ & (.010)^{* * *} \end{aligned}$
Primary-schooled workers	$\underset{(.002)^{* * *}}{.244}$	$\begin{gathered} .322 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .414 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .372 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .471 \\ (.003)^{* * *} \end{gathered}$
College educated workers	$\underset{(.009)^{* * *}}{.258}$	$\begin{gathered} .315 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} .350 \\ (.010)^{* * *} \end{gathered}$	$\stackrel{.337}{(.010)^{* * *}}$	$\begin{gathered} .387 \\ (.009)^{* * *} \end{gathered}$
Duration of Successful Reallocations within a Year (in months)					
All workers	$\underset{(.016)^{* * *}}{2.776}$	$\begin{aligned} & 3.808 \\ & (.019)^{* * *} \end{aligned}$	$\begin{aligned} & 4.206 \\ & (.023)^{* * *} \end{aligned}$	$\stackrel{4.108}{(.021)^{* * *}}$	$\underset{(.022)^{* * *}}{4.220}$
Young workers	$\underset{(.074)^{* * *}}{2.226}$	$\begin{gathered} 3.135 \\ (.087)^{* * *} \end{gathered}$	$\begin{gathered} 3.460 \\ (.105)^{* * *} \end{gathered}$	$\begin{aligned} & 3.262 \\ & (.098)^{* * *} \end{aligned}$	$\begin{aligned} & 3.367 \\ & (.091)^{* * *} \end{aligned}$
Primary-schooled workers	$\begin{aligned} & 2.865 \\ & (.017)^{* * *} \end{aligned}$	$\begin{gathered} 3.946 \\ (.020)^{* * *} \end{gathered}$	$\begin{gathered} 4.384 \\ (.025)^{* * *} \end{gathered}$	$\stackrel{4.306}{(.023)^{* * *}}$	$\begin{gathered} 4.483 \\ (.026)^{* * *} \end{gathered}$
College educated workers	$\begin{gathered} 1.691 \\ (.066)^{* * *} \end{gathered}$	$\begin{aligned} & 2.429 \\ & (.078)^{* * *} \end{aligned}$	$\begin{aligned} & 2.423 \\ & (.084)^{* * *} \end{aligned}$	$\begin{aligned} & 2.250 \\ & (.081)^{* * *} \end{aligned}$	$\begin{aligned} & 2.282 \\ & (.078)^{* * *} \end{aligned}$
Newly displaced workers (in millions)	4.902	5.123	4.265	4.476	4.743
Wage (multiples of minimum wage)	3.65	4.90	4.41	4.93	5.13

Source: RAIS 1986-1999 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formalsector job; not rehired into a formal-sector job within 12 months (upper panel) or rehired into a formal-sector job within 12 months (lower panel). Young workers have potential labor market experience of 10 years or less, primaryschooled workers have some primary schooling, college educated workers have some college education.

Table 86: Labor Market Performance and Economic Outcomes

	1986	1990	1992	1994	1998
	FAILED REALLOCATIONS WITHIN A YEAR				
Mean failure rate (share of displaced)	.248	.323	.410	.369	.459
young workers	.235	.303	.354	.326	.366
college-educated workers	.258	.315	.350	.337	.387
Change over 1990		.000	.086	.046	.136
Idle labor (foregone share of GDP)	.000	.014	.006	.024	
DURATIONS OF SUCCESSFUL REALLOCATIONS					
Mean duration (in months)	2.776	3.808	4.206	4.108	4.220
young workers	2.226	3.135	3.460	3.262	3.367
college-educated workers	1.691	2.429	2.423	2.250	2.282
Change over 1990 (one twelfth)		.000	.033	.025	.034
Idle labor (foregone share of GDP)		.000	.005	.003	.006

Sources: RAIS 1986-1999 (1\% random sample), male workers nationwide, 25 to 64 years old, displaced from a formal-sector job; not rehired into a formal-sector job within 12 months (upper panel) or rehired into a formal-sector job within 12 months (lower panel). PME 1986-1999, share of idle workers (unemployed or withdrawn from labor force), and Banco Central do Brasil, GDP. We define young workers to have ten or less years of potential labor force experience, and college-educated workers to have some college education. Foregone GDP is the unrealized wage bill, measured as the product of the observed change over 1990 times the number of newly displaced workers during the year times their wage upon displacement. Idle labor is defined as the share of displaced workers with transitions to unemployment or out of the labor force.

7 Regression Results

Table 87: Conditional Logit Estimates of Separations and Accessions, 1990-98

	Separations			Accessions		
	nationwide		metro IBGE	nationwide		metro
	IBGE	CNAE		IBGE	CNAE	IBGE
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{array}{r} .139 \\ (.036)^{* * *} \end{array}$	$\begin{gathered} .0004 \\ (.014) \end{gathered}$	$\begin{gathered} .085 \\ (.057) \end{gathered}$	$\begin{aligned} & -.059 \\ & (.032)^{*} \end{aligned}$	$\begin{gathered} .007 \\ (.014) \end{gathered}$	$\begin{gathered} .081 \\ (.057) \end{gathered}$
Comp. Adv. \times Prd. Trff.	$\begin{aligned} & .197 \\ & (.200) \end{aligned}$	$\begin{array}{r} .328 \\ (.087)^{* * *} \end{array}$	$\begin{aligned} & .463 \\ & (.315) \end{aligned}$	$\begin{gathered} .290 \\ (.162)^{*} \end{gathered}$	$\begin{array}{r} -.019 \\ (.083) \end{array}$	$\begin{array}{r} -.021 \\ (.306) \end{array}$
Exporter Status	$\underset{(.048)^{* * *}}{.481}$	$\begin{array}{r} .054)^{* * *} \end{array}$	$\begin{array}{r} .435 \\ (.076)^{* * *} \end{array}$	$\begin{array}{r} -.360 \\ (.045)^{* * *} \end{array}$	$\begin{array}{r} -.375 \\ (.051)^{* * *} \end{array}$	$\begin{array}{r} -.415 \\ (.080)^{* * *} \end{array}$
Exporter \times Prd. Trff.	$\begin{gathered} -1.070 \\ (.213)^{* * *} \end{gathered}$	$\begin{array}{r} -.910 \\ (.244)^{* * *} \end{array}$	$\begin{gathered} -1.009 \\ (.322)^{* * *} \end{gathered}$	$\begin{array}{r} -.424 \\ (.195)^{* *} \end{array}$	$\begin{gathered} -.322 \\ (.219) \end{gathered}$	$\begin{array}{r} -.290 \\ (.336) \end{array}$
Product Market Tariff	$\begin{array}{r} -.427 \\ (.532) \end{array}$	$\begin{gathered} -.029 \\ (.308) \end{gathered}$	$\begin{gathered} -.023 \\ (.810) \end{gathered}$	$\begin{array}{r} .966 \\ (.474)^{* *} \end{array}$	$\begin{array}{r} .519 \\ (.260)^{* *} \end{array}$	$\begin{array}{r} 1.183 \\ (.820) \end{array}$
Intm. Input Tariff	$\begin{gathered} 3.253 \\ (.768)^{* * *} \end{gathered}$	$\begin{gathered} 1.070 \\ (.575)^{*} \end{gathered}$	$\begin{gathered} 1.597 \\ (1.172) \end{gathered}$	$\frac{-2.490}{(.672)^{* * *}}$	$\begin{aligned} & -1.908 \\ & (.482)^{* * *} \end{aligned}$	$\begin{array}{r} -1.448 \\ (1.177) \end{array}$
Import Penetration	$\begin{gathered} 1.091 \\ (.393)^{* * *} \end{gathered}$	$\begin{array}{r} .211 \\ (.336) \end{array}$	$\begin{gathered} -.321 \\ (.570) \end{gathered}$	$\begin{array}{r} .033 \\ (.364) \end{array}$	$\begin{aligned} & .254 \\ & (.307) \end{aligned}$	$\begin{gathered} -1.588 \\ (.615)^{* * *} \end{gathered}$
Obs.	145,417	124,994	43,129	112,978	96,686	32,221
Pseudo R^{2}	. 151	. 162	. 079	. 041	. 053	. 061

Source: RAIS 1990-98, male workers nationwide (1% random sample) or in metropolitan areas (5\% random sample), 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE or CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

7.1 Work status transitions of prime-age male workers in metropolitan areas

Table 88: Work Status Transitions from Formal Employment

Covariate (in t) (in $t+1)$	From formal manufacturing employment in t to:			
	Informal	Self employed	Unemployed	Withdrawn
	(1)	(2)	(3)	(4)
	No sector-fixed effects			
Product Market Tariff	$\begin{aligned} & -2.842 \\ & (.799)^{* * *} \end{aligned}$	$\begin{aligned} & -4.016 \\ & (.803)^{* * *} \end{aligned}$	$\begin{aligned} & -2.080 \\ & (.906)^{* *} \end{aligned}$	$\begin{aligned} & -.129 \\ & (.850) \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & 1.823 \\ & (.974)^{*} \end{aligned}$	$\begin{aligned} & 4.250 \\ & (.973)^{* * *} \end{aligned}$	$\stackrel{1.849}{(1.102)^{*}}$	$\begin{aligned} & 1.089 \\ & (1.037) \end{aligned}$
Formal empl. for four months	$\begin{aligned} & -1.679 \\ & (.072)^{* * *} \end{aligned}$	$\begin{aligned} & -1.307 \\ & (.078)^{* * *} \end{aligned}$	$\begin{gathered} -.736 \\ (.103)^{* * *} \end{gathered}$	$\begin{aligned} & -1.032 \\ & (.090)^{* * *} \end{aligned}$
Pot. labor force experience	$\frac{-.039}{(.014)^{* * *}}$	$\begin{gathered} .038 \\ (.016)^{* *} \end{gathered}$	$\begin{gathered} -.009 \\ (.018) \end{gathered}$	$\stackrel{.031}{(.015)^{* *}}$
Sqrd. potential lab. force exp.	$\xrightarrow[(.0002)^{* *}]{.0006}$	$\stackrel{-.0008}{(.0003)^{* * *}}$	$\begin{gathered} -.0004 \\ (.0003) \end{gathered}$	$\underset{(.0002)^{* * *}}{.0006}$
Some High School	$\begin{aligned} & -.349 \\ & (.079)^{* * *} \end{aligned}$	$\frac{-.370}{(.077)^{* * *}}$	$\frac{-.271}{(.085)^{* * *}}$	$\stackrel{.217}{(.087)^{* *}}$
Some College	$\begin{gathered} -.464 \\ (.205)^{* *} \end{gathered}$	$\stackrel{-.639}{(.228)^{* * *}}$	$\frac{-.651}{(.231)^{* * *}}$	$\stackrel{.449}{(.232)^{*}}$
College Degree	$\frac{-.724}{(.146)^{* * *}}$	$\frac{-.520}{(.140)^{* * *}}$	$\begin{gathered} -1.096 \\ (.183)^{* * *} \end{gathered}$	$\begin{aligned} & -.172 \\ & (.181) \end{aligned}$
Obs.	25,520			
Pseudo R^{2}	. 06			
	Sector-fixed effects			
Product Market Tariff	$\begin{gathered} -.319 \\ (1.463) \end{gathered}$	$\begin{array}{r} -1.387 \\ (1.466) \end{array}$	$\begin{aligned} & -2.019 \\ & (1.653) \end{aligned}$	$\begin{gathered} -1.960 \\ (1.569) \end{gathered}$
Intm. Input Tariff	$\begin{gathered} -.187 \\ (1.540) \end{gathered}$	$\underset{(1.538)^{*}}{2.699}$	$\begin{aligned} & 1.538 \\ & (1.720) \end{aligned}$	$\begin{gathered} 2.407 \\ (1.626) \end{gathered}$
Formal empl. for four months	$\begin{aligned} & -1.626 \\ & (.072)^{* * *} \end{aligned}$	$\begin{aligned} & -1.282 \\ & (.079)^{* * *} \end{aligned}$	$\frac{-.737}{(.104)^{* * *}}$	$\begin{aligned} & -1.051 \\ & (.091)^{* * *} \end{aligned}$
Pot. labor force experience	$\stackrel{-.035}{(.014)^{* *}}$	$\begin{gathered} .039 \\ (.016)^{* *} \end{gathered}$	$\begin{aligned} & -.008 \\ & (.018) \end{aligned}$	$\begin{gathered} .031 \\ (.015)^{* *} \end{gathered}$
Sqrd. potential lab. force exp.	$\underset{(.0002)^{* *}}{.0005}$	$\begin{aligned} & -.0008 \\ & (.0003)^{* * *} \end{aligned}$	$\begin{gathered} -.0004 \\ (.0003) \end{gathered}$	$\xrightarrow[(.0002)^{* * *}]{.0006}$
Some High School	$\begin{aligned} & -.299 \\ & (.079)^{* * *} \end{aligned}$	$\frac{-.361}{(.078)^{* * *}}$	$\stackrel{-.266}{(.086)^{* * *}}$	$\xrightarrow[(.088)^{* *}]{.224}$
Some College	$\begin{gathered} -.399 \\ (.206)^{*} \end{gathered}$	$\stackrel{-.628}{(.229)^{* * *}}$	$\stackrel{-.626}{(.233)^{* * *}}$	$\underset{(.233)^{* *}}{.472}$
College Degree	$\stackrel{-.635}{(.148)^{* * *}}$	$\stackrel{-.509}{(.141)^{* * *}}$	$\begin{gathered} -1.086 \\ (.185)^{* * *} \end{gathered}$	$\begin{aligned} & -.157 \\ & (.182) \end{aligned}$
Obs.	25,520			
Pseudo R^{2}	. 06			

Source: PME 1986-99, male household members in metropolitan area, 25 years or older, with initial formal manufacturing employment (annual transitions between 4th and 8th interview). Reference category: continuation in formal work status. Tariffs at subsector IBGE level. Controlling for year and city effects in both panels, for sector effects in lower panel. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 89: Work Status Transitions from Informal Employment

Covariate (in t) (in $t+1)$	From informal manufacturing employment in t to:			
	Formal	Self employed	Unemployed	Withdrawn
	(1)	(2)	(3)	(4)
	No sector-fixed effects			
Product Market Tariff	$\underset{(1.331)^{*}}{2.493}$	$\begin{gathered} -1.514 \\ (1.612) \end{gathered}$	$\begin{aligned} & -3.647 \\ & (3.253) \end{aligned}$	$\begin{gathered} 4.164 \\ (2.389)^{*} \end{gathered}$
Intm. Input Tariff	$\begin{gathered} -2.409 \\ (1.611) \end{gathered}$	$\begin{gathered} 4.340 \\ (1.946)^{* *} \end{gathered}$	$\begin{aligned} & 5.127 \\ & (3.823) \end{aligned}$	$\begin{aligned} & -3.532 \\ & (2.793) \end{aligned}$
Informal empl. for four months	$\begin{gathered} -.999 \\ (.113)^{* * *} \end{gathered}$	$(-.844$	$\frac{-.712}{(.252)^{* * *}}$	$\begin{gathered} -1.325 \\ (.227)^{* * *} \end{gathered}$
Pot. labor force experience	$\begin{gathered} .005 \\ (.022) \end{gathered}$	$\underset{(.027)^{*}}{.051}$	$\begin{gathered} -.037 \\ (.049) \end{gathered}$	$\begin{gathered} -.033 \\ (.038) \end{gathered}$
Sqrd. potential lab. force exp.	$\begin{gathered} -.0005 \\ \hline(.0004) \end{gathered}$	$\begin{gathered} -.0009 \\ (.0004)^{* *} \end{gathered}$	$\xrightarrow[(.0009)]{.00007}$	$\begin{gathered} .001 \\ (.0006)^{* *} \end{gathered}$
Some High School	$\begin{gathered} -.136 \\ (.118) \end{gathered}$	$\begin{gathered} .318 \\ (.136)^{* *} \end{gathered}$	$\begin{aligned} & .110 \\ & (.253) \end{aligned}$	$\stackrel{.451}{(.207)^{* *}}$
Some College	$\begin{gathered} -.447 \\ (.299) \end{gathered}$	$\begin{aligned} & -.171 \\ & (.387) \end{aligned}$	$\begin{aligned} & -.881 \\ & (.780) \end{aligned}$	$\begin{aligned} & -.365 \\ & (.761) \end{aligned}$
College Degree	$\stackrel{-.512}{(.245)^{* *}}$	$\begin{aligned} & -.038 \\ & (.288) \end{aligned}$	$\begin{gathered} -.842 \\ (.637) \end{gathered}$	$\begin{gathered} -.082 \\ (.504) \end{gathered}$
	2,374			
Pseudo R^{2}	. 06			
	Sector-fixed effects			
Product Market Tariff	$\begin{gathered} -.040 \\ (2.456) \end{gathered}$	$\begin{gathered} -1.735 \\ (2.832) \end{gathered}$	$\begin{aligned} & -5.193 \\ & (5.511) \end{aligned}$	$\begin{aligned} & 3.303 \\ & (4.296) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} .879 \\ (2.652) \end{gathered}$	$\begin{aligned} & 4.315 \\ & (3.087) \end{aligned}$	$\begin{aligned} & 5.361 \\ & (5.937) \end{aligned}$	$\begin{aligned} & -2.440 \\ & (4.556) \end{aligned}$
Informal empl. for four months	$\begin{gathered} -.992 \\ (.114)^{* * *} \end{gathered}$	$\begin{gathered} -.841 \\ (.136)^{* * *} \end{gathered}$	$\frac{-.710}{(.253)^{* * *}}$	$\begin{aligned} & -1.324 \\ & (.227)^{* * *} \end{aligned}$
Pot. labor force experience	$\stackrel{-.0007}{(.023)}$	$\begin{gathered} .054 \\ (.027)^{* *} \end{gathered}$	$\begin{gathered} -.037 \\ (.050) \end{gathered}$	$\begin{gathered} -.038 \\ (.038) \end{gathered}$
Sqrd. potential lab. force exp.	$\begin{gathered} -.0004 \\ (.0004) \end{gathered}$	$\begin{gathered} -.001 \\ (.0004)^{* *} \end{gathered}$	$\underset{(.0009)}{.0008}$	$\begin{gathered} .001 \\ (.0006)^{* *} \end{gathered}$
Some High School	$\begin{aligned} & -.206 \\ & (.122)^{*} \end{aligned}$	$\begin{gathered} .343 \\ (.141)^{* *} \end{gathered}$	$\begin{aligned} & .027 \\ & (.261) \end{aligned}$	$\begin{gathered} .383 \\ (.214)^{*} \end{gathered}$
Some College	$\begin{aligned} & -.562 \\ & (.304)^{*} \end{aligned}$	$\begin{aligned} & -.173 \\ & (.390) \end{aligned}$	$\begin{gathered} -1.016 \\ (.789) \end{gathered}$	$\begin{aligned} & -.422 \\ & (.767) \end{aligned}$
College Degree	$\stackrel{-.670}{(.253)^{* * *}}$	$\begin{aligned} & .004 \\ & (.297) \end{aligned}$	$\begin{gathered} -.996 \\ (.644) \end{gathered}$	$\begin{aligned} & -.207 \\ & (.512) \end{aligned}$
Obs. Pseudo R^{2}				

Source: PME 1986-99, male household members in metropolitan area, 25 years or older, with initial informal manufacturing employment (annual transitions between 4th and 8th interview). Reference category: continuation in informal status. Tariffs at subsector IBGE level. Controlling for year and city effects in both panels, for sector effects in lower panel. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.
7.2 Separations and accessions, nationwide, Subsector ibge
(BENCHMARK REGRESSIONS)
version 26
7.2 Separations and accessions of prime-age male workers nationwide, subsector IBGE (benchmark regressions)

Table 90: Worker-FiXed Effect Logit Estimation with Interactions

	Separations			Accessions		
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Cmp. Adv.	$\underset{(.024)^{* * *}}{.169}$	$\begin{gathered} .138 \\ (.036)^{* * *} \end{gathered}$	$\begin{gathered} .134 \\ (.043)^{* * *} \end{gathered}$	$\begin{aligned} & \hline-.016 \\ & (.020) \end{aligned}$	$\begin{aligned} & \hline-.058 \\ & (.032)^{*} \end{aligned}$	$\begin{aligned} & -.125 \\ & (.038)^{* * *} \end{aligned}$
Cmp. Adv. \times Prd. Trff.		$\begin{aligned} & .202 \\ & (.200) \end{aligned}$	$\begin{aligned} & .265 \\ & (.238) \end{aligned}$		$\begin{gathered} .289 \\ (.162)^{*} \end{gathered}$	$\frac{.599}{(.203)^{* * *}}$
Exporter Status	$\stackrel{.283}{(.028)^{* * *}}$	$\underset{(.048)^{* * *}}{.481}$	$\stackrel{.478}{(.081)^{* * *}}$	$\begin{gathered} -.439 \\ (.027)^{* * *} \end{gathered}$	$\stackrel{-.359}{(.045)^{* * *}}$	$\stackrel{-.564}{(.077)^{* * *}}$
Exporter \times Prd. Trff.		$\begin{aligned} & -1.071 \\ & (.213)^{* * *} \end{aligned}$	$\begin{gathered} -.950 \\ (.362)^{* * *} \end{gathered}$		$\begin{gathered} -.428 \\ (.195)^{* *} \end{gathered}$	$\begin{aligned} & .351 \\ & (.323) \end{aligned}$
Cmp. Adv. \times Exporter			$\begin{aligned} & .011 \\ & (.051) \end{aligned}$			$\frac{.156}{(.047)^{* * *}}$
$\ldots \times$ Prd. Trff.			$\begin{aligned} & -.141 \\ & (.291) \end{aligned}$			$\stackrel{-.680}{(.250)^{* * *}}$
Product Market Tariff	$\begin{gathered} -.705 \\ (.426)^{*} \end{gathered}$	$\begin{aligned} & -.424 \\ & (.532) \end{aligned}$	$\begin{gathered} -.499 \\ (.548) \end{gathered}$	1.246	$\begin{gathered} .967 \\ (.474)^{* *} \end{gathered}$	$\begin{aligned} & .541 \\ & (.504) \end{aligned}$
Intm. Input Tariff	$\underset{(.678)^{* * *}}{2.880}$	$\begin{gathered} 3.241 \\ (.767)^{* * *} \end{gathered}$	$\begin{gathered} 3.287 \\ (.767)^{* * *} \end{gathered}$	$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\begin{aligned} & -2.486 \\ & (.672)^{* * *} \end{aligned}$	$\begin{aligned} & -2.297 \\ & (.682)^{* * *} \end{aligned}$
Import Penetration	$\begin{gathered} 1.257 \\ (.388)^{* * *} \end{gathered}$	$\begin{gathered} 1.093 \\ (.393)^{* * *} \end{gathered}$	$\begin{gathered} 1.088 \\ (.393)^{* * *} \end{gathered}$	$\begin{aligned} & .198 \\ & (.355) \end{aligned}$	$\begin{aligned} & .035 \\ & (.364) \end{aligned}$	$-(.364)$
Obs.	145,408	145,408	145,408	112,974	112,974	112,974
Pseudo R^{2}	. 150	. 150	. 151	. 041	. 041	. 041

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Columns 1 and 4 repeat column 4 of Tables 92 and 93. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 91: Year Effects in Worker-effect Logit Estimation

	Separations			Accessions		
	(1)	(2)	(3)	(4)	(5)	(6)
Year 1990	$\begin{gathered} -2.061 \\ (.136)^{* * *} \end{gathered}$	$\begin{gathered} -2.126 \\ (.145)^{* * *} \end{gathered}$	$\begin{gathered} -2.131 \\ (.145)^{* * *} \end{gathered}$	$\begin{gathered} 1.032 \\ (.126)^{* * *} \end{gathered}$	$\frac{.963}{(.131)^{* * *}}$	$\frac{.950}{(.131)^{* * *}}$
Year 1991	$\begin{aligned} & -1.325 \\ & (.067)^{* * *} \end{aligned}$	$\begin{aligned} & -1.356 \\ & (.070)^{* * *} \end{aligned}$	$\begin{aligned} & -1.357 \\ & (.070)^{* * *} \end{aligned}$	$\begin{gathered} 1.262 \\ (.062)^{* * *} \end{gathered}$	$\begin{gathered} 1.227 \\ (.064)^{* * *} \end{gathered}$	$\underset{(.064)^{* * *}}{1.218}$
Year 1992	$\begin{gathered} -.970 \\ (.110)^{* * *} \end{gathered}$	$\begin{gathered} -.980 \\ (.110)^{* * *} \end{gathered}$	$\begin{gathered} -.979 \\ (.110)^{* * *} \end{gathered}$	$\begin{gathered} 1.101 \\ (.109)^{* * *} \end{gathered}$	$\begin{gathered} 1.089 \\ (.109)^{* * *} \end{gathered}$	$\begin{aligned} & 1.084 \\ & (.110)^{* * *} \end{aligned}$
Year 1993	$\begin{gathered} -.859 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.860 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.859 \\ (.067)^{* * *} \end{gathered}$	$\underset{(.067)^{* * *}}{1.122}$	$\begin{gathered} 1.125 \\ (.067)^{* * *} \end{gathered}$	$\underset{(.067)^{* * *}}{1.123}$
Year 1994	$\stackrel{-.863}{(.047)^{* * *}}$	$\stackrel{-.858}{(.047)^{* * *}}$	$\stackrel{-.858}{(.047)^{* * *}}$	$\stackrel{.971}{(.047)^{* * *}}$	$\xrightarrow[(.047)^{* * *}]{.983}$	$\stackrel{.987}{(.047)^{* * *}}$
Year 1995	$\stackrel{-.445}{(.085)^{* * *}}$	$\begin{gathered} -.432 \\ (.086)^{* * *} \end{gathered}$	$\begin{gathered} -.433 \\ (.086)^{* * *} \end{gathered}$	$\underset{(.086)^{* * *}}{.697}$	$\underset{(.087)^{* * *}}{.720}$	$\underset{(.087)^{* * *}}{.728}$
Year 1996	$\frac{-.378}{(.050)^{* * *}}$	$\begin{gathered} -.368 \\ (.050)^{* * *} \end{gathered}$	$\begin{gathered} -.368 \\ (.050)^{* * *} \end{gathered}$	$\stackrel{.685}{(.052)^{* * *}}$	$\underset{(.052)^{* * *}}{.699}$	$\underset{(.052)^{* * *}}{.704}$
Year 1997	$\stackrel{-.204}{(.039)^{* * *}}$	$\stackrel{-.194}{(.040)^{* * *}}$	$\stackrel{-.194}{(.040)^{* * *}}$	$\stackrel{.488}{(.041)^{* * *}}$	$\stackrel{.501}{(.041)^{* * *}}$	$\stackrel{.505}{(.041)^{* * *}}$
Trade-related covariates						
2nd order interactions		yes			yes	
3 rd order interactions		yes	yes		yes	yes

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Year effects from conditional logit estimation: column 1 completes column 4 of Table 92, columns 2 and 3 complete columns 2 and 3 of Table 90, column 4 completes column 4 of Table 93, columns 5 and 6 complete columns 5 and 6 of Table 90. Other regressors (not reported): Trade-related, sector (subsector IBGE level), plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 92: Conditional Logit Estimation of Separations

	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\underset{(.021)^{* * *}}{.080}$				$\begin{gathered} .169 \\ (.024)^{* * *} \end{gathered}$	$\begin{gathered} .204 \\ (.023)^{* * *} \end{gathered}$
Exporter Status		$\underset{(.028)^{* * *}}{.289}$			$\stackrel{.283}{(.028)^{* * *}}$	$\begin{gathered} .301 \\ (.028)^{* * *} \end{gathered}$
Product Market Tariff			$\begin{aligned} & -.104 \\ & (.416) \end{aligned}$		$\begin{gathered} -.705 \\ (.426)^{*} \end{gathered}$	$\begin{aligned} & -1.383 \\ & (.410)^{* * *} \end{aligned}$
Intm. Input Tariff			$\underset{(.633)^{* *}}{1.601}$		$\underset{(.678)^{* * *}}{2.880}$	$\begin{aligned} & -1.420 \\ & (.553)^{* *} \end{aligned}$
Import Penetration				$. .774$	$\begin{aligned} & 1.257 \\ & (.388)^{* * *} \end{aligned}$	$\begin{gathered} 6.035 \\ (.349)^{* * *} \end{gathered}$
Sector-level covariates						
Sector real exch. rate	$\begin{aligned} & .733 \\ & (.624) \end{aligned}$	$\begin{array}{r} .843 \\ (.626) \end{array}$	$\begin{gathered} .353 \\ (.640) \end{gathered}$	$\underset{(.631)}{.701}$	$\begin{gathered} -.398 \\ (.645) \end{gathered}$	$\frac{.213}{(.069)^{* * *}}$
FDI Flow (USD billion)	$\begin{gathered} -.025 \\ (.020) \end{gathered}$	$\begin{gathered} -.012 \\ (.020) \end{gathered}$	$\begin{gathered} -.018 \\ (.020) \end{gathered}$	$\begin{gathered} -.014 \\ (.020) \end{gathered}$	$\begin{gathered} -.048 \\ (.020)^{* *} \end{gathered}$	$\begin{gathered} .047 \\ (.019)^{* *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -.371 \\ & (.317) \end{aligned}$	$\begin{aligned} & -.517 \\ & (.316) \end{aligned}$	$\begin{aligned} & -.399 \\ & (.329) \end{aligned}$	$\frac{-.656}{(.325)^{* *}}$	$\begin{aligned} & -.354 \\ & (.343) \end{aligned}$	$\begin{gathered} .929 \\ (.320)^{* * *} \end{gathered}$
Plant-level covariates						
Log Employment	$\stackrel{-.343}{(.011)^{* * *}}$	$\begin{aligned} & -.370 \\ & (.011)^{* * *} \end{aligned}$	$\frac{-.341}{(.011)^{* * *}}$	$\begin{gathered} -.339 \\ (.011)^{* * *} \end{gathered}$	$\frac{-.377}{(.011)^{* * *}}$	$\begin{gathered} -.410 \\ (.011)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{gathered} -.750 \\ (.131)^{* * *} \end{gathered}$	$\begin{gathered} -.658 \\ (.131)^{* * *} \end{gathered}$	$\begin{gathered} -.719 \\ (.131)^{* * *} \end{gathered}$	$\begin{gathered} -.717 \\ (.131)^{* * *} \end{gathered}$	$\begin{gathered} -.663 \\ (.132)^{* * *} \end{gathered}$	$\begin{gathered} -.793 \\ (.129)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.444 \\ (.148)^{* * *} \end{gathered}$	$\begin{gathered} -.392 \\ (.148)^{* * *} \end{gathered}$	$\begin{gathered} -.440 \\ (.147)^{* * *} \end{gathered}$	$\begin{aligned} & -.443 \\ & (.147)^{* * *} \end{aligned}$	$\begin{gathered} -.393 \\ (.148)^{* * *} \end{gathered}$	$\begin{gathered} -.214 \\ (.145) \end{gathered}$
Share: White-collar occ.	$\underset{(.075)^{* * *}}{.721}$	$\underset{(.074)^{* * *}}{.700}$	$\stackrel{.739}{(.074)^{* * *}}$	$\underset{(.074)^{* * *}}{.738}$	$\frac{.691}{(.075)^{* * *}}$	$\underset{(.073)^{* * *}}{.552}$
Worker-level covariates						
Tenure at plant (in years)	$\begin{gathered} 1.367 \\ (.036)^{* * *} \end{gathered}$	$\begin{gathered} 1.350 \\ (.036)^{* * *} \end{gathered}$	$\begin{aligned} & 1.362 \\ & (.036)^{* * *} \end{aligned}$	$\begin{gathered} 1.363 \\ (.036)^{* * *} \end{gathered}$	$\underset{(.036)^{* * *}}{1.351}$	$\begin{gathered} 1.390 \\ (.037)^{* * *} \end{gathered}$
Pot. labor force experience	$\begin{gathered} .006 \\ (.002)^{* *} \end{gathered}$	$\stackrel{.031}{(.002)^{* * *}}$				
Unskilled Wh. Collar Occ.	$\stackrel{-.256}{(.067)^{* * *}}$	$\begin{gathered} -.251 \\ (.067)^{* * *} \end{gathered}$	$\stackrel{-.259}{(.067)^{* * *}}$	$\stackrel{-.255}{(.067)^{* * *}}$	$\begin{gathered} -.262 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.199 \\ (.065)^{* * *} \end{gathered}$
Year effects	yes	yes	yes	yes	yes	no
Obs.	145,408	145,408	145,408	145,408	145,408	145,408
Pseudo R^{2}	. 148	. 149	. 148	. 148	. 150	. 137

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Professional or managerial occupations and skilled blue collar occupations (not reported) not statistically significant at five-percent level. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 93: Conditional Logit Estimation of Accessions

	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{gathered} .041 \\ (.017)^{* *} \end{gathered}$				$\begin{aligned} & -.016 \\ & (.020) \end{aligned}$	$\begin{gathered} -.114 \\ (.019)^{* * *} \end{gathered}$
Exporter Status		$\begin{gathered} -.449 \\ (.027)^{* * *} \end{gathered}$			$\begin{gathered} -.439 \\ (.027)^{* * *} \end{gathered}$	$\begin{gathered} -.429 \\ (.026)^{* * *} \end{gathered}$
Product Market Tariff			$\begin{aligned} & 1.306 \\ & (.379)^{* * *} \end{aligned}$		$\begin{aligned} & 1.246 \\ & (.393)^{* * *} \end{aligned}$	$\begin{gathered} 2.474 \\ (.379)^{* * *} \end{gathered}$
Intm. Input Tariff			$\begin{aligned} & -3.258 \\ & (.540)^{* * *} \end{aligned}$		$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\begin{aligned} & -3.846 \\ & (.514)^{* * *} \end{aligned}$
Import Penetration				$\begin{aligned} & -.522 \\ & (.320) \end{aligned}$	$\begin{aligned} & .198 \\ & (.355) \end{aligned}$	$\begin{aligned} & -3.919 \\ & (.307)^{* * *} \end{aligned}$
Sector-level covariates						
Sector real exch. rate	$\begin{aligned} & -1.264 \\ & (.605)^{* *} \end{aligned}$	$\begin{aligned} & -.955 \\ & (.606) \end{aligned}$	$\begin{gathered} -.953 \\ (.626) \end{gathered}$	$\begin{aligned} & -.986 \\ & (.611) \end{aligned}$	$\begin{aligned} & -.810 \\ & (.639) \end{aligned}$	$\begin{aligned} & .038 \\ & (.076) \end{aligned}$
FDI Flow (USD billion)	$\begin{gathered} .039 \\ (.022)^{*} \end{gathered}$	$\stackrel{.047}{(.021)^{* *}}$	$\stackrel{.056}{(.021)^{* * *}}$	$\stackrel{.047}{(.021)^{* *}}$	$\underset{(.022)^{* * *}}{.058}$	$\begin{aligned} & .031 \\ & (.021) \end{aligned}$
Herfindahl Index (sales)	$\begin{aligned} & -.348 \\ & (.268) \end{aligned}$	$\begin{aligned} & -.344 \\ & (.268) \end{aligned}$	$\begin{gathered} -.795 \\ (.282)^{* * *} \end{gathered}$	$\begin{gathered} -.275 \\ (.277) \end{gathered}$	$\begin{gathered} -.788 \\ (.297)^{* * *} \end{gathered}$	$\begin{gathered} -2.335 \\ (.277)^{* * *} \end{gathered}$
Plant-level covariates						
Log Employment	$\stackrel{-.190}{(.008)^{* * *}}$	$\begin{gathered} -.140 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.189 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.189 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.141 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.112 \\ (.008)^{* * *} \end{gathered}$
Share: Middle School or less	$\stackrel{.947}{(.107)^{* * *}}$	$\frac{.857}{(.105)^{* * *}}$	$\begin{aligned} & .940 \\ & (.107)^{* * *} \end{aligned}$	$\frac{.948}{(.107)^{* * *}}$	$\begin{gathered} .850 \\ (.105)^{* * *} \end{gathered}$	$\frac{.828}{(.104)^{* * *}}$
Share: Some High School	$\frac{.740}{(.124)^{* * *}}$	$\frac{.667}{(.122)^{* * *}}$	$\begin{aligned} & .739 \\ & (.124)^{* * *} \end{aligned}$	$\begin{gathered} .740 \\ (.124)^{* * *} \end{gathered}$	$\underset{(.122)^{* * *}}{.668}$	$\frac{.468}{(.120)^{* * *}}$
Share: White-collar occ.	$\stackrel{-.675}{(.067)^{* * *}}$	$\frac{-.614}{(.067)^{* * *}}$	$\begin{aligned} & -.679 \\ & (.067)^{* * *} \end{aligned}$	$\begin{gathered} -.671 \\ (.067)^{* * *} \end{gathered}$	$\frac{-.621}{(.067)^{* * *}}$	$\begin{gathered} -.534 \\ (.064)^{* * *} \end{gathered}$
Worker-level covariates						
Prof. or Manag'l. Occ.	$\begin{gathered} -.801 \\ (.068)^{* * *} \end{gathered}$	$\stackrel{-.807}{(.068)^{* * *}}$	$\begin{gathered} -.801 \\ (.068)^{* * *} \end{gathered}$	$\begin{gathered} -.800 \\ (.068)^{* * *} \end{gathered}$	$\frac{-.807}{(.068)^{* * *}}$	$\begin{gathered} -.827 \\ (.066)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.603 \\ (.064)^{* * *} \end{gathered}$	$\stackrel{-.610}{(.064)^{* * *}}$	$\begin{gathered} -.597 \\ (.064)^{* * *} \end{gathered}$	$\begin{gathered} -.603 \\ (.064)^{* * *} \end{gathered}$	$\begin{gathered} -.604 \\ (.064)^{* * *} \end{gathered}$	$\begin{gathered} -.623 \\ (.062)^{* * *} \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.490 \\ (.061)^{* * *} \end{gathered}$	$\begin{gathered} -.497 \\ (.062)^{* * *} \end{gathered}$	$\stackrel{-.488}{(.062)^{* * *}}$	$\begin{gathered} -.489 \\ (.061)^{* * *} \end{gathered}$	$\begin{gathered} -.495 \\ (.062)^{* * *} \end{gathered}$	$\begin{gathered} -.519 \\ (.060)^{* * *} \end{gathered}$
Skilled B1. Collar Occ.	$\begin{gathered} -.417 \\ (.032)^{* * *} \end{gathered}$	$\begin{gathered} -.413 \\ (.032)^{* * *} \end{gathered}$	$\stackrel{-.413}{(.032)^{* * *}}$	$\begin{aligned} & -.417 \\ & (.032)^{* * *} \end{aligned}$	$\begin{gathered} -.410 \\ (.032)^{* * *} \end{gathered}$	$\begin{gathered} -.443 \\ (.031)^{* * *} \end{gathered}$
Year effects	yes	yes	yes	yes	yes	no
Obs.	112,974	112,974	112,974	112,974	112,974	112,974
Pseudo R^{2}	. 036	. 040	. 037	. 036	. 041	. 026

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession. Sector information at subsector IBGE level. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 94: First-stage Predictions

	Separations			Accessions		
	Exp. Status	Prd. Mkt. Tariff	Imp. Pen.	Exp. Status	Prd. Mkt. Tariff	Imp. Pen.
	(1)	(2)	(3)	(4)	(5)	(6)
Instruments						
World imports APD	$\begin{gathered} 3.576 \\ (.789)^{* * *} \end{gathered}$	$\begin{aligned} & -2.278 \\ & (.097)^{* * *} \end{aligned}$	$\underset{(.053)}{-.011}$	$\begin{gathered} 3.829 \\ (.975)^{* * *} \end{gathered}$	$\frac{-2.121}{(.111)^{* * *}}$	${ }_{(.065)^{* * *}}$
World imports CEE	$\underset{(4.341)^{* * *}}{43.712}$	$\begin{aligned} & -33.870 \\ & (.534)^{* * *} \end{aligned}$	$\begin{aligned} & -16.636 \\ & (.293)^{* * *} \end{aligned}$	$\begin{gathered} 38.920 \\ (5.551)^{* * *} \end{gathered}$	$\begin{aligned} & -26.912 \\ & (.635)^{* * *} \end{aligned}$	$\begin{aligned} & -17.067 \\ & (.370)^{* * *} \end{aligned}$
World imports LAC	$\begin{gathered} -4.740 \\ (1.035)^{* * *} \end{gathered}$	$\begin{gathered} 14.265 \\ (.127)^{* * *} \end{gathered}$	$\begin{gathered} 4.759 \\ (.070)^{* * *} \end{gathered}$	$\underset{(1.319)}{-2.022}$	$\begin{gathered} 14.041 \\ (.151)^{* * *} \end{gathered}$	$\stackrel{4.865}{(.088)^{* * *}}$
World imports NAM	$\begin{aligned} & -2.380 \\ & (.525)^{* * *} \end{aligned}$	$\stackrel{-.652}{(.065)^{* * *}}$	$\begin{aligned} & -1.672 \\ & (.035)^{* * *} \end{aligned}$	$\begin{aligned} & -2.468 \\ & (.662)^{* * *} \end{aligned}$	$\begin{gathered} .377 \\ (.076)^{* * *} \end{gathered}$	$\begin{gathered} -1.992 \\ (.044)^{* * *} \end{gathered}$
World imports ODV	$\begin{gathered} -2.142 \\ (.763)^{* * *} \end{gathered}$	$\begin{aligned} & -5.735 \\ & (.094)^{* * *} \end{aligned}$	$\begin{aligned} & .312 \\ & (.052)^{* * *} \end{aligned}$	$\underset{(.977)}{-1.376}$	$\begin{gathered} -5.275 \\ (.112)^{* * *} \end{gathered}$	$\begin{gathered} -.139 \\ (.065)^{* *} \end{gathered}$
World imports OIN	$\begin{aligned} & 4.173 \\ & (.957)^{* * *} \end{aligned}$	$\begin{gathered} -9.100 \\ (.118)^{* * *} \end{gathered}$	$\begin{gathered} -5.678 \\ (.065)^{* * *} \end{gathered}$	$\underset{(1.181)^{* * *}}{3.977}$	$\begin{aligned} & -10.354 \\ & (.135)^{* * *} \end{aligned}$	$\begin{gathered} -5.339 \\ (.079)^{* * *} \end{gathered}$
World imports WEU	$\begin{gathered} 13.940 \\ (.461)^{* * *} \end{gathered}$	$\underset{(.057)^{* * *}}{2.158}$	$\underset{(.031)^{* * *}}{1.953}$	$\begin{gathered} 14.437 \\ (.564)^{* * *} \end{gathered}$	$\begin{aligned} & 1.469 \\ & (.065)^{* * *} \end{aligned}$	$\underset{(.038)^{* * *}}{2.095}$
USD Exch. Rate	$\underset{(.025)^{* * *}}{.105}$	$\begin{gathered} -.211 \\ (.003)^{* * *} \end{gathered}$	$\underset{(.002)^{* * *}}{.011}$	$\begin{gathered} .081 \\ (.032)^{* *} \end{gathered}$	$\stackrel{-.252}{(.004)^{* * *}}$	$\stackrel{-.014}{(.002)^{* * *}}$
PPI Idx. EU	$\frac{.703}{(.15)^{* * *}}$	$\frac{-.928}{(.014)^{* * *}}$	$\frac{.113}{(.008)^{* * *}}$	$\underset{(.144)^{* * *}}{.974}$	$\stackrel{-.941}{(.016)^{* * *}}$	$\begin{gathered} .052 \\ (.010)^{* * *} \end{gathered}$
PPI Idx. NAM	$\underset{(.106)^{* * *}}{.411}$	$\begin{gathered} .850 \\ (.013)^{* * *} \end{gathered}$	$\begin{gathered} -.120 \\ (.007)^{* * *} \end{gathered}$	$\underset{(.138)^{* * *}}{.474}$	$\stackrel{.802}{(.016)^{* * *}}$	$\stackrel{-.200}{(.009)^{* * *}}$
Exogenous covariates						
Balassa Comp. Adv.	$\begin{gathered} -.020 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.026}{(.0003)^{* * *}}$	$\stackrel{-.022}{(.0002)^{* * *}}$	$\begin{gathered} -.024 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.027 \\ (.0004)^{* * *} \end{gathered}$	$\underset{(.0002)^{* * *}}{-.022}$
FDI Flow (USD billion)	$\begin{aligned} & .002 \\ & (.003) \end{aligned}$	$\begin{gathered} .014 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .004 \\ (.0002)^{* * *} \end{gathered}$	$\underset{(.004)}{.0002}$	$\begin{gathered} .014 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .005 \\ (.0003)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{gathered} .332 \\ (.044)^{* * *} \end{gathered}$	$\begin{gathered} .048 \\ (.005)^{* * *} \end{gathered}$	$\begin{gathered} .053 \\ (.003)^{* * *} \end{gathered}$	$\underset{(.054)^{* * *}}{.252}$	$\begin{gathered} -.026 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .098 \\ (.004)^{* * *} \end{gathered}$
Log Employment	$\begin{gathered} .052 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .003 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.0009 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .050 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .003 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.0007 \\ (.0001)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{gathered} -.172 \\ (.016)^{* * *} \end{gathered}$	$\stackrel{.008}{(.002)^{* * *}}$	$\stackrel{-.007}{(.001)^{* * *}}$	$\stackrel{-.184}{(.017)^{* * *}}$	$\stackrel{.007}{(.002)^{* * *}}$	$\begin{gathered} -.009 \\ (.001)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.063 \\ (.019)^{* * *} \end{gathered}$	$\begin{aligned} & -.002 \\ & (.002) \end{aligned}$	$\begin{gathered} .003 \\ (.001)^{* *} \end{gathered}$	$\begin{gathered} -.092 \\ (.021)^{* * *} \end{gathered}$	$\begin{gathered} -.005 \\ (.002)^{* *} \end{gathered}$	$\begin{aligned} & .002 \\ & (.001) \end{aligned}$
Share: White-collar occ.	$\begin{gathered} .060 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} .006 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.002 \\ (.0007)^{* *} \end{gathered}$	$\underset{(.012)^{* * *}}{.057}$	$\begin{gathered} .004 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.002 \\ (.0008)^{* *} \end{gathered}$
F statistic (IV)	13.432	14,338.09	477.064	23.689	12,723.32	310.494

Sources: WTF (NBER) bilateral import data 1990-98; sector data 1990-98 from various sources at subsector IBGE level; RAIS 1990-98 labor force information; SECEX exporter information 1990-98. Weighted regressions using worker-sample observations (as in Table 92 for separations, Table 93 for accessions), controlling for year effects. Annual sector-weighted world imports, coefficients rescaled to imports in USD trillion. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 95: Linear and Instrumental-Variable Worker-FE Estimation

	Separations			Accessions		
	Cdl. logit	OLS-FE		Cdl. logit	OLS-FE	
			IV			IV
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{gathered} .169 \\ (.024)^{* * *} \end{gathered}$	$\begin{gathered} .017 \\ (.002)^{* * *} \end{gathered}$	$\underset{(.003)^{* * *}}{.023}$	$\begin{aligned} & \hline-.016 \\ & (.020) \end{aligned}$	$\begin{aligned} & .002 \\ & (.002) \end{aligned}$	$\begin{aligned} & \hline-.002 \\ & \hline .003) \end{aligned}$
Exporter Status	$\stackrel{.283}{(.028)^{* * *}}$	$\stackrel{.038}{(.003)^{* * *}}$	$\stackrel{.516}{(.096)^{* * *}}$	$\frac{-.439}{(.027)^{* * *}}$	$\stackrel{-.049}{(.003)^{* * *}}$	$\begin{gathered} -.500 \\ (.091)^{* * *} \end{gathered}$
Product Market Tariff	$\frac{-.705}{(.426)^{*}}$	$\begin{gathered} -.100 \\ (.035)^{* * *} \end{gathered}$	$\begin{gathered} -.032 \\ (.081) \end{gathered}$	$\begin{aligned} & 1.246 \\ & (.393)^{* * *} \end{aligned}$	$\frac{.124}{(.032)^{* * *}}$	$\begin{aligned} & .113 \\ & (.073) \end{aligned}$
Intm. Input Tariff	$\underset{(.678)^{* * *}}{2.880}$	$\begin{gathered} .343 \\ (.054)^{* * *} \end{gathered}$	$.$	$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\stackrel{-.309}{(.049)^{* * *}}$	$\begin{gathered} -.227 \\ (.132)^{*} \end{gathered}$
Import Penetration	$\stackrel{1.257}{(.388)^{* * *}}$	$\begin{array}{r} .052 \\ (.034) \end{array}$	$\begin{aligned} & .004 \\ & (.077) \end{aligned}$	$\begin{aligned} & .198 \\ & (.355) \end{aligned}$	$\stackrel{.088}{(.031)^{* * *}}$	$.265$
Obs.	145,408	293,353	293,353	112,974	293,124	293,124

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Estimates in column 1 and 4 repeat column 4 in Tables 92 and 93. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 96: Complementary Conditional Logit Estimates of Separations

	Cdl. logit	Primary school	High school	College educ.	Sector FE	Privatiz. control	Outsrc. job ind.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Balassa Cmp. Adv.	$. .138$	$\frac{.114}{(.041)^{* * *}}$	$.462$	$\begin{aligned} & -.096 \\ & (.226) \end{aligned}$	$\begin{gathered} -.074 \\ \hline . .056) \end{gathered}$	$\begin{gathered} .139 \\ (.037)^{* * *} \end{gathered}$	$\underset{(.037)^{* * *}}{.135}$
Cmp. Adv. \times Prd. Trf.	$\begin{aligned} & .202 \\ & (.200) \end{aligned}$	$\begin{aligned} & .195 \\ & (.224) \end{aligned}$	$\begin{gathered} -1.217 \\ (.910) \end{gathered}$	$\underset{(1.440)}{2.334}$	$\begin{aligned} & -.122 \\ & (.215) \end{aligned}$	$\begin{aligned} & .207 \\ & (.201) \end{aligned}$	$\begin{aligned} & .224 \\ & (.205) \end{aligned}$
Exporter Status	$\underset{(.048)^{* * *}}{.481}$	$\stackrel{.481}{(.055)^{* * *}}$	$\frac{.292}{(.168)^{*}}$	$\begin{aligned} & .122 \\ & (.251) \end{aligned}$	$\stackrel{.465}{(.048)^{* * *}}$	$\stackrel{.481}{(.048)^{* * *}}$	$\underset{(.048)^{* * *}}{.482}$
Exporter \times Prd. Trff.	$\begin{aligned} & -1.071 \\ & (.213)^{* * *} \end{aligned}$	$\begin{aligned} & -1.000 \\ & (.244)^{* * *} \end{aligned}$	$\begin{aligned} & -.388 \\ & (.767) \end{aligned}$	$\begin{gathered} .926 \\ (1.156) \end{gathered}$	$\begin{gathered} -.979 \\ (.215)^{* * *} \end{gathered}$	$\begin{aligned} & -1.070 \\ & (.213)^{* * *} \end{aligned}$	$\begin{gathered} -1.077 \\ (.216)^{* * *} \end{gathered}$
Product Market Tariff	$\begin{aligned} & -.424 \\ & (.532) \end{aligned}$	$\begin{aligned} & -.287 \\ & (.612) \end{aligned}$	$\begin{gathered} -.715 \\ (1.860) \end{gathered}$	$\begin{aligned} & -6.007 \\ & (3.247)^{*} \end{aligned}$	$\begin{aligned} & -1.663 \\ & (.575)^{* * *} \end{aligned}$	$\begin{aligned} & -.415 \\ & (.531) \end{aligned}$	$\begin{aligned} & -.495 \\ & (.539) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} 3.241 \\ (.767)^{* * *} \end{gathered}$	$\begin{aligned} & 2.856 \\ & (.882)^{* * *} \end{aligned}$	$\underset{(2.821)^{* *}}{6.273}$	$\underset{(4.703)^{* *}}{11.171}$	$\begin{gathered} 4.829 \\ (.876)^{* * *} \end{gathered}$	$\begin{aligned} & 3.242 \\ & (.768)^{* * *} \end{aligned}$	$\begin{gathered} 3.415 \\ (.778)^{* * *} \end{gathered}$
Import Penetration	$\begin{aligned} & 1.093 \\ & (.393)^{* * *} \end{aligned}$	$\begin{aligned} & .503 \\ & (.483) \end{aligned}$	$\underset{(1.300)^{*}}{2.233}$	$\begin{gathered} .346 \\ (2.018) \end{gathered}$	$\begin{gathered} 3.039 \\ (.638)^{* * *} \end{gathered}$	$\underset{(.397)^{* * *}}{1.102}$	$\begin{gathered} 1.098 \\ (.397)^{* * *} \end{gathered}$
addl. regressor(s)					yes	$\begin{gathered} -.208 \\ (1.232) \end{gathered}$	$\begin{gathered} -.015 \\ (.037) \end{gathered}$
Obs.	145,408	110,831	17,627	7,498	145,408	145,408	143,536
Pseudo R^{2}	. 150	. 161	. 270	. 246	. 152	. 150	. 152

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 97: Complementary Conditional Logit Estimates of Separations

	Cdl. logit	Primary school	High school	College educ.	Sector FE	Privatiz. control	Outsrc. job ind.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Balassa Comp. Adv.	$\begin{gathered} .169 \\ (.024)^{* * *} \end{gathered}$	$\begin{gathered} .498 \\ (.267)^{*} \end{gathered}$	$\frac{.145}{(.028)^{* * *}}$	$\begin{aligned} & .216 \\ & (.150) \end{aligned}$	$\begin{gathered} -.094 \\ (.049)^{*} \end{gathered}$	$\frac{.170}{(.026)^{* * *}}$	$\underset{(.024)^{* * *}}{.169}$
Exporter Status	$\underset{(.028)^{* * *}}{.283}$	$\begin{array}{r} .379 \\ (.243) \end{array}$	$\begin{gathered} .296 \\ (.033)^{* * *} \end{gathered}$	$\begin{gathered} .297 \\ (.143)^{* *} \end{gathered}$	$\begin{gathered} .284 \\ (.028)^{* * *} \end{gathered}$	$\begin{gathered} .283 \\ (.028)^{* * *} \end{gathered}$	$\underset{(.029)^{* * *}}{.283}$
Product Market Tariff	$\begin{gathered} -.705 \\ (.426)^{*} \end{gathered}$	$\begin{aligned} & -3.960 \\ & (4.290) \end{aligned}$	$\begin{aligned} & -.500 \\ & (.499) \end{aligned}$	$\begin{gathered} -1.771 \\ (2.281) \end{gathered}$	$\begin{aligned} & -2.361 \\ & (.476)^{* * *} \end{aligned}$	$\begin{aligned} & -.694 \\ & (.427) \end{aligned}$	$\frac{-.751}{(.430)^{*}}$
Intm. Input Tariff	$\underset{(.678)^{* * *}}{2.880}$	$\begin{gathered} 10.027 \\ (7.163) \end{gathered}$	$\begin{gathered} 2.469 \\ (.779)^{* * *} \end{gathered}$	$\begin{gathered} 7.146 \\ (4.086)^{*} \end{gathered}$	$\begin{gathered} 5.149 \\ (.748)^{* * *} \end{gathered}$	$\begin{gathered} 2.875 \\ (.675)^{* * *} \end{gathered}$	$\begin{aligned} & 3.010 \\ & (.686)^{* * *} \end{aligned}$
Import Penetration	$\frac{1.257}{(.388)^{* * *}}$	$\begin{gathered} 8.588 \\ (3.668)^{* *} \end{gathered}$	$\begin{array}{r} .678 \\ (.477) \end{array}$	$\begin{gathered} .886 \\ (1.995) \end{gathered}$	$\begin{gathered} 3.227 \\ (.638)^{* * *} \end{gathered}$	$\begin{gathered} 1.264 \\ (.392)^{* * *} \end{gathered}$	$\begin{aligned} & 1.269 \\ & (.391)^{* * *} \end{aligned}$
addl. regressor(s)					yes	$\begin{gathered} -.142 \\ (1.227) \end{gathered}$	$\begin{gathered} -.018 \\ (.037) \end{gathered}$
Obs.	145,408	2,897	110,831	7,498	145,408	145,408	143,536
Pseudo R^{2}	. 150	. 391	. 161	. 245	. 151	. 150	. 151

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 98: Complementary Conditional Logit Estimates of Accessions

	Cdl. logit	Primary school	High school	College educ.	Sector FE	Privatiz. control	Outsrc. job ind.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Balassa Cmp. Adv.	$\begin{gathered} -.058 \\ (.032)^{*} \end{gathered}$	$\begin{array}{r} -.022 \\ (.036) \end{array}$	$\stackrel{-.315}{(.122)^{* * *}}$	$\begin{aligned} & -.288 \\ & (.191) \end{aligned}$	$\begin{gathered} -.115 \\ (.053)^{* *} \end{gathered}$	$\frac{-.062}{(.032)^{*}}$	$\begin{aligned} & -.055 \\ & (.032)^{*} \end{aligned}$
Cmp. Adv. \times Prd. Trf.	$\stackrel{.289}{(.162)^{*}}$	$\begin{array}{r} .104 \\ (.179) \end{array}$	$\begin{aligned} & 1.092 \\ & (.682) \end{aligned}$	$\begin{gathered} 1.037 \\ (1.045) \end{gathered}$	$\begin{gathered} .381 \\ (.176)^{* *} \end{gathered}$	$.$	$\begin{array}{r} .270 \\ (.165) \end{array}$
Exporter Status	$\stackrel{-.359}{(.045)^{* * *}}$	$\begin{aligned} & -.322 \\ & (.052)^{* * *} \end{aligned}$	$\begin{gathered} -.454 \\ (.160)^{* * *} \end{gathered}$	$\begin{gathered} -.740 \\ (.245)^{* * *} \end{gathered}$	$\begin{aligned} & -.373 \\ & (.045)^{* * *} \end{aligned}$	$\begin{aligned} & -.358 \\ & (.045)^{* * *} \end{aligned}$	$\begin{gathered} -.371 \\ (.046)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.	$\begin{gathered} -.428 \\ (.195)^{* *} \end{gathered}$	$\begin{gathered} -.525 \\ (.225)^{* *} \end{gathered}$	$\begin{aligned} & -.284 \\ & (.685) \end{aligned}$	$\begin{gathered} -.191 \\ (1.023) \end{gathered}$	$\begin{gathered} -.350 \\ (.194)^{*} \end{gathered}$	$\begin{gathered} -.433 \\ (.195)^{* *} \end{gathered}$	$\begin{gathered} -.357 \\ (.197)^{*} \end{gathered}$
Product Market Tariff	$\begin{gathered} .967 \\ (.474)^{* *} \end{gathered}$	$\begin{gathered} 1.375 \\ (.532)^{* * *} \end{gathered}$	$\begin{gathered} .969 \\ (1.867) \end{gathered}$	$\begin{gathered} .423 \\ (2.763) \end{gathered}$	$\begin{gathered} 1.385 \\ (.563)^{* *} \end{gathered}$	$\begin{gathered} .894 \\ (.482)^{*} \end{gathered}$	$\xrightarrow[(.479)^{*}]{.908}$
Intm. Input Tariff	$\begin{aligned} & -2.486 \\ & (.672)^{* * *} \end{aligned}$	$\begin{aligned} & -2.702 \\ & (.751)^{* * *} \end{aligned}$	$\begin{gathered} -6.480 \\ (2.704)^{* *} \end{gathered}$	$\begin{aligned} & -3.161 \\ & (3.890) \end{aligned}$	$\begin{aligned} & -2.070 \\ & (.842)^{* *} \end{aligned}$	$\begin{aligned} & -2.454 \\ & (.673)^{* * *} \end{aligned}$	$\begin{aligned} & -2.495 \\ & (.680)^{* * *} \end{aligned}$
Import Penetration	$\begin{array}{r} .035 \\ (.364) \end{array}$	$\begin{aligned} & .001 \\ & (.433) \end{aligned}$	$\begin{array}{r} .0009 \\ \hline 1.206) \end{array}$	$\begin{gathered} -1.074 \\ (1.992) \end{gathered}$	$\xrightarrow[(.668)^{* *}]{1.632}$	$\begin{aligned} & -.014 \\ & (.370) \end{aligned}$	$\begin{aligned} & .033 \\ & (.367) \end{aligned}$
Share: Jobs at private firms						$\begin{gathered} .964 \\ (1.176) \end{gathered}$	
Indic.: Outsourceable job							$\begin{gathered} -.097 \\ (.033)^{* * *} \end{gathered}$
Obs.	112,974	86,468	12,063	4,786	112,974	112,974	110,985
Pseudo R^{2}	. 041	. 043	. 091	. 089	. 042	. 041	. 040

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 99: Complementary Conditional Logit Estimates of Accessions

	Cdl. logit	Primary school	High school	College educ.	Sector FE	Privatiz. control	Outsrc. job ind.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Balassa Comp. Adv.	$\begin{aligned} & \hline-.016 \\ & (.020) \end{aligned}$	$\begin{aligned} & \hline-.120 \\ & (.209) \end{aligned}$	$\begin{aligned} & \hline-.006 \\ & (.023) \end{aligned}$	$\begin{aligned} & \hline-.141 \\ & (.118) \end{aligned}$	$\begin{aligned} & \hline-.067 \\ & (.048) \end{aligned}$	$\begin{aligned} & \hline-.024 \\ & (.022) \end{aligned}$	$\begin{aligned} & \hline-.015 \\ & (.021) \end{aligned}$
Exporter Status	$\stackrel{-.439}{(.027)^{* * *}}$	$\begin{gathered} -.477 \\ (.216)^{* *} \end{gathered}$	$\begin{gathered} -.420 \\ (.031)^{* * *} \end{gathered}$	$\begin{gathered} -.776 \\ (.140)^{* * *} \end{gathered}$	$\begin{gathered} -.438 \\ (.027)^{* * *} \end{gathered}$	$\stackrel{-.439}{(.027)^{* * *}}$	$\stackrel{-.437}{(.027)^{* * *}}$
Product Market Tariff	$\begin{aligned} & 1.246 \\ & (.393)^{* * *} \end{aligned}$	$\begin{gathered} .099 \\ (3.290) \end{gathered}$	$\begin{gathered} 1.333 \\ (.451)^{* * *} \end{gathered}$	$\begin{aligned} & 2.033 \\ & (2.092) \end{aligned}$	$\begin{gathered} 1.822 \\ (.498)^{* * *} \end{gathered}$	$\begin{gathered} 1.118 \\ (.412)^{* * *} \end{gathered}$	$\begin{gathered} 1.185 \\ (.397)^{* * *} \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\begin{gathered} -7.113 \\ (5.668) \end{gathered}$	$\begin{gathered} -2.943 \\ (.673)^{* * *} \end{gathered}$	$\begin{aligned} & -5.152 \\ & (3.393) \end{aligned}$	$\begin{gathered} -2.954 \\ (.750)^{* * *} \end{gathered}$	$\begin{aligned} & -2.987 \\ & (.603)^{* * *} \end{aligned}$	$\begin{aligned} & -3.041 \\ & (.604)^{* * *} \end{aligned}$
Import Penetration	$\begin{aligned} & .198 \\ & (.355) \end{aligned}$	$\begin{gathered} -9.315 \\ (3.845)^{* *} \end{gathered}$	$\begin{aligned} & .084 \\ & (.423) \end{aligned}$	$\begin{gathered} -.720 \\ (1.948) \end{gathered}$	$\begin{gathered} 1.764 \\ (.665)^{* * *} \end{gathered}$	$\begin{aligned} & .128 \\ & (.363) \end{aligned}$	$\begin{aligned} & .181 \\ & (.358) \end{aligned}$
addl. regressor(s)					yes	$\begin{gathered} 1.140 \\ (1.166) \end{gathered}$	$\begin{gathered} -.098 \\ (.033)^{* * *} \end{gathered}$
Obs.	112,974	2,752	86,468	4,786	112,974	112,974	110,985
Pseudo R^{2}	. 041	. 223	. 043	. 088	. 042	. 041	. 040

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 100: Unconditional Logit Estimates of Separations

	Separations			Accessions		
	Cdl. logit	Logit		Cdl. logit	Logit	
		cdl. smpl.	full smpl.		cdl. smpl.	full smpl.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\frac{.134}{(.043)^{* * *}}$	$\frac{.117}{(.025)^{* * *}}$	$\underset{(.018)^{* * *}}{.168}$	$\frac{-.125}{(.038)^{* * *}}$	$\begin{gathered} \hline-.027 \\ \hline .026) \end{gathered}$	$\begin{aligned} & .025 \\ & (.020) \end{aligned}$
Cmp. Adv. \times Prd. Trff.	$\begin{aligned} & .265 \\ & (.238) \end{aligned}$	$\begin{gathered} -.118 \\ (.148) \end{gathered}$	$\begin{gathered} -.270 \\ (.103)^{* * *} \end{gathered}$	$\stackrel{.599}{(.203)^{* * *}}$	$\frac{.490}{(.151)^{* * *}}$	$\frac{.687}{(.113)^{* * *}}$
Exporter Status	$\underset{(.081)^{* * *}}{.478}$	$\begin{array}{r} .068 \\ (.048) \end{array}$	$\begin{gathered} -.081 \\ (.037)^{* *} \end{gathered}$	$\stackrel{-.564}{(.077)^{* * *}}$	$\frac{-.389}{(.055)^{* * *}}$	$\frac{-.825}{(.044)^{* * *}}$
Exp. \times Prd. Trff.	$\begin{gathered} -.950 \\ (.362)^{* * *} \end{gathered}$	$\begin{aligned} & -.153 \\ & (.225) \end{aligned}$	$\begin{gathered} .373 \\ (.162)^{* *} \end{gathered}$	$\begin{aligned} & .351 \\ & (.323) \end{aligned}$	$\begin{aligned} & .007 \\ & \text { (.257) } \end{aligned}$	$\underset{(.204)^{* *}}{.520}$
Cmp. Adv. \times Exporter	$\begin{aligned} & .011 \\ & (.051) \end{aligned}$	$\stackrel{.072}{(.033)^{* *}}$	$\stackrel{.076}{(.024)^{* * *}}$	$\stackrel{.156}{(.047)^{* * *}}$	$\underset{(.035)^{* * *}}{.137}$	$\underset{(.027)^{* * *}}{.239}$
$\ldots \times$ Prd. Trf.	$\begin{aligned} & -.141 \\ & (.291) \end{aligned}$	$\begin{gathered} -.325 \\ (.188)^{*} \end{gathered}$	$\stackrel{-.458}{(.131)^{* * *}}$	$\frac{-.680}{(.250)^{* * *}}$	$\begin{gathered} -.513 \\ (.202)^{* *} \end{gathered}$	$\stackrel{-.657}{(.156)^{* * *}}$
Product Market Tariff	$\begin{aligned} & -.499 \\ & (.548) \end{aligned}$	$\begin{aligned} & .411 \\ & (.315) \end{aligned}$	$\begin{aligned} & .040 \\ & (.239) \end{aligned}$	$.$	$\begin{aligned} & -.151 \\ & (.331) \end{aligned}$	$\begin{aligned} & -2.141 \\ & (.263)^{* * *} \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & 3.287 \\ & (.767)^{* * *} \end{aligned}$	$\begin{aligned} & .631 \\ & (.401) \end{aligned}$	$\begin{gathered} .694 \\ (.306)^{* *} \end{gathered}$	$\begin{aligned} & -2.297 \\ & (.682)^{* * *} \end{aligned}$	$\begin{aligned} & -.488 \\ & (.423) \end{aligned}$	$\underset{(.338)^{* * *}}{2.840}$
Import Penetration	$\begin{aligned} & 1.088 \\ & (.393)^{* * *} \end{aligned}$	$\begin{aligned} & -.025 \\ & (.184) \end{aligned}$	$\begin{gathered} -.081 \\ (.149) \end{gathered}$	$\underset{(.364)}{-.0008}$	$\begin{gathered} -.011 \\ (.216) \end{gathered}$	$\begin{gathered} -1.242 \\ (.177)^{* * *} \end{gathered}$
Obs.	145,408	145,408	293,353	112,974	112,974	293,124
Pseudo R^{2}	. 151	. 033	. 050	. 041	. 024	. 079

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 101: Unconditional Logit Estimation

	Separations			Accessions		
	Cdl. logit	Logit		Cdl. logit	Logit	
		cdl. smpl.	fullsmpl.		cdl. smpl.	fullsmpl.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\frac{.169}{(.024)^{* * *}}$	$\stackrel{.108}{(.009)^{* * *}}$	$\frac{.125}{(.007)^{* * *}}$	$\begin{aligned} & -.016 \\ & (.020) \end{aligned}$	$\underset{(.009)^{* * *}}{.072}$	$\frac{.184}{(.007)^{* * *}}$
Exporter Status	$\frac{.283}{(.028)^{* * *}}$	$\stackrel{.066}{(.015)^{* * *}}$	$\begin{aligned} & -.017 \\ & (.012) \end{aligned}$	$\begin{gathered} -.439 \\ (.027)^{* * *} \end{gathered}$	$\frac{-.304}{(.017)^{* * *}}$	$\begin{gathered} -.508 \\ (.013)^{* * *} \end{gathered}$
Product Market Tariff	$\begin{gathered} -.705 \\ (.426)^{*} \end{gathered}$	$\begin{aligned} & -.095 \\ & (.221) \end{aligned}$	$\begin{gathered} -.489 \\ (.170)^{* * *} \end{gathered}$	$\begin{gathered} 1.246 \\ (.393)^{* * *} \end{gathered}$	$\begin{aligned} & .223 \\ & (.251) \end{aligned}$	$\begin{aligned} & -1.402 \\ & (.198)^{* * *} \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & 2.880 \\ & (.678)^{* * *} \end{aligned}$	$\stackrel{.978}{(.344)^{* * *}}$	$\underset{(.255)^{* * *}}{1.371}$	$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\begin{gathered} -.932 \\ (.380)^{* *} \end{gathered}$	$\underset{(.301)^{* * *}}{2.232}$
Import Penetration	$\begin{aligned} & 1.257 \\ & (.388)^{* * *} \end{aligned}$	$\begin{aligned} & -.125 \\ & (.173) \end{aligned}$	$\begin{gathered} -.328 \\ (.140)^{* *} \end{gathered}$	$\begin{aligned} & .198 \\ & (.355) \end{aligned}$	$\begin{aligned} & .179 \\ & (.203) \end{aligned}$	$\begin{aligned} & -1.009 \\ & (.165)^{* * *} \end{aligned}$
Obs.	145,408	145,408	293,353	112,974	112,974	293,124
Pseudo R^{2}	. 150	. 033	. 05	. 041	. 023	. 078

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Estimates in columns 1 and 4 repeat column 6 in Tables 92 and 93. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 102: Summary Statistics for Separation Sample, 1990-98

	All sectors		Comp. adv. quintile	
			$\begin{array}{r} 1 \text { st } \\ \text { Mean } \end{array}$	5th Mean
	Mean	Std.Dev.		
	(1)	(2)	(3)	(4)
Outcomes				
Indic.: Separation	. 282	. 450	. 314	. 260
Indic.: Layoff	. 245	. 430	. 262	. 231
Indic.: Quit	. 026	. 160	. 031	. 020
Main covariates				
Balassa Comp. Adv.	1.450	1.047	3.223	1.373
Exporter Status	. 495	. 500	. 438	1.000
Product Market Tariff	. 193	. 103	. 174	. 204
Sector-level covariates				
Intm. Input Tariff	. 146	. 077	. 105	. 154
Import Penetration	. 064	. 052	. 031	. 074
Sector real exch. rate	. 944	. 102	. 957	. 947
FDI Flow (USD billion)	. 110	. 334	. 263	. 103
Herfindahl Index (sales)	. 089	. 056	. 083	. 098
Share: Jobs at private firms	. 955	. 019	. 966	. 955
Plant-level covariates				
Log Employment	5.148	1.952	5.551	6.210
Share: Middle School or less	. 745	. 219	. 815	. 699
Share: Some High School	. 182	. 159	. 137	. 204
Share: White-collar occ.	. 264	. 211	. 241	. 291
Worker-level covariates				
Tenure at plant (in years)	. 952	1.208	. 778	1.248
Pot. labor force experience	25.276	9.971	26.116	25.154
Middle School or less	. 785	. 411	. 854	. 744
Some High School	. 151	. 358	. 108	. 171
Some College	. 020	. 141	. 012	. 028
College Degree	. 038	. 191	. 021	. 052
Prof. or Manag'l. Occ.	. 085	. 278	. 069	. 102
Tech'l. or Superv. Occ.	. 082	. 274	. 061	. 098
Unskilled Wh. Collar Occ.	. 070	. 255	. 080	. 075
Skilled B1. Collar Occ.	. 636	. 481	. 646	. 623
Unskilled B1. Collar Occ.	. 102	. 303	. 120	. 088
Indic.: Outsourceable job	. 252	. 434	. 234	. 294

Source: RAIS 1990-98 (1\% random estimation sample of Table 92), male workers nationwide, 25 to 64 years old, with manufacturing job (146,800 observations). Sector information at subsector IBGE level.

Table 103: Summary Statistics for Accession Sample, 1990-98

	All sectors		Comp. adv. quintile	
	Mean	Std.Dev.	Mean	Mean
	(1)	(2)	(3)	(4)
Outcome				
Indic.: Accession	. 292	. 455	. 326	. 237
Main covariates				
Balassa Comp. Adv.	1.511	1.083	3.251	1.485
Exporter Status	. 409	. 492	. 412	1.000
Product Market Tariff	. 179	. 094	. 167	. 190
Sector-level covariates				
Intm. Input Tariff	. 136	. 071	. 102	. 143
Import Penetration	. 063	. 053	. 033	. 074
Sector real exch. rate	. 940	. 095	. 954	. 942
FDI Flow (USD billion)	. 120	. 349	. 278	. 119
Herfindahl Index (sales)	. 088	. 056	. 087	. 096
Share: Jobs at private firms	. 957	. 019	. 968	. 957
Plant-level covariates				
Log Employment	4.697	1.942	5.345	5.942
Share: Middle School or less	. 769	. 219	. 824	. 727
Share: Some High School	. 170	. 167	. 133	. 190
Share: White-collar occ.	. 240	. 212	. 233	.263
Worker-level covariates				
Pot. labor force experience	24.248	9.414	25.351	23.329
Middle School or less	. 800	. 400	. 860	. 751
Some High School	. 144	. 351	. 103	. 168
Some College	. 018	. 131	. 011	. 027
College Degree	. 033	. 178	. 021	. 051
Prof. or Manag'l. Occ.	. 066	. 248	. 058	. 081
Tech'l. or Superv. Occ.	. 069	. 253	. 054	. 080
Unskilled Wh. Collar Occ.	. 064	. 245	. 076	. 067
Skilled B1. Collar Occ.	. 657	. 475	. 664	. 647
Unskilled B1. Collar Occ.	. 116	. 320	. 123	. 107
Indic.: Outsourceable job	. 232	. 422	. 228	. 270

Source: RAIS 1990-98 (1\% random estimation sample of Table 93), male workers nationwide, 25 to 64 years old, with manufacturing job (112,971 observations). Sector information at subsector IBGE level.

Table 104: Means in Separation and Accession Samples, 1990-98

Comparative advantage quintiles	Separations		Accessions	
	1st	5th	1st	5th
	(1)	(2)	(3)	(4)
Main covariates				
Balassa Comp. Adv.	3.223	1.373	3.251	1.485
Exporter Status	. 438	1.000	. 412	1.000
Product Market Tariff	. 174	. 204	. 167	. 190
Sector-level covariates				
Intm. Input Tariff	. 105	. 154	. 102	. 143
Import Penetration	. 031	. 074	. 033	. 074
FDI Flow (USD billion)	. 263	. 103	. 278	. 119
Herfindahl Index (sales)	. 083	. 098	. 087	. 096
Share: Jobs at private firms	. 966	. 955	. 968	. 957
Log Employment	5.551	6.210	5.345	5.942
Share: Middle School or less	. 815	. 699	. 824	. 727
Share: Some High School	. 137	. 204	. 133	. 190
Share: White-collar occ.	. 241	. 291	. 233	. 263
Worker-level covariates				
Middle School or less	. 854	. 744	. 860	. 751
Some High School	. 108	. 171	. 103	. 168
Some College	. 012	. 028	. 011	. 027
College Degree	. 021	. 052	. 021	. 051
Prof. or Manag'l. Occ.	. 069	. 102	. 058	. 081
Tech'l. or Superv. Occ.	. 061	. 098	. 054	. 080
Unskilled Wh. Collar Occ.	. 080	. 075	. 076	. 067
Skilled B1. Collar Occ.	. 646	. 623	. 664	. 647
Unskilled B1. Collar Occ.	. 120	. 088	. 123	. 107
Indic.: Outsourceable job	. 234	. 294	. 228	. 270

Source: RAIS 1990-98 (1\% random estimation samples of Tables 92 and 93), male workers nationwide, 25 to 64 years old, with manufacturing job (146,800 observations in separation and 112,971 in accession sample). Sector information at subsector IBGE level.

Table 105: Trade Exposure and Predicted Labor Market Outcomes

	1990	1992	1994	1998
Trade Exposure				
\quadImport Penetration	.041	.056	.060	.103
Product Market Tariff Intm. Input Tariff	.358	.202	.107	.167
Change in Separation rates predicted by change in Import Penetration since 1990 changes in Tariffs since 1990	.278	.152	.029	
Change in Accession rates predicted by change in Import Penetration since 199 changes in Tariffs since 1990	.016	.020	.064	

Source: RAIS 1990-98, male workers nationwide, 25 to 64 years old, with manufacturing job (estimation samples from Tables 92 and 93). Sector information at subsector IBGE level. Predicted changes in separation and accession rates based on marginal effects implied by column (6) estimates in Tables 92 and $93(\hat{P}(1-\hat{P})$ is .170 for separations and .174 for accessions).

7.3 Separations and accessions of prime-age male workers nationwide, subsector IBGE

Table 106: Conditional Logit Estimates of Separations and Accessions, subsecTOR IBGE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Balassa Comp. Adv.	$\begin{gathered} .138 \\ (.036)^{* * *} \end{gathered}$	$\frac{.134}{(.043)^{* * *}}$	$\begin{aligned} & -.058 \\ & (.032)^{*} \end{aligned}$	$-.125$
Comp. Adv. \times Prd. Trff.	$\begin{aligned} & .202 \\ & (.200) \end{aligned}$	$\begin{aligned} & .265 \\ & (.238) \end{aligned}$	$\begin{gathered} .289 \\ (.162)^{*} \end{gathered}$	$\stackrel{.599}{(.203)^{* * *}}$
Exporter Status	$\underset{(.048)^{* * *}}{.481}$	$\begin{gathered} .478 \\ (.081)^{* * *} \end{gathered}$	$\begin{gathered} -.359 \\ (.045)^{* * *} \end{gathered}$	$\stackrel{-.564}{(.077)^{* * *}}$
Exporter \times Prd. Trff.	$\begin{aligned} & -1.071 \\ & (.213)^{* * *} \end{aligned}$	$\begin{gathered} -.950 \\ (.362)^{* * *} \end{gathered}$	$\stackrel{-.428}{(.195)^{* *}}$	$\begin{aligned} & .351 \\ & (.323) \end{aligned}$
Comp. Adv. \times Exporter		$\begin{aligned} & .011 \\ & (.051) \end{aligned}$		$\stackrel{.156}{(.047)^{* * *}}$
Comp. Adv. \times Exp. \times Prd. Trff.		$\begin{gathered} -.141 \\ (.291) \end{gathered}$		$\stackrel{-.680}{(.250)^{* * *}}$
Product Market Tariff	$\begin{aligned} & -.424 \\ & (.532) \end{aligned}$	$\begin{aligned} & -.499 \\ & (.548) \end{aligned}$	$\stackrel{.967}{(.474)^{* *}}$	$.$
Intm. Input Tariff	$\begin{gathered} 3.241 \\ (.767)^{* * *} \end{gathered}$	$\begin{gathered} 3.287 \\ (.767)^{* * *} \end{gathered}$	$\begin{aligned} & -2.486 \\ & (.672)^{* * *} \end{aligned}$	$\begin{aligned} & -2.297 \\ & (.682)^{* * *} \end{aligned}$
Import Penetration	$\begin{gathered} 1.093 \\ (.393)^{* * *} \end{gathered}$	$\begin{gathered} 1.088 \\ (.393)^{* * *} \end{gathered}$	$\begin{aligned} & .035 \\ & (.364) \end{aligned}$	$\begin{gathered} -.0008 \\ (.364) \end{gathered}$
Obs.	145,408	145,408	112,974	112,974
Pseudo R^{2}	. 150	. 151	. 041	. 041

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 107: Year Effects in Conditional Logit Estimates of Separations and AcCESSIONS, SUBSECTOR IbGE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Year 1990	$\begin{aligned} & -2.126 \\ & (.145)^{* * *} \end{aligned}$	$\begin{aligned} & -2.131 \\ & (.145)^{* * *} \end{aligned}$	$\begin{gathered} .963 \\ (.131)^{* * *} \end{gathered}$	$\frac{.950}{(.131)^{* * *}}$
Year 1991	$\begin{aligned} & -1.356 \\ & (.070)^{* * *} \end{aligned}$	$\begin{aligned} & -1.357 \\ & (.070)^{* * *} \end{aligned}$	$\begin{gathered} 1.227 \\ (.064)^{* * *} \end{gathered}$	$\begin{aligned} & 1.218 \\ & (.064)^{* * *} \end{aligned}$
Year 1992	$\begin{gathered} -.980 \\ (.110)^{* * *} \end{gathered}$	$\frac{-.979}{(.110)^{* * *}}$	$\begin{gathered} 1.089 \\ (.109)^{* * *} \end{gathered}$	1.084
Year 1993	$\stackrel{-.860}{(.067)^{* * *}}$	$\stackrel{-.859}{(.067)^{* * *}}$	$\begin{gathered} 1.125 \\ (.067)^{* * *} \end{gathered}$	$\begin{aligned} & 1.123 \\ & (.067)^{* * *} \end{aligned}$
Year 1994	$\stackrel{-.858}{(.047)^{* * *}}$	$\stackrel{-.858}{(.047)^{* * *}}$	$\stackrel{.983}{(.047)^{* * *}}$	$\stackrel{.987}{(.047)^{* * *}}$
Year 1995	$\begin{gathered} -.432 \\ (.086)^{* * *} \end{gathered}$	$\stackrel{-.433}{(.086)^{* * *}}$	$\underset{(.087)^{* * *}}{.720}$	$\stackrel{.728}{(.087)^{* * *}}$
Year 1996	$\begin{gathered} -.368 \\ (.050)^{* * *} \end{gathered}$	$\stackrel{-.368}{(.050)^{* * *}}$	$\frac{.699}{(.052)^{* * *}}$	$\stackrel{.704}{(.052)^{* * *}}$
Year 1997	$\begin{gathered} -.194 \\ (.040)^{* * *} \end{gathered}$	$\begin{gathered} -.194 \\ (.040)^{* * *} \end{gathered}$	$\frac{.501}{(.041)^{* * *}}$	$\stackrel{.505}{(.041)^{* * *}}$
Obs.	145,408	145,408	112,974	112,974
Pseudo R^{2}	. 150	. 151	. 041	. 041

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Other regressors (not reported): Trade-related, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 108: Conditional Logit Estimates of Separations, 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\underset{(.024)^{* * *}}{.168}$	$\begin{gathered} .138 \\ (.036)^{* * *} \end{gathered}$			$\begin{gathered} .138 \\ (.036)^{* * *} \end{gathered}$
Comp. Adv. \times Prd. Trff.		$\begin{aligned} & .216 \\ & (.200) \end{aligned}$			$\begin{aligned} & .202 \\ & (.200) \end{aligned}$
Exporter Status			$.282$	$\underset{(.048)^{* * *}}{.487}$	$\underset{(.048)^{* * *}}{.481}$
Exporter \times Prd. Trff.				$\begin{gathered} -1.107 \\ (.214)^{* * *} \end{gathered}$	$\begin{aligned} & -1.071 \\ & (.213)^{* * *} \end{aligned}$
Product Market Tariff	$\begin{gathered} -.799 \\ (.426)^{*} \end{gathered}$	$\begin{aligned} & -1.133 \\ & (.516)^{* *} \end{aligned}$	$\begin{aligned} & .041 \\ & (.419) \end{aligned}$	$\begin{aligned} & .643 \\ & (.437) \end{aligned}$	$\begin{aligned} & -.424 \\ & (.532) \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & 3.147 \\ & (.677)^{* * *} \end{aligned}$	$\begin{gathered} 3.554 \\ (.765)^{* * *} \end{gathered}$	$\begin{aligned} & 1.166 \\ & (.648)^{*} \end{aligned}$	$\begin{gathered} 1.171 \\ (.648)^{*} \end{gathered}$	$\begin{gathered} 3.241 \\ (.767)^{* * *} \end{gathered}$
Import Penetration	$\begin{gathered} 1.344 \\ (.388)^{* * *} \end{gathered}$	$\begin{aligned} & 1.255 \\ & (.393)^{* * *} \end{aligned}$	$\begin{aligned} & .297 \\ & (.365) \end{aligned}$	$\begin{aligned} & .229 \\ & (.365) \end{aligned}$	$\begin{gathered} 1.093 \\ (.393)^{* * *} \end{gathered}$
Sector-level covariates					
Sector real exch. rate	$\begin{aligned} & -.386 \\ & (.644) \end{aligned}$	$\begin{gathered} -.395 \\ (.644) \end{gathered}$	$\begin{aligned} & .264 \\ & (.646) \end{aligned}$	$\begin{aligned} & .271 \\ & (.646) \end{aligned}$	$\begin{array}{r} -.391 \\ (.646) \end{array}$
FDI Flow (USD billion)	$\begin{gathered} -.049 \\ (.020)^{* *} \end{gathered}$	$\begin{gathered} -.042 \\ (.020)^{* *} \end{gathered}$	$\begin{gathered} -.017 \\ (.020) \end{gathered}$	$\begin{gathered} -.015 \\ (.020) \end{gathered}$	$\begin{gathered} -.040 \\ (.020)^{* *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -.307 \\ & (.343) \end{aligned}$	$\begin{aligned} & -.252 \\ & (.344) \end{aligned}$	$\begin{aligned} & -.554 \\ & (.341) \end{aligned}$	$\begin{gathered} -.533 \\ (.341) \end{gathered}$	$\begin{aligned} & -.287 \\ & (.344) \end{aligned}$
Plant-level covariates					
Log Employment	$\stackrel{-.347}{(.011)^{* * *}}$	$\stackrel{-.347}{(.011)^{* * *}}$	$\begin{gathered} -.371 \\ (.011)^{* * *} \end{gathered}$	$\begin{gathered} -.369 \\ (.011)^{* * *} \end{gathered}$	$\stackrel{-.376}{(.011)^{* * *}}$
Share: Middle School or less	$\begin{gathered} -.730 \\ (.131)^{* * *} \end{gathered}$	$\stackrel{-.731}{(.131)^{* * *}}$	$\begin{aligned} & -.646 \\ & (.131)^{* * *} \end{aligned}$	$\begin{gathered} -.639 \\ (.131)^{* * *} \end{gathered}$	$\begin{gathered} -.656 \\ (.131)^{* * *} \end{gathered}$
Share: Some High School	$\stackrel{-.442}{(.148)^{* * *}}$	$\begin{gathered} -.443 \\ (.148)^{* * *} \end{gathered}$	$\begin{gathered} -.392 \\ (.148)^{* * *} \end{gathered}$	$\begin{gathered} -.388 \\ (.147)^{* * *} \end{gathered}$	$\begin{gathered} -.390 \\ (.148)^{* * *} \end{gathered}$
Share: White-collar occ.	$\underset{(.075)^{* * *}}{.725}$	$\underset{(.075)^{* * *}}{.727}$	$. .706$	$\underset{(.074)^{* * *}}{.710}$	$\underset{(.075)^{* * *}}{.696}$
Worker-level covariates					
Tenure at plant (in years)	$\begin{gathered} 1.365 \\ (.036)^{* * *} \end{gathered}$	$\begin{gathered} 1.365 \\ (.036)^{* * *} \end{gathered}$	$\begin{gathered} 1.348 \\ (.036)^{* * *} \end{gathered}$	$\begin{aligned} & 1.348 \\ & (.036)^{* * *} \end{aligned}$	$\begin{gathered} 1.351 \\ (.036)^{* * *} \end{gathered}$
Pot. labor force experience	$\stackrel{.006}{(.002)^{* *}}$				
Prof. or Manag'l. Occ.	$\begin{gathered} -.082 \\ (.070) \end{gathered}$	$\begin{gathered} -.083 \\ (.070) \end{gathered}$	$\begin{aligned} & -.071 \\ & (.070) \end{aligned}$	$\begin{gathered} -.071 \\ (.070) \end{gathered}$	$\begin{gathered} -.078 \\ (.070) \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{aligned} & -.076 \\ & (.068) \end{aligned}$	$\begin{aligned} & -.076 \\ & (.068) \end{aligned}$	$\begin{gathered} -.068 \\ (.068) \end{gathered}$	$\begin{gathered} -.065 \\ (.068) \end{gathered}$	$\begin{gathered} -.070 \\ \hline .068) \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.266 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.267 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.255 \\ (.067)^{* * *} \end{gathered}$	$\stackrel{-.255}{(.067)^{* * *}}$	$\begin{gathered} -.262 \\ (.067)^{* * *} \end{gathered}$
Skilled Bl. Collar Occ.	$\begin{aligned} & -.062 \\ & (.038)^{*} \end{aligned}$	$\begin{aligned} & -.063 \\ & (.038)^{*} \end{aligned}$	$\begin{gathered} -.058 \\ (.038) \end{gathered}$	$\begin{gathered} -.057 \\ (.037) \end{gathered}$	$\begin{aligned} & -.061 \\ & (.038) \end{aligned}$
Obs.	145,408	145,408	145,408	145,408	145,408
Pseudo R^{2}	. 149	. 149	. 149	. 15	. 15

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Controlling for year effects. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ onfepercent.

Table 109: Conditional Logit Estimates of Accessions, 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{aligned} & \hline .016 \\ & \hline .020) \end{aligned}$	$\begin{aligned} & \hline-.050 \\ & \hline .031) \end{aligned}$			$\begin{aligned} & \hline-.058 \\ & (.032)^{*} \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{aligned} & .236 \\ & (.162) \end{aligned}$			$\begin{gathered} .289 \\ (.162)^{*} \end{gathered}$
Exporter Status			$\begin{gathered} -.439 \\ (.027)^{* * *} \end{gathered}$	$\begin{gathered} -.363 \\ (.045)^{* * *} \end{gathered}$	$\begin{gathered} -.359 \\ (.045)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.				$\begin{gathered} -.406 \\ (.194)^{* *} \end{gathered}$	$\begin{gathered} -.428 \\ (.195)^{* *} \end{gathered}$
Product Market Tariff	$\begin{gathered} 1.405 \\ (.393)^{* * *} \end{gathered}$	$\begin{aligned} & 1.024 \\ & (.468)^{* *} \end{aligned}$	$\begin{gathered} 1.167 \\ (.382)^{* * *} \end{gathered}$	$\begin{aligned} & 1.342 \\ & (.391)^{* * *} \end{aligned}$	$\stackrel{.967}{(.474)^{* *}}$
Intm. Input Tariff	$\begin{aligned} & -3.499 \\ & (.597)^{* * *} \end{aligned}$	$\begin{aligned} & -3.034 \\ & (.671)^{* * *} \end{aligned}$	$\begin{aligned} & -2.898 \\ & (.558)^{* * *} \end{aligned}$	$\begin{aligned} & -2.875 \\ & (.559)^{* * *} \end{aligned}$	$\begin{aligned} & -2.486 \\ & (.672)^{* * *} \end{aligned}$
Import Penetration	$\begin{aligned} & .046 \\ & (.354) \end{aligned}$	$\begin{aligned} & -.066 \\ & (.362) \end{aligned}$	$\begin{aligned} & .297 \\ & (.334) \end{aligned}$	$\begin{aligned} & .278 \\ & (.335) \end{aligned}$	$\begin{aligned} & .035 \\ & (.364) \end{aligned}$
Sector-level covariates					
Sector real exch. rate	$\begin{aligned} & -.899 \\ & (.637) \end{aligned}$	$\begin{aligned} & -.900 \\ & \text { (.637) } \end{aligned}$	$\begin{aligned} & -.892 \\ & (.633) \end{aligned}$	$\begin{gathered} -.878 \\ (.633) \end{gathered}$	$\begin{aligned} & -.793 \\ & (.639) \end{aligned}$
FDI Flow (USD billion)	$\begin{gathered} .060 \\ (.022)^{* * *} \end{gathered}$	$\begin{gathered} .067 \\ (.022)^{* * *} \end{gathered}$	$\stackrel{.055}{(.022)^{* *}}$	$\stackrel{.055}{(.022)^{* *}}$	$\stackrel{.067}{(.022)^{* * *}}$
Herfindahl Index (sales)	$\begin{aligned} & -.858 \\ & (.296)^{* * *} \end{aligned}$	$\begin{gathered} -.784 \\ (.300)^{* * *} \end{gathered}$	$\frac{-.768}{(.296)^{* * *}}$	$\begin{gathered} -.759 \\ (.296)^{* *} \end{gathered}$	$\begin{gathered} -.689 \\ (.301)^{* *} \end{gathered}$
Plant-level covariates					
Log Employment	$\begin{gathered} -.189 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.189 \\ (.008)^{* * *} \end{gathered}$	$\stackrel{-.142}{(.009)^{* * *}}$	$\stackrel{-.141}{(.009)^{* * *}}$	$\begin{gathered} -.141 \\ (.009)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{aligned} & .942 \\ & (.107)^{* * *} \end{aligned}$	$\begin{gathered} .942 \\ (.107)^{* * *} \end{gathered}$	$\begin{gathered} .849 \\ (.105)^{* * *} \end{gathered}$	$\stackrel{.850}{(.105)^{* * *}}$	$\begin{gathered} .851 \\ (.105)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} .738 \\ (.124)^{* * *} \end{gathered}$	$\frac{.737}{(.124)^{* * *}}$	$\frac{.668}{(.122)^{* * *}}$	$\stackrel{.668}{(.122)^{* * *}}$	$\stackrel{.667}{(.122)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} -.677 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.675 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.622 \\ (.067)^{* * *} \end{gathered}$	$\begin{gathered} -.621 \\ (.067)^{* * *} \end{gathered}$	$\stackrel{-.617}{(.067)^{* * *}}$
Worker-level covariates					
Prof. or Manag'l. Occ.	$\begin{gathered} -.801 \\ (.068)^{* * *} \end{gathered}$	$\stackrel{-.802}{(.068)^{* * *}}$	$\begin{gathered} -.808 \\ (.068)^{* * *} \end{gathered}$	$\stackrel{-.807}{(.068)^{* * *}}$	$\stackrel{-.808}{(.068)^{* * *}}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.597 \\ (.064)^{* * *} \end{gathered}$	$\begin{gathered} -.597 \\ (.064)^{* * *} \end{gathered}$	$\begin{gathered} -.604 \\ (.064)^{* * *} \end{gathered}$	$\stackrel{-.603}{(.064)^{* * *}}$	$\stackrel{-.603}{(.064)^{* * *}}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.488 \\ (.062)^{* * *} \end{gathered}$	$\begin{gathered} -.489 \\ (.062)^{* * *} \end{gathered}$	$\begin{gathered} -.496 \\ (.062)^{* * *} \end{gathered}$	$\begin{gathered} -.495 \\ (.062)^{* * *} \end{gathered}$	$\stackrel{-.495}{(.062)^{* * *}}$
Skilled B1. Collar Occ.	$\begin{gathered} -.413 \\ (.032)^{* * *} \end{gathered}$	$\begin{gathered} -.414 \\ (.032)^{* * *} \end{gathered}$	$\begin{aligned} & -.410 \\ & (.032)^{* * *} \end{aligned}$	$\begin{gathered} -.409 \\ (.032)^{* * *} \end{gathered}$	$\stackrel{-.410}{(.032)^{* * *}}$
Obs.	112,974	112,974	112,974	112,974	112,974
Pseudo R^{2}	. 037	. 037	. 041	. 041	. 041

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Controlling for year effects. Robust standard errors in parentheses: significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 110: First-stage Predictions of Sector Regressors, subsector ibge 1986-98

	Separations			Accessions		
	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.
	(1)	(2)	(3)	(4)	(5)	(6)
USD Exch. Rate	$\underset{(.0007)^{* * *}}{.014}$	$\begin{gathered} .061 \\ (.0006)^{* * *} \end{gathered}$	$\underset{(.0002)^{* * *}}{.004}$	$\begin{gathered} .015 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .063 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .004 \\ (.0002)^{* * *} \end{gathered}$
PPI Idx. EU	$\underset{(.007)^{* * *}}{-2.224}$	$\begin{gathered} -2.040 \\ (.006)^{* * *} \end{gathered}$	$\stackrel{.247}{(.002)^{* * *}}$	$\begin{aligned} & -2.258 \\ & (.007)^{* * *} \end{aligned}$	$\begin{aligned} & -2.070 \\ & (.006)^{* * *} \end{aligned}$	$\underset{(.002)^{* * *}}{.249}$
PPI Idx. NAM	$\begin{gathered} .693 \\ (.006)^{)^{* *}} \end{gathered}$	$\begin{aligned} & .371 \\ & (.005)^{* * *} \end{aligned}$	$\underset{(.002)^{* * *}}{.059}$	$\begin{gathered} .711 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .387 \\ (.005)^{* * *} \end{gathered}$	$\stackrel{.056}{(.002)^{* * *}}$
Balassa Comp. Adv.	$\stackrel{-.016}{(.0002)^{* * *}}$	$\begin{gathered} -.026 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.023 \\ (.00006)^{* * *} \end{gathered}$	$\stackrel{-.016}{(.0002)^{* * *}}$	$\underset{(.0002)^{* * *}}{-.026}$	$\begin{gathered} -.022 \\ (.00006)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\begin{gathered} .029 \\ (.0006)^{* * *} \end{gathered}$	$\begin{aligned} & .031 \\ & (.0005)^{* * *} \end{aligned}$	$\xrightarrow[(.0002)^{* * *}]{.005}$	$\begin{gathered} .029 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .031 \\ (.0006)^{* * *} \end{gathered}$	$\underset{(.0002)^{* * *}}{.005}$
Herfindahl Index (sales)	$\begin{gathered} -.017 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} -.282 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .309 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.028 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} -.290 \\ (.003)^{* * *} \end{gathered}$	$\begin{aligned} & .310 \\ & (.001)^{* * *} \end{aligned}$
Log Employment	$\begin{gathered} .011 \\ (.0001)^{* * *} \end{gathered}$	$\begin{aligned} & .008 \\ & (.00009)^{* * *} \end{aligned}$	$\begin{gathered} .002 \\ (.00003)^{* * *} \end{gathered}$	$\begin{gathered} .009 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .007 \\ (.00008)^{* * *} \end{gathered}$	$\begin{aligned} & .001 \\ & (.00003)^{* * *} \end{aligned}$
Share: Middle School or less	$\begin{gathered} .030 \\ (.002)^{* * *} \end{gathered}$	$\stackrel{.016}{(.002)^{* * *}}$	$\begin{gathered} -.022 \\ (.0006)^{* * *} \end{gathered}$	$\stackrel{.025}{(.002)^{* * *}}$	$\begin{gathered} .014 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.018 \\ (.0005)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.020 \\ (.003)^{* * *} \end{gathered}$	$\frac{-.021}{(.002)^{* * *}}$	$\begin{aligned} & .005 \\ & (.0007)^{* * *} \end{aligned}$	$\stackrel{-.027}{(.002)^{* * *}}$	$\frac{-.024}{(.002)^{* * *}}$	$\begin{gathered} .010 \\ (.0006)^{* * *} \end{gathered}$
Share: White-collar occ.	$\begin{gathered} -.008 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.008 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.008 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.008 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.008 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.007 \\ (.0003)^{* * *} \end{gathered}$
F statistic (IV)	67,810.65	83,202.08	42,451.25	68,491.53	83,945.77	42,546.58

Sources: Sector data from various sources at subsector IBGE level; RAIS 1986-98 labor force information. Weighted regressions using workersample observation counts (as in Table 108 for separations, Table 109 for accessions). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 111: First-stage Predictions of Export Status, subsector ibge 1986-98

	Separations			Accessions		
	OLS	Firm FE	Firm FE	OLS	Firm FE	Firm FE
	(1)	(2)	(3)	(4)	(5)	(6)
World imports APD	$\begin{aligned} & .004 \\ & (.055) \end{aligned}$	$\begin{aligned} & -.133 \\ & (.080)^{*} \end{aligned}$	$\begin{gathered} .142 \\ (.085)^{*} \end{gathered}$	$\begin{array}{r} -.013 \\ (.056) \end{array}$	$\begin{array}{r} -.091 \\ (.081) \end{array}$	$\begin{gathered} .209 \\ (.086)^{* *} \end{gathered}$
World imports CEE	$\begin{gathered} -3.961 \\ (.255)^{* * *} \end{gathered}$	$\begin{gathered} -3.511 \\ (.367)^{* * *} \end{gathered}$	$\begin{gathered} -3.163 \\ (.369)^{* * *} \end{gathered}$	$\begin{gathered} -4.074 \\ (.258)^{* * *} \end{gathered}$	$\begin{aligned} & -3.386 \\ & (.369)^{* * *} \end{aligned}$	$\begin{aligned} & -3.002 \\ & (.371)^{* * *} \end{aligned}$
World imports LAC	$\begin{gathered} -.862 \\ (.140)^{* * *} \end{gathered}$	$\begin{gathered} -.567 \\ (.202)^{* * *} \end{gathered}$	$\begin{gathered} -.660 \\ (.202)^{* * *} \end{gathered}$	$\stackrel{-.877}{(.141)^{* * *}}$	$\stackrel{-.651}{(.202)^{* * *}}$	$\begin{gathered} -.753 \\ (.203)^{* * *} \end{gathered}$
World imports NAM	$\begin{gathered} .984 \\ (.059)^{* * *} \end{gathered}$	$\underset{(.084)^{* * *}}{.882}$	$\begin{gathered} .744 \\ (.085)^{* * *} \end{gathered}$	$\underset{(.059)^{* * *}}{1.015}$	$\frac{.871}{(.084)^{* * *}}$	$\begin{aligned} & .720 \\ & (.085)^{* * *} \end{aligned}$
World imports ODV	$\begin{gathered} .846 \\ (.063)^{* * *} \end{gathered}$	$\underset{(.089)^{* * *}}{.706}$	$\begin{gathered} .690 \\ (.089)^{* * *} \end{gathered}$	$\begin{gathered} .869 \\ (.063)^{* * *} \end{gathered}$	$\underset{(.089)^{* * *}}{.691}$	$\underset{(.089)^{* * *}}{.673}$
World imports OIN	$\begin{aligned} & .231 \\ & (.185) \end{aligned}$	$\stackrel{.627}{(.267)^{* *}}$	$\begin{gathered} -.218 \\ (.282) \end{gathered}$	$\begin{aligned} & .282 \\ & (.187) \end{aligned}$	$\underset{(.269)^{*}}{.491}$	$\begin{array}{r} -.431 \\ (.283) \end{array}$
World imports WEU	$\begin{gathered} -.054 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.074 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.032 \\ (.015)^{* *} \end{gathered}$	$\begin{gathered} -.058 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.069 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.023 \\ (.015) \end{gathered}$
Balassa Comp. Adv.	$\begin{gathered} -.053 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.034 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.058 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.052 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.034 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.059 \\ (.003)^{* * *} \end{gathered}$
Comp. Adv. \times Prd. Trff.			$\frac{.148}{(.016)^{* * *}}$			$.161$
FDI Flow (USD billion)	$\stackrel{-.021}{(.002)^{* * *}}$	$\stackrel{-.024}{(.004)^{* * *}}$	$\begin{gathered} -.019 \\ (.004)^{* * *} \end{gathered}$	$\stackrel{-.023}{(.002)^{* * *}}$	$\begin{gathered} -.025 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} -.019 \\ (.004)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{gathered} .328 \\ (.014)^{* * *} \end{gathered}$	$\begin{aligned} & .310 \\ & (.020)^{* * *} \end{aligned}$	$\begin{gathered} .284 \\ (.020)^{* * *} \end{gathered}$	$\begin{gathered} .334 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} .316 \\ (.020)^{* * *} \end{gathered}$	$\underset{(.021)^{* * *}}{.288}$
Log Employment	$\begin{gathered} .133 \\ (.0004)^{* * *} \end{gathered}$	$\underset{(.0007)^{* * *}}{.128}$	$\begin{gathered} .128 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .131 \\ (.0004)^{* * *} \end{gathered}$	$\underset{(.0007)^{* * *}}{.126}$	$\begin{gathered} .126 \\ (.0007)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{gathered} -.449 \\ (.007)^{* * *} \end{gathered}$	$\begin{gathered} -.370 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.370 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.451 \\ (.007)^{* * *} \end{gathered}$	$\begin{gathered} -.366 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.367 \\ (.010)^{* * *} \end{gathered}$
Share: Some High School	$\stackrel{-.295}{(.009)^{* * *}}$	$\begin{gathered} -.291 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} -.294 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} -.299 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.290 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} -.293 \\ (.012)^{* * *} \end{gathered}$
Share: White-collar occ.	$\begin{gathered} .013 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .037 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .038 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .019 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .042 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .042 \\ (.006)^{* * *} \end{gathered}$
F statistic (IV)	144.141	36.48	36.353	147.979	35.054	36.083

Sources: SECEX exporter information 1990-98; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 108 for separations, Table 109 for accessions). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Annual world imports, coefficients rescaled to imports in USD billion.

Table 112: Pseudo-IV Conditional Logit Estimates, 1990-98

	Separations		Accessions	
	Tariff IV	Exporter IV	Tariff IV	Exporter IV
	(1)	(2)	(3)	(4)
Predicted Product Mkt. Tariff	$\begin{aligned} & -5.737 \\ & (3.300)^{*} \end{aligned}$		$\begin{aligned} & -4.554 \\ & (3.368) \end{aligned}$	
Residual Product Mkt. Tariff	$\begin{array}{r} -.323 \\ (.436) \end{array}$		$\begin{aligned} & 1.018 \\ & (.410)^{* *} \end{aligned}$	
Predicted Intm. Input Tariff	$\begin{gathered} 7.440 \\ (3.846)^{*} \end{gathered}$		$\begin{aligned} & 4.450 \\ & (3.980) \end{aligned}$	
Residual Intm. Input Tariff	$\begin{aligned} & 2.598 \\ & (.683)^{* * *} \end{aligned}$		$\begin{aligned} & -2.824 \\ & (.607)^{* * *} \end{aligned}$	
Predicted Import Penetration				
Residual Import Penetration	$\begin{aligned} & 1.005 \\ & (.394)^{* *} \end{aligned}$		$\begin{aligned} & .242 \\ & (.358) \end{aligned}$	
Predicted Exporter Status				
Residual Exporter Status		$\stackrel{.283}{(.028)^{* * *}}$		$\frac{-.439}{(.027)^{* * *}}$
Obs.	145,408	145,408	112,974	112,974
Pseudo R^{2}	. 150	. 150	. 041	. 041

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 113: Fixed-Effects Linear Least-Squares Estimates, Short subsector ibge Regressions 1990-98

	Separations			Accessions		
	Cdl. Logit	OLS-FE		Cdl. Logit	OLS-FE	
			IV			IV
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\frac{.169}{(.024)^{* * *}}$	$\underset{(.002)^{* * *}}{.017}$	$\begin{gathered} .014 \\ (.006)^{* *} \end{gathered}$	$\begin{aligned} & \hline-.016 \\ & (.020) \end{aligned}$	$\begin{aligned} & \hline .002 \\ & (.002) \end{aligned}$	$\begin{gathered} -.018 \\ (.006)^{* * *} \end{gathered}$
Exporter Status	$\underset{(.028)^{* * *}}{.283}$	$\underset{(.003)^{* * *}}{.038}$	$\begin{aligned} & .337 \\ & (.261) \end{aligned}$	$\frac{-.439}{(.027)^{* * *}}$	$\begin{gathered} -.049 \\ (.003)^{* * *} \end{gathered}$	$\begin{aligned} & -1.064 \\ & (.275)^{* * *} \end{aligned}$
Product Market Tariff	$\begin{gathered} -.705 \\ (.426)^{*} \end{gathered}$	$\begin{gathered} -.100 \\ (.035)^{* * *} \end{gathered}$	$\begin{gathered} -.176 \\ (.069)^{* *} \end{gathered}$	$\begin{gathered} 1.246 \\ (.393)^{* * *} \end{gathered}$	$. .124$	$\begin{gathered} -.025 \\ (.080) \end{gathered}$
Intm. Input Tariff	$\underset{(.678)^{* * *}}{2.880}$	$\begin{gathered} .343 \\ (.054)^{* * *} \end{gathered}$		$\begin{aligned} & -3.073 \\ & (.598)^{* * *} \end{aligned}$	$\begin{gathered} -.309 \\ (.049)^{* * *} \end{gathered}$	
Import Penetration	$\begin{aligned} & 1.257 \\ & (.388)^{* * *} \end{aligned}$	$\begin{aligned} & .052 \\ & (.034) \end{aligned}$		$\begin{array}{r} .198 \\ (.355) \end{array}$	$\underset{(.031)^{* * *}}{.088}$	
Obs.	145,408	293,353	293,353	112,974	293,124	293,124

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Instruments: World imports by year and real exchange rate components by sector and year (two instruments with sector variation). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 114: Conditional Logit Estimates of Separations by Education Group, 199098

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	.138	.114	.462	-.096	.139	.135
Comp. Adv. \times Prd. Trff.	.202	$(.041)^{* * *}$	$(.148)^{* * *}$	$(.226)$	$(.037)^{* * * *}$	$(.037)^{* * *}$
Exporter Status	$(.200)$	$(.224)$	-1.217	2.334	.207	.224
	.481	.481	$(.910)$	(1.440)	$(.201)$	$(.205)$
Exporter \times Prd. Trff.	$(.048)^{* * *}$	$(.055)^{* * *}$	$(.292$.122	.481	.482
	-1.071	-1.000	-.388	$(.251)$	$(.048)^{* * *}$	$(.048)^{* * *}$
Product Market Tariff	$(.213)^{* * *}$	$(.244)^{* * *}$	$(.767)$	(1.156)	-1.070	-1.077
	-.424	-.287	-.715	-6.007	-.415	$(.216)^{* * *}$
Obs.	$(.532)$	$(.612)$	(1.860)	$(3.247)^{*}$	$(.531)$	$(.595$
Pseudo R^{2}	145,408	110,831	17,627	7,498	145,408	143,536

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 115: Conditional Logit Estimates of Accessions by Education Group, 199098

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	-.058	-.022	-.315	-.288	-.062	-.055
Comp. Adv. \times Prd. Trff.	$(.032)^{*}$	$(.036)$	$(.122)^{*^{* * *}}$	$(.191)$	$(.032)^{*}$	$(.032)^{*}$
Exporter Status	.289	.104	1.092	1.037	.268	.270
	$(.162)^{*}$	$(.179)$	$(.682)$	(1.045)	$(.164)$	$(.165)$
Exporter \times Prd. Trff.	-.359	-.322	-.454	-.740	-.358	-.371
	$(.045)^{* * *}$	$(.052)^{* * *}$	$(.160)^{* * *}$	$(.245)^{* * *}$	$(.045)^{*^{* * *}}$	$(.046)^{* * *}$
Product Market Tariff	-.428	-.525	-.284	-.191	-.433	-.357
	$(.195)^{* *}$	$(.225)^{*^{*}}$	$(.685)$	(1.023)	$(.195)^{* *}$	$(.197)^{*}$
Obs.	.967	1.375	.969	.423	.894	.908
Pseudo R^{2}	$(.474)^{* *}$	$(.532)^{* * *}$	(1.867)	(2.763)	$(.482)^{*}$	$(.479)^{*}$

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 116: Alternative Logit Estimates of Separations, 1986-98

	Cdl. Logit baseline	Logit		Cdl. Logit Sector FE	Cdl. Logit 1986-98
		cond'l sample	full sample		
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\frac{.138}{(.036)^{* * *}}$	$\frac{.149}{(.020)^{* * *}}$	$\stackrel{.200}{(.015)^{* * *}}$	$\begin{gathered} -.074 \\ (.056) \end{gathered}$	$\begin{gathered} .034 \\ (.021) \end{gathered}$
Comp. Adv. \times Prd. Trff.	$\begin{aligned} & .202 \\ & (.200) \end{aligned}$	$\begin{gathered} -.268 \\ (.120)^{* *} \end{gathered}$	$\begin{gathered} -.472 \\ (.087)^{* * *} \end{gathered}$	$\begin{gathered} -.122 \\ (.215) \end{gathered}$	$\stackrel{.156}{(.048)^{* * *}}$
Exporter Status	$\stackrel{.481}{(.048)^{* * *}}$	$\underset{(.027)^{* * *}}{.161}$	$\underset{(.021)}{.0006}$	$\stackrel{.465}{(.048)^{* * *}}$	
Exporter \times Prd. Trff.	$\begin{aligned} & -1.071 \\ & (.213)^{* * *} \end{aligned}$	$\begin{gathered} -.515 \\ (.125)^{* * *} \end{gathered}$	$\begin{gathered} -.084 \\ (.094) \end{gathered}$	$\frac{-.979}{(.215)^{* * *}}$	
Product Market Tariff	$\begin{aligned} & -.424 \\ & (.532) \end{aligned}$	$\xrightarrow[(.597)^{* *}]{.594}$	$\begin{aligned} & .302 \\ & (.227) \end{aligned}$	$\begin{aligned} & -1.663 \\ & (.575)^{* * *} \end{aligned}$	$\begin{array}{r} .410 \\ (.269) \end{array}$
Obs.	145,408	145,408	293,353	145,408	244,543
Pseudo R^{2}	. 150	. 033	. 050	. 152	. 135

Source: RAIS 1986-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 117: Alternative Logit Estimates of Accessions, 1986-98

	Cdl. Logit baseline	Logit		Cdl. Logit Sector FE	Cdl. Logit 1986-98
		cond'l sample	full sample		
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{aligned} & -.058 \\ & (.032)^{*} \end{aligned}$	$\begin{aligned} & .026 \\ & (.021) \end{aligned}$	$\frac{.115}{(.017)^{* * *}}$	$\begin{aligned} & -.115 \\ & (.053)^{* *} \end{aligned}$	$\begin{aligned} & -.022 \\ & (.019) \end{aligned}$
Comp. Adv. \times Prd. Trff.	$\begin{gathered} .289 \\ (.162)^{*} \end{gathered}$	$\stackrel{.286}{(.121)^{* *}}$	$\begin{gathered} .442 \\ (.096)^{* * *} \end{gathered}$	$\begin{gathered} .381 \\ (.176)^{* *} \end{gathered}$	$\begin{gathered} .018 \\ (.038) \end{gathered}$
Exporter Status	$\frac{-.359}{(.045)^{* * *}}$	$\stackrel{-.190}{(.031)^{* * *}}$	$\begin{gathered} -.420 \\ (.025)^{* * *} \end{gathered}$	$\begin{gathered} -.373 \\ (.045)^{* * *} \end{gathered}$	
Exporter \times Prd. Trff.	$\begin{gathered} -.428 \\ (.195)^{* *} \end{gathered}$	$\begin{gathered} -.643 \\ (.148)^{* * *} \end{gathered}$	$\stackrel{-.500}{(.117)^{* * *}}$	$\frac{-.350}{(.194)^{*}}$	
Product Market Tariff	$\stackrel{.967}{(.474)^{* *}}$	$\begin{aligned} & .099 \\ & (.304) \end{aligned}$	$\begin{gathered} -1.854 \\ (.246)^{* * *} \end{gathered}$	$\begin{aligned} & 1.385 \\ & (.563)^{* *} \end{aligned}$	$\underset{(.255)^{* * *}}{1.078}$
Obs.	112,974	112,974	293,124	112,974	195,144
Pseudo R^{2}	. 041	. 023	. 078	. 042	. 031

Source: RAIS 1986-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

7.4 Separations and accessions of prime-age male workers nationwide, CNAE sector

Table 118: Conditional Logit Estimates of Separations and Accessions, cnae 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Balassa Comp. Adv.	$\begin{aligned} & .0006 \\ & (.014) \end{aligned}$	$\begin{aligned} & .010 \\ & (.019) \end{aligned}$	$\begin{aligned} & .006 \\ & (.014) \end{aligned}$	$\begin{gathered} -.003 \\ (.018) \end{gathered}$
Comp. Adv. \times Prd. Trff.	$\xrightarrow[(.086)^{* * *}]{.326}$	$\begin{gathered} .293 \\ (.119)^{* *} \end{gathered}$	$\begin{gathered} -.018 \\ (.083) \end{gathered}$	$\begin{gathered} -.030 \\ (.111) \end{gathered}$
Exporter Status	$\frac{.397}{(.054)^{* * *}}$	$\begin{gathered} .423 \\ (.064)^{* * *} \end{gathered}$	$\frac{-.376}{(.051)^{* * *}}$	$\begin{aligned} & -.418 \\ & (.061)^{* * *} \end{aligned}$
Exporter \times Prd. Trff.	$\begin{gathered} -.915 \\ (.244)^{* * *} \end{gathered}$	$\begin{gathered} -.993 \\ (.291)^{* * *} \end{gathered}$	$\begin{aligned} & -.318 \\ & (.219) \end{aligned}$	$\begin{aligned} & -.299 \\ & (.266) \end{aligned}$
Comp. Adv. \times Exporter		$\begin{gathered} -.016 \\ (.023) \end{gathered}$		$\begin{aligned} & .014 \\ & (.023) \end{aligned}$
Comp. Adv. \times Exp. \times Prd. Trff.		$\begin{aligned} & .056 \\ & (.149) \end{aligned}$		$\begin{gathered} .040 \\ (.144) \end{gathered}$
Product Market Tariff	$\begin{aligned} & -.028 \\ & (.308) \end{aligned}$	$\begin{aligned} & .008 \\ & (.316) \end{aligned}$	$\begin{gathered} .523 \\ (.260)^{* *} \end{gathered}$	$\underset{(.267)^{*}}{.514}$
Intm. Input Tariff	$\begin{aligned} & 1.080 \\ & (.575)^{*} \end{aligned}$	$\begin{aligned} & 1.085 \\ & (.575)^{*} \end{aligned}$	$\begin{aligned} & -1.925 \\ & (.482)^{* * *} \end{aligned}$	$\begin{aligned} & -1.934 \\ & (.482)^{* * *} \end{aligned}$
Import Penetration	$\begin{aligned} & .210 \\ & (.336) \end{aligned}$	$\begin{aligned} & .208 \\ & (.336) \end{aligned}$	$\begin{aligned} & .256 \\ & (.307) \end{aligned}$	$\begin{aligned} & .253 \\ & (.308) \end{aligned}$
Obs.	124,993	124,993	96,682	96,682
Pseudo R^{2}	. 162	. 162	. 053	. 053

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 119: Year Effects in Conditional Logit Estimates of Separations and AcCESSIONS, CNAE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Year 1990	$\begin{aligned} & -1.307 \\ & (.237)^{* * *} \end{aligned}$	$\begin{gathered} -1.308 \\ (.237)^{* * *} \end{gathered}$	$\underset{(.233)^{*}}{.428}$	$\underset{(.233)^{*}}{.430}$
Year 1991	$\begin{gathered} -.379 \\ (.076)^{* * *} \end{gathered}$	$\begin{gathered} -.379 \\ (.076)^{* * *} \end{gathered}$	$\begin{gathered} .332 \\ (.077)^{* * *} \end{gathered}$	$\begin{gathered} .332 \\ (.077)^{* * *} \end{gathered}$
Year 1993	$\begin{gathered} -.016 \\ (.059) \end{gathered}$	$\begin{aligned} & -.017 \\ & (.059) \end{aligned}$	$\begin{aligned} & .091 \\ & (.059) \end{aligned}$	$\begin{aligned} & .092 \\ & (.059) \end{aligned}$
Year 1994	$\begin{aligned} & -.087 \\ & (.144) \end{aligned}$	$\begin{aligned} & -.088 \\ & (.144) \end{aligned}$	$\begin{gathered} -.048 \\ (.142) \end{gathered}$	$\begin{aligned} & -.045 \\ & (.142) \end{aligned}$
Year 1995	$\begin{aligned} & .297 \\ & (.200) \end{aligned}$	$\begin{aligned} & .296 \\ & (.199) \end{aligned}$	$\begin{aligned} & -.226 \\ & (.197) \end{aligned}$	$\begin{aligned} & -.223 \\ & (.197) \end{aligned}$
Year 1996	$\frac{.464}{(.159)^{* * *}}$	$\stackrel{.463}{(.159)^{* * *}}$	$\begin{gathered} -.353 \\ (.156)^{* *} \end{gathered}$	$\begin{gathered} -.351 \\ (.156)^{* *} \end{gathered}$
Year 1997	${ }_{(.149)^{* * *}}^{.663}$	$\frac{.662}{(.149)^{* * *}}$	$\begin{gathered} -.614 \\ (.146)^{* * *} \end{gathered}$	$\stackrel{-.611}{(.146)^{* * *}}$
Year 1998	$\frac{.977}{(.118)^{* * *}}$	$\frac{.976}{(.118)^{* * *}}$	$\begin{aligned} & -1.201 \\ & (.117)^{* * *} \end{aligned}$	$\begin{gathered} -1.199 \\ (.117)^{* * *} \end{gathered}$
Obs.	124,993	124,993	96,682	96,682
Pseudo R^{2}	. 162	. 162	. 053	. 053

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Other regressors (not reported): Trade-related, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 120: Conditional Logit Estimates of Separations, cnae 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{gathered} .048 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} \hline .009 \\ (.014) \end{gathered}$			$\begin{aligned} & \hline .0006 \\ & (.014) \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{gathered} .301 \\ (.086)^{* * *} \end{gathered}$			$\begin{gathered} .326 \\ (.086)^{* * *} \end{gathered}$
Exporter Status			$\begin{gathered} .241 \\ (.031)^{* * *} \end{gathered}$	$\begin{gathered} .406 \\ (.054)^{* * *} \end{gathered}$	$\frac{.397}{(.054)^{* * *}}$
Exporter \times Prd. Trff.				$\begin{gathered} -.888 \\ (.241)^{* * *} \end{gathered}$	$\stackrel{-.915}{(.244)^{* * *}}$
Product Market Tariff	$\begin{aligned} & -.177 \\ & (.278) \end{aligned}$	$\begin{aligned} & -.443 \\ & (.296) \end{aligned}$	$\begin{gathered} -.189 \\ (.279) \end{gathered}$	$\begin{gathered} .208 \\ (.294) \end{gathered}$	$\begin{aligned} & -.028 \\ & (.308) \end{aligned}$
Intm. Input Tariff	$\begin{array}{r} .935 \\ (.574) \end{array}$	$\begin{aligned} & 1.123 \\ & (.577)^{*} \end{aligned}$	$\begin{gathered} .675 \\ (.576) \end{gathered}$	$\begin{aligned} & .712 \\ & (.573) \end{aligned}$	$\begin{aligned} & 1.080 \\ & (.575)^{*} \end{aligned}$
Import Penetration	$\begin{aligned} & .319 \\ & (.335) \end{aligned}$	$\begin{aligned} & .327 \\ & (.335) \end{aligned}$	$\begin{aligned} & -.071 \\ & (.329) \end{aligned}$	$\begin{aligned} & -.103 \\ & (.329) \end{aligned}$	$\begin{aligned} & .210 \\ & (.336) \end{aligned}$
Sector-level covariates					
Sector real exch. rate	$\begin{aligned} & -1.365 \\ & (.690)^{* *} \end{aligned}$	$\begin{aligned} & -1.555 \\ & (.693)^{* *} \end{aligned}$	$\underset{(.689)}{-1.025}$	$\begin{aligned} & -.959 \\ & (.690) \end{aligned}$	$\begin{aligned} & -1.478 \\ & (.695)^{* *} \end{aligned}$
FDI Flow (USD billion)	$\begin{gathered} -.079 \\ (.019)^{* * *} \end{gathered}$	$\begin{aligned} & -.061 \\ & (.020)^{* * *} \end{aligned}$	$\frac{-.055}{(.019)^{* * *}}$	$\frac{-.055}{(.019)^{* * *}}$	$\begin{gathered} -.057 \\ (.020)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -.116 \\ & (.307) \end{aligned}$	$\begin{aligned} & -.095 \\ & (.307) \end{aligned}$	$\begin{aligned} & -.016 \\ & (.291) \end{aligned}$	$\begin{gathered} -.004 \\ (.291) \end{gathered}$	$\begin{aligned} & -.088 \\ & (.307) \end{aligned}$
Plant-level covariates					
Log Employment	$\stackrel{-.327}{(.013)^{* * *}}$	$\stackrel{-.328}{(.013)^{* * *}}$	$\frac{-.352}{(.013)^{* * *}}$	$\frac{-.350}{(.013)^{* * *}}$	$\stackrel{-.351}{(.013)^{* * *}}$
Share: Middle School or less	$\frac{-.758}{(.157)^{* * *}}$	$\frac{-.750}{(.157)^{* * *}}$	$\frac{-.707}{(.156)^{* * *}}$	$\stackrel{-.701}{(.156)^{* * *}}$	$\stackrel{-.689}{(.157)^{* * *}}$
Share: Some High School	$\begin{gathered} -.573 \\ (.177)^{* * *} \end{gathered}$	$\frac{-.567}{(.178)^{* * *}}$	$\frac{-.550}{(.176)^{* * *}}$	$\frac{-.547}{(.176)^{* * *}}$	$\stackrel{-.523}{(.178)^{* * *}}$
Share: White-collar occ.	$\stackrel{.878}{(.088)^{* * *}}$	$\begin{gathered} .883 \\ (.089)^{* * *} \end{gathered}$	$\stackrel{.840}{(.088)^{* * *}}$	$\stackrel{.840}{(.088)^{* * *}}$	$\stackrel{.848}{(.089)^{* * *}}$
Worker-level covariates					
Tenure at plant (in years)	$\stackrel{1.475}{(.043)^{* * *}}$	$\frac{1.476}{(.043)^{* * *}}$	$\begin{gathered} 1.460 \\ (.043)^{* * *} \end{gathered}$	$\begin{gathered} 1.461 \\ (.043)^{* * *} \end{gathered}$	$\begin{gathered} 1.466 \\ (.043)^{* * *} \end{gathered}$
Pot. labor force experience	$\begin{aligned} & .004 \\ & .(003) \end{aligned}$	$\begin{aligned} & .004 \\ & (.003) \end{aligned}$	$\xrightarrow[(.003)^{*}]{(}$	$\begin{gathered} .005 \\ (.003)^{*} \end{gathered}$	$\begin{aligned} & .004 \\ & .(003) \end{aligned}$
Prof. or Manag'l. Occ.	$\begin{gathered} -.058 \\ (.081) \end{gathered}$	$\begin{gathered} -.061 \\ (.081) \end{gathered}$	$\begin{gathered} -.060 \\ (.081) \end{gathered}$	$\begin{gathered} -.060 \\ (.081) \end{gathered}$	$\begin{gathered} -.057 \\ (.081) \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.064 \\ (.077) \end{gathered}$	$\begin{gathered} -.066 \\ (.077) \end{gathered}$	$\begin{gathered} -.062 \\ (.077) \end{gathered}$	$\begin{gathered} -.060 \\ (.077) \end{gathered}$	$\begin{gathered} -.064 \\ (.077) \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.192 \\ (.077)^{* *} \end{gathered}$	$\begin{gathered} -.192 \\ (.077)^{* *} \end{gathered}$	$\begin{gathered} -.192 \\ (.077)^{* *} \end{gathered}$	$\begin{gathered} -.191 \\ (.077)^{* *} \end{gathered}$	$\begin{gathered} -.192 \\ (.078)^{* *} \end{gathered}$
Skilled B1. Collar Occ.	$\begin{gathered} -.026 \\ (.042) \end{gathered}$	$\begin{gathered} -.028 \\ (.042) \end{gathered}$	$\begin{gathered} -.024 \\ (.042) \end{gathered}$	$\begin{gathered} -.023 \\ (.042) \end{gathered}$	$\begin{gathered} -.028 \\ (.042) \end{gathered}$
Obs.	124,993	124,993	126,256	126,256	124,993
Pseudo R^{2}	. 160	. 161	. 161	. 162	. 162

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given ye 60Sector information at CNAE level. Controlling for year effects. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 121: Conditional Logit Estimates of Accessions, cnae 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{gathered} \hline .003 \\ \hline .008) \end{gathered}$	$\begin{aligned} & \hline .002 \\ & (.013) \end{aligned}$			$\begin{aligned} & \hline .006 \\ & (.014) \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{gathered} -.038 \\ (.082) \end{gathered}$			$\begin{gathered} -.018 \\ (.083) \end{gathered}$
Exporter Status			$\begin{gathered} -.436 \\ (.030)^{* * *} \end{gathered}$	$\begin{gathered} -.373 \\ (.051)^{* * *} \end{gathered}$	$\begin{gathered} -.376 \\ (.051)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.				$\begin{aligned} & -.337 \\ & (.217) \end{aligned}$	$\begin{aligned} & -.318 \\ & (.219) \end{aligned}$
Product Market Tariff	$\stackrel{.496}{(.239)^{* *}}$	$\frac{.525}{(.248)^{* *}}$	$\begin{array}{r} .370 \\ (.239) \end{array}$	$\begin{gathered} .496 \\ (.253)^{* *} \end{gathered}$	$\begin{gathered} .523 \\ (.260)^{* *} \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & -2.189 \\ & (.477)^{* * *} \end{aligned}$	$\begin{gathered} -2.206 \\ (.479)^{* * *} \end{gathered}$	$\begin{aligned} & -1.947 \\ & (.477)^{* * *} \end{aligned}$	$\begin{aligned} & -1.927 \\ & (.478)^{* * *} \end{aligned}$	$\begin{gathered} -1.925 \\ (.482)^{* * *} \end{gathered}$
Import Penetration	$\begin{aligned} & .152 \\ & (.307) \end{aligned}$	$\begin{aligned} & .150 \\ & (.307) \end{aligned}$	$\begin{aligned} & .183 \\ & (.298) \end{aligned}$	$\begin{aligned} & .176 \\ & (.299) \end{aligned}$	$\begin{aligned} & .256 \\ & (.307) \end{aligned}$
Sector-level covariates					
Sector real exch. rate	$\begin{gathered} .627 \\ (.679) \end{gathered}$	$\begin{aligned} & .647 \\ & (.680) \end{aligned}$	$\begin{aligned} & .655 \\ & (.679) \end{aligned}$	$\begin{aligned} & .689 \\ & (.680) \end{aligned}$	$\begin{aligned} & .702 \\ & \text { (.684) } \end{aligned}$
FDI Flow (USD billion)	$\begin{aligned} & .018 \\ & (.021) \end{aligned}$	$\begin{array}{r} .016 \\ (.022) \end{array}$	$\begin{array}{r} .016 \\ (.021) \end{array}$	$\underset{(.021)}{.016}$	$\begin{aligned} & .013 \\ & (.022) \end{aligned}$
Herfindahl Index (sales)	$\begin{aligned} & -.424 \\ & (.287) \end{aligned}$	$\begin{gathered} -.427 \\ (.287) \end{gathered}$	$\begin{aligned} & -.456 \\ & (.269)^{*} \end{aligned}$	$\frac{-.451}{(.269)^{*}}$	$\begin{aligned} & -.371 \\ & (.286) \end{aligned}$
Plant-level covariates					
Log Employment	$\stackrel{-.231}{(.010)^{* * *}}$	$\begin{gathered} -.231 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.182 \\ (.010)^{* * *} \end{gathered}$	$\stackrel{-.182}{(.010)^{* * *}}$	$\stackrel{-.182}{(.010)^{* * *}}$
Share: Middle School or less	$\begin{gathered} .803 \\ (.122)^{* * *} \end{gathered}$	$\begin{gathered} .803 \\ (.122)^{* * *} \end{gathered}$	$\frac{.722}{(.118)^{* * *}}$	$\xrightarrow[(.119)^{* * *}]{.721}$	$\frac{.711}{(.119)^{* * *}}$
Share: Some High School	$\stackrel{.565}{(.143)^{* * *}}$	$\frac{.565}{(.143)^{* * *}}$	$\frac{.535}{(.139)^{* * *}}$	$\frac{.533}{(.140)^{* * *}}$	$.$
Share: White-collar occ.	$\stackrel{-.974}{(.082)^{* * *}}$	$\begin{gathered} -.974 \\ (.082)^{* * *} \end{gathered}$	$\begin{gathered} -.894 \\ (.081)^{* * *} \end{gathered}$	$\stackrel{-.894}{(.081)^{* * *}}$	$\begin{gathered} -.898 \\ (.082)^{* * *} \end{gathered}$
Worker-level covariates					
Prof. or Manag'l. Occ.	$\stackrel{-.768}{(.080)^{* * *}}$	$\frac{-.768}{(.080)^{* * *}}$	$\begin{gathered} -.774 \\ (.079)^{* * *} \end{gathered}$	$\stackrel{-.772}{(.079)^{* * *}}$	$\begin{gathered} -.771 \\ (.080)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\stackrel{-.644}{(.075)^{* * *}}$	$\frac{-.644}{(.075)^{* * *}}$	$\stackrel{-.656}{(.075)^{* * *}}$	$\stackrel{-.654}{(.075)^{* * *}}$	$\stackrel{-.647}{(.075)^{* * *}}$
Unskilled Wh. Collar Occ.	$\stackrel{-.532}{(.072)^{* * *}}$	$\stackrel{-.532}{(.072)^{* * *}}$	$\stackrel{-.525}{(.072)^{* * *}}$	$\stackrel{-.524}{(.072)^{* * *}}$	$\stackrel{-.530}{(.072)^{* * *}}$
Skilled B1. Collar Occ.	$\stackrel{-.392}{(.036)^{* * *}}$	$\stackrel{-.391}{(.036)^{* * *}}$	$\begin{gathered} -.391 \\ (.036)^{* * *} \end{gathered}$	$\begin{gathered} -.391 \\ (.036)^{* * *} \end{gathered}$	$\stackrel{-.385}{(.036)^{* * *}}$
Obs.	96,682	96,682	97,625	97,625	96,682
Pseudo R^{2}	. 049	. 049	. 053	. 053	. 053

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Controlling for year effects. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 122: First-stage Predictions of Sector Regressors, cnae 1986-98

	Separations			Accessions		
	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.
	(1)	(2)	(3)	(4)	(5)	(6)
USD Exch. Rate	$\begin{gathered} .015 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .060 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .023 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} .016 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .061 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .022 \\ (.0003)^{* * *} \end{gathered}$
PPI Idx. EU	$\begin{aligned} & -1.590 \\ & (.007)^{* * *} \end{aligned}$	$\begin{aligned} & -1.481 \\ & (.005)^{* * *} \end{aligned}$	$\stackrel{.058}{(.003)^{* * *}}$	$\begin{aligned} & -1.602 \\ & (.007)^{* * *} \end{aligned}$	$\begin{gathered} -1.495 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .059 \\ (.003)^{* * *} \end{gathered}$
PPI Idx. NAM	$\begin{gathered} .196 \\ (.006)^{* * *} \end{gathered}$	$\stackrel{-.085}{(.005)^{* * *}}$	$\underset{(.002)^{* * *}}{.138}$	$\underset{(.006)^{* * *}}{.207}$	$\begin{gathered} -.074 \\ (.005)^{* * *} \end{gathered}$	$\underset{(.002)^{* * *}}{.136}$
Balassa Comp. Adv.	$\begin{gathered} -.010 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} -.009 \\ (.00009)^{* * *} \end{gathered}$	$\begin{gathered} -.009 \\ (.00004)^{* * *} \end{gathered}$	$\stackrel{-.010}{(.0001)^{* * *}}$	$\begin{gathered} -.009 \\ (.00009)^{* * *} \end{gathered}$	$\begin{gathered} -.009 \\ (.00004)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\begin{gathered} .025 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .015 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .003 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} .025 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .015 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .003 \\ (.0003)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\stackrel{-.046}{(.003)^{* * *}}$	$\begin{gathered} -.113 \\ (.002)^{* * *} \end{gathered}$	$\xrightarrow[(.001)^{* * *}]{.033}$	$\begin{gathered} -.057 \\ (.003)^{* * *} \end{gathered}$	$\frac{-.122}{(.002)^{* * *}}$	$\begin{gathered} .034 \\ (.001)^{* * *} \end{gathered}$
Log Employment	$\begin{gathered} .014 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .007 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .002 \\ (.00005)^{* * *} \end{gathered}$	$\begin{gathered} .013 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .006 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .003 \\ (.00005)^{* * *} \end{gathered}$
Share: Middle School or less	$\underset{(.003)^{* * *}}{.052}$	$\begin{gathered} .029 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.094 \\ (.001)^{* * *} \end{gathered}$	$\stackrel{.041}{(.002)^{* * *}}$	$\begin{gathered} .021 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.076 \\ (.0009)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.020 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.017 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.028}{(.001)^{* * *}}$	$\begin{gathered} -.033 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.026}{(.002)^{* * *}}$	$\stackrel{-.008}{(.001)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} -.001 \\ (.002) \end{gathered}$	$\begin{gathered} -.009 \\ (.001)^{* * *} \end{gathered}$	$\stackrel{-.012}{(.0006)^{* * *}}$	$\stackrel{-.006}{(.002)^{* * *}}$	$\stackrel{-.012}{(.001)^{* * *}}$	$\begin{gathered} -.005 \\ (.0006)^{* * *} \end{gathered}$
F statistic (IV)	42,131.87	65,230.11	15,458.67	41,723	64,725.41	15,328.48

Sources: Sector data from various sources at CNAE level; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 120 for separations, Table 121 for accessions). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, *** one percent.

Table 123: First-stage Predictions of Export Status, cnae 1986-98

	Separations			Accessions		
	OLS	Firm FE	Firm FE	OLS	Firm FE	Firm FE
	(1)	(2)	(3)	(4)	(5)	(6)
World imports APD	$\begin{gathered} .890 \\ (.058)^{* * *} \end{gathered}$	$\underset{(.087)^{* * *}}{.635}$	$\underset{(.088)^{* * *}}{.691}$	$\begin{gathered} .883 \\ (.058)^{* * *} \end{gathered}$	$\underset{(.087)^{* * *}}{.675}$	$\begin{gathered} .739 \\ (.089)^{* * *} \end{gathered}$
World imports CEE	$\underset{(.258)^{* * *}}{1.081}$	$\xrightarrow[(.385)^{* *}]{.977}$	$\begin{gathered} 1.042 \\ (.386)^{* * *} \end{gathered}$	$\underset{(.260)^{* * *}}{.975}$	$\underset{(.388)^{* * *}}{1.128}$	$\begin{gathered} 1.205 \\ (.388)^{* * *} \end{gathered}$
World imports LAC	$\stackrel{-.445}{(.149)^{* * *}}$	$\begin{aligned} & .161 \\ & (.223) \end{aligned}$	$\begin{aligned} & .141 \\ & (.223) \end{aligned}$	$\stackrel{-.422}{(.150)^{* * *}}$	$\begin{aligned} & .076 \\ & (.224) \end{aligned}$	$\begin{aligned} & .052 \\ & (.224) \end{aligned}$
World imports NAM	$\begin{gathered} -.382 \\ (.060)^{* * *} \end{gathered}$	$\begin{gathered} -.444 \\ (.091)^{* * *} \end{gathered}$	$\begin{gathered} -.470 \\ (.091)^{* * *} \end{gathered}$	$\stackrel{-.372}{(.060)^{* * *}}$	$\begin{gathered} -.455 \\ (.091)^{* * *} \end{gathered}$	$\stackrel{-.485}{(.092)^{* * *}}$
World imports ODV	$\begin{array}{r} .033 \\ (.064) \end{array}$	$\begin{aligned} & .008 \\ & (.093) \end{aligned}$	$\begin{aligned} & .005 \\ & (.093) \end{aligned}$	$\begin{aligned} & .065 \\ & (.064) \end{aligned}$	$\begin{gathered} -.017 \\ (.094) \end{gathered}$	$\begin{array}{r} -.021 \\ (.094) \end{array}$
World imports OIN	$\frac{-2.856}{(.192)^{* * *}}$	$\frac{-2.076}{(.288)^{* * *}}$	$\begin{gathered} -2.245 \\ (.292)^{* * *} \end{gathered}$	$\frac{-2.851}{(.193)^{* * *}}$	$\begin{aligned} & -2.194 \\ & (.290)^{* * *} \end{aligned}$	$\begin{gathered} -2.391 \\ (.294)^{* * *} \end{gathered}$
World imports WEU	$\frac{.123}{(.010)^{* * *}}$	$\begin{gathered} .093 \\ (.015)^{* * *} \end{gathered}$	$\frac{.102}{(.015)^{* * *}}$	$\underset{(.010)^{* * *}}{.123}$	$\begin{gathered} .097 \\ (.015)^{* * *} \end{gathered}$	$\frac{.107}{(.015)^{* * *}}$
Balassa Comp. Adv.	$\begin{gathered} -.002 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .004 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.0003 \\ (.002) \end{gathered}$	$\begin{gathered} -.001 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .005 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.0009 \\ (.002) \end{gathered}$
Comp. Adv. \times Prd. Trff.			$\begin{gathered} .033 \\ (.010)^{* * *} \end{gathered}$			$\begin{gathered} .039 \\ (.010)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\stackrel{-.043}{(.002)^{* * *}}$	$\begin{gathered} -.043 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.042 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.045}{(.002)^{* * *}}$	$\stackrel{-.045}{(.003)^{* * *}}$	$\begin{gathered} -.044 \\ (.003)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{gathered} .093 \\ (.010)^{* * *} \end{gathered}$	$\frac{-.116}{(.021)^{* * *}}$	$\stackrel{-.115}{(.021)^{* * *}}$	$\underset{(.010)^{* * *}}{.100}$	$\stackrel{-.115}{(.022)^{* * *}}$	$\stackrel{-.114}{(.022)^{* * *}}$
Log Employment	$\begin{gathered} .134 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .134 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .134 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .132 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .132 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .132 \\ (.0008)^{* * *} \end{gathered}$
Share: Middle School or less	$\frac{-.516}{(.008)^{* * *}}$	$\begin{gathered} -.461 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} -.461 \\ (.012)^{* * *} \end{gathered}$	$\stackrel{-.520}{(.008)^{* * *}}$	$\begin{gathered} -.465 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} -.465 \\ (.012)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.270 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.329 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.329 \\ (.014)^{* * *} \end{gathered}$	$\stackrel{-.275}{(.010)^{* * *}}$	$\begin{gathered} -.329 \\ (.014)^{* * *} \end{gathered}$	$\stackrel{-.330}{(.014)^{* * *}}$
Share: White-collar occ.	$\underset{(.005)^{* * *}}{.098}$	$\frac{.107}{(.006)^{* * *}}$	$\frac{.108}{(.006)^{* * *}}$	$\underset{(.005)^{* * *}}{.102}$	$\underset{(.006)^{* * *}}{.111}$	$\underset{(.006)^{* * *}}{.112}$
F statistic (IV)	114.991	43.169	46.789	114.389	43.215	47.766

Sources: SECEX exporter information 1990-98; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 120 for separations, Table 121 for accessions). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Annual world imports, coefficients rescaled to imports in USD billion.

Table 124: Pseudo-IV Conditional Logit Estimates, CnAe 1990-98

	Separations		Accessions	
	Tariff IV	Exporter IV	Tariff IV	Exporter IV
	(1)	(2)	(3)	(4)
Predicted Product Mkt. Tariff	$\begin{gathered} -7.523 \\ (2.982)^{* *} \end{gathered}$		$\begin{gathered} -.437 \\ (3.112) \end{gathered}$	
Residual Product Mkt. Tariff	$\begin{gathered} -.110 \\ (.281) \end{gathered}$		$\underset{(.241)^{*}}{.}$	
Predicted Intm. Input Tariff	$\begin{gathered} 8.672 \\ (3.558)^{* *} \end{gathered}$		$\begin{aligned} & -1.436 \\ & (3.774) \end{aligned}$	
Residual Intm. Input Tariff	$\stackrel{.968}{(.578)^{*}}$		$\begin{aligned} & -1.916 \\ & (.482)^{* * *} \end{aligned}$	
Predicted Import Penetration				
Residual Import Penetration	$\begin{array}{r} .149 \\ (.337) \end{array}$		$\begin{aligned} & .245 \\ & (.307) \end{aligned}$	
Predicted Exporter Status				
Residual Exporter Status		$\frac{.227}{(.031)^{* * *}}$		$\frac{-.436}{(.030)^{* * *}}$
Obs.	124,993	124,993	96,682	96,682
Pseudo R^{2}	. 161	. 161	. 053	. 053

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 125: Fixed-Effects Linear Least-Squares Estimates, Short cnae RegresSIONS 1990-98

	Separations			Accessions		
	Cdl. Logit	OLS-FE		Cdl. Logit	OLS-FE	
			IV			IV
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{gathered} .044 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} .004 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .005 \\ (.001)^{* * *} \end{gathered}$	$\begin{aligned} & \hline .005 \\ & (.008) \end{aligned}$	$\begin{aligned} & \hline .0003 \\ & (.0007) \end{aligned}$	$\begin{gathered} -.003 \\ (.001)^{* * *} \end{gathered}$
Exporter Status	$\stackrel{.227}{(.031)^{* * *}}$	$\stackrel{.031}{(.003)^{* * *}}$		$\stackrel{-.436}{(.030)^{* * *}}$	$\stackrel{-.048}{(.003)^{* * *}}$	
Product Market Tariff	$\begin{aligned} & -.146 \\ & (.278) \end{aligned}$	$\stackrel{-.071}{(.021)^{* * *}}$	$\begin{aligned} & -.441 \\ & (.327) \end{aligned}$	$\begin{aligned} & .391 \\ & (.240) \end{aligned}$	$\stackrel{.061}{(.019)^{* * *}}$	$\stackrel{.691}{(.282)^{* *}}$
Intm. Input Tariff	$\begin{aligned} & .839 \\ & (.575) \end{aligned}$	$\stackrel{.206}{(.043)^{* * *}}$	$\begin{gathered} .503 \\ (.736) \end{gathered}$	$\begin{aligned} & -1.936 \\ & (.479)^{* * *} \end{aligned}$	$\stackrel{-.239}{(.039)^{* * *}}$	$\begin{gathered} -2.214 \\ (.632)^{* * *} \end{gathered}$
Import Penetration	$\begin{aligned} & .241 \\ & (.336) \end{aligned}$	$\begin{gathered} -.049 \\ (.028)^{*} \end{gathered}$		$\begin{aligned} & .268 \\ & (.307) \end{aligned}$	$\stackrel{.087}{(.026)^{* * *}}$	
Obs.	124,993	255,943	255,943	96,682	255,140	255,140

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Instruments: World imports by year and real exchange rate components by sector and year (two instruments with sector variation). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 126: Conditional Logit Estimates of Separations by Education Group, cnae 1990-98

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	.0006	.008	-.011	.096	.162	-.001
Comp. Adv. \times Prd. Trff.	$(.014)$	$(.015)$	$(.072)$	$(.083)$	$(.031)^{* * *}$	$(.014)$
	$(.086)^{* * *}$	$(.359$	-.010	-.440	-.430	.340
Exporter Status	.397	.431	$(.425)$	$(.659)$	$(.212)^{* *}$	$(.087)^{* * *}$
	$(.054)^{* * *}$	$(.062)^{* * *}$	$(.193)$	-.074	-.616	.393
Exporter \times Prd. Trff.	-.915	-.997	.646	$285)$	$(.156)^{* * *}$	$(.054)^{* * *}$
	$(.244)^{* * *}$	$(.280)^{* * *}$	$(.847)$	(1.327)	5.846	-.899
Product Market Tariff	-.028	.173	-1.250	-1.971	-1.587	$(.246)^{* * *}$
	$(.308)$	$(.353)$	$(.991)$	(1.912)	$(.897)^{*}$	$(.054$
Obs.	124,993	96,268	14,786	6,164	37,794	123,680
Pseudo R^{2}	.162	.171	.290	.295	.299	.163

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 127: Conditional Logit Estimates of Accessions by Education Group, cnae 1990-98

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{aligned} & .006 \\ & (.014) \end{aligned}$	$\begin{aligned} & \hline .010 \\ & (.015) \end{aligned}$	$\begin{aligned} & .055 \\ & (.065) \end{aligned}$	$\begin{aligned} & -.178 \\ & (.098)^{*} \end{aligned}$	$\begin{gathered} -.006 \\ (.027) \end{gathered}$	$\begin{aligned} & .006 \\ & (.014) \end{aligned}$
Comp. Adv. \times Prd. Trff.	$\begin{gathered} -.018 \\ (.083) \end{gathered}$	$\begin{gathered} -.051 \\ (.089) \end{gathered}$	$\begin{aligned} & -.034 \\ & (.388) \end{aligned}$	$\begin{aligned} & .527 \\ & (.567) \end{aligned}$	$\begin{gathered} -.140 \\ (.189) \end{gathered}$	$\begin{gathered} -.011 \\ (.083) \end{gathered}$
Exporter Status	$\frac{-.376}{(.051)^{* * *}}$	$\stackrel{-.336}{(.058)^{* * *}}$	$\begin{gathered} -.541 \\ (.175)^{* * *} \end{gathered}$	$\begin{aligned} & -1.162 \\ & (.305)^{* * *} \end{aligned}$	$\begin{gathered} -.439 \\ (.137)^{* * *} \end{gathered}$	$\begin{aligned} & -.383 \\ & (.051)^{* * *} \end{aligned}$
Exporter \times Prd. Trff.	$\begin{aligned} & -.318 \\ & (.219) \end{aligned}$	$\begin{aligned} & -.368 \\ & (.254) \end{aligned}$	$\begin{array}{r} .170 \\ (.719) \end{array}$	$\begin{gathered} .696 \\ (1.182) \end{gathered}$	$\xrightarrow[(.870)]{-1.082}$	$\begin{aligned} & -.270 \\ & (.221) \end{aligned}$
Product Market Tariff	$\begin{gathered} .523 \\ (.260)^{* *} \end{gathered}$	$\begin{gathered} .609 \\ (.300)^{* *} \end{gathered}$	$\underset{(.967)^{* *}}{2.062}$	$\begin{array}{r} -1.087 \\ (1.460) \end{array}$	$\begin{gathered} -1.264 \\ (.795) \end{gathered}$	$\begin{gathered} .443 \\ (.262)^{*} \end{gathered}$
Obs.	96,682	74,930	10,080	3,883	31,021	95,260
Pseudo R^{2}	. 053	. 055	. 115	. 112	. 099	. 052

Source: RAIS 1990-98 (1% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 128: Alternative Logit Estimates of Separations, cnae 1990-98

	Cdl. Logit baseline	Logit		Cdl. Logit full interact.	Cdl. Logit 1986-98
		cond'l sample	full sample		
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{aligned} & .0006 \\ & (.014) \end{aligned}$	$\begin{aligned} & .011 \\ & (.008) \end{aligned}$	$\begin{gathered} .032 \\ (.006)^{* * *} \end{gathered}$	$\begin{aligned} & .009 \\ & (.014) \end{aligned}$	$\underset{(.010)^{*}}{.018}$
Comp. Adv. \times Prd. Trff.	$\begin{gathered} .326 \\ (.086)^{* * *} \end{gathered}$	$\stackrel{.286}{(.049)^{* * *}}$	$\stackrel{.223}{(.036)^{* * *}}$	$\begin{gathered} .301 \\ (.086)^{* * *} \end{gathered}$	$\stackrel{.133}{(.033)^{* * *}}$
Exporter Status	$\begin{gathered} .397 \\ (.054)^{* * *} \end{gathered}$	$\stackrel{.087}{(.029)^{* * *}}$	$\begin{gathered} -.044 \\ (.022)^{* *} \end{gathered}$		
Exporter \times Prd. Trff.	$\frac{-.915}{(.244)^{* * *}}$	$\begin{gathered} -.301 \\ (.129)^{* *} \end{gathered}$	$\begin{aligned} & -.131 \\ & (.097) \end{aligned}$		
Product Market Tariff	$\begin{aligned} & -.028 \\ & (.308) \end{aligned}$	$\begin{gathered} .432 \\ (.137)^{* * *} \end{gathered}$	$\begin{aligned} & .109 \\ & (.104) \end{aligned}$	$\begin{aligned} & -.443 \\ & (.296) \end{aligned}$	$\begin{aligned} & -.290 \\ & (.195) \end{aligned}$
Obs.	124,993	124,993	255,943	124,993	190,545
Pseudo R^{2}	. 162	. 036	. 051	. 161	. 150

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 129: Alternative Logit Estimates of Accessions, cnae 1990-98

	$\begin{array}{c}\text { Cdl. Logit } \\ \text { baseline }\end{array}$	Logit			$\begin{array}{c}\text { Cdl. Logit }\end{array}$	$\begin{array}{c}\text { Cdl. Logit } \\ \text { cond'l sample }\end{array}$
	(1)	(2)	full sample		(3)	(4)
full interact.						

Source: RAIS 1990-98 (1\% random sample), male workers nationwide, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

7.5 Separations and accessions of prime-age male workers in metropolitan areas, subsector IBGE

Table 130: Conditional Logit Estimates of Separations and Accessions, subsecTOR IBGE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Balassa Comp. Adv.	$\begin{aligned} & .084 \\ & (.057) \end{aligned}$	$\begin{gathered} .154 \\ (.072)^{* *} \end{gathered}$	$\begin{aligned} & .081 \\ & (.057) \end{aligned}$	$\begin{aligned} & .055 \\ & \hline .073) \end{aligned}$
Comp. Adv. \times Prd. Trff.	$\begin{array}{r} .470 \\ (.315) \end{array}$	$\begin{aligned} & .245 \\ & (.400) \end{aligned}$	$\begin{gathered} -.020 \\ (.306) \end{gathered}$	$\begin{aligned} & -.163 \\ & (.410) \end{aligned}$
Exporter Status	$.438$	$\frac{.631}{(.130)^{* * *}}$	$\stackrel{-.418}{(.080)^{* * *}}$	$\stackrel{-.549}{(.136)^{* * *}}$
Exporter \times Prd. Trff.	$\begin{gathered} -1.023 \\ (.322)^{* * *} \end{gathered}$	$\begin{gathered} -1.548 \\ (.568)^{* * *} \end{gathered}$	$\begin{array}{r} -.277 \\ (.336) \end{array}$	$\begin{gathered} -.369 \\ \hline . .589) \end{gathered}$
Comp. Adv. \times Exporter		$\begin{gathered} -.145 \\ (.089) \end{gathered}$		$\begin{array}{r} .059 \\ (.091) \end{array}$
Comp. Adv. \times Exp. \times Prd. Trff.		$\begin{aligned} & .437 \\ & (.475) \end{aligned}$		$\begin{aligned} & .265 \\ & (.491) \end{aligned}$
Product Market Tariff	$\begin{aligned} & -.002 \\ & (.810) \end{aligned}$	$\begin{array}{r} .253 \\ (.856) \end{array}$	$\underset{(.820)}{1.166}$	$\begin{aligned} & 1.392 \\ & (.889) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} 1.590 \\ (1.172) \end{gathered}$	$\begin{aligned} & 1.598 \\ & (1.180) \end{aligned}$	$\begin{gathered} -1.430 \\ (1.177) \end{gathered}$	$\begin{gathered} -1.761 \\ (1.196) \end{gathered}$
Import Penetration	$\begin{aligned} & -.313 \\ & (.571) \end{aligned}$	$\begin{aligned} & -.298 \\ & (.572) \end{aligned}$	$\begin{aligned} & -1.597 \\ & (.616)^{* * *} \end{aligned}$	$\begin{aligned} & -1.593 \\ & (.618)^{* * *} \end{aligned}$
Obs.	43,123	43,123	32,215	32,215
Pseudo R^{2}	. 079	. 079	. 061	. 061

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 131: Year Effects in Conditional Logit Estimates of Separations and AcCESSIONS, SUBSECTOR IBGE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Year 1990	$\stackrel{-.846}{(.220)^{* * *}}$	$\begin{gathered} -.855 \\ (.221)^{* * *} \end{gathered}$	$\xrightarrow[(.227)^{* *}]{.500}$	$\underset{(.529)^{* *}}{.541}$
Year 1991	$\begin{gathered} -1.586 \\ (.114)^{* * *} \end{gathered}$	$\begin{aligned} & -1.580 \\ & (.114)^{* * *} \end{aligned}$	$\frac{.761}{(.121)^{* * *}}$	$\begin{gathered} .760 \\ (.121)^{* * *} \end{gathered}$
Year 1992	$\begin{aligned} & -1.795 \\ & (.184)^{* * *} \end{aligned}$	$\begin{gathered} -1.784 \\ (.184)^{* * *} \end{gathered}$	$\stackrel{.462}{(.201)^{* *}}$	$\underset{(.202)^{* *}}{.444}$
Year 1993	$\begin{aligned} & -1.384 \\ & (.111)^{* * *} \end{aligned}$	$\begin{gathered} -1.378 \\ (.111)^{* * *} \end{gathered}$	$. .732$	$. .718$
Year 1994	$\begin{gathered} -.772 \\ (.077)^{* * *} \end{gathered}$	$\begin{gathered} -.776 \\ (.077)^{* * *} \end{gathered}$	$\underset{(.085)^{* * *}}{.746}$	$\underset{(.085)^{* * *}}{.750}$
Year 1995	$\begin{array}{r} .119 \\ (.139) \end{array}$	$\begin{gathered} .107 \\ (.139) \end{gathered}$	$\frac{.620}{(.154)^{* * *}}$	$\frac{.632}{(.154)^{* * *}}$
Year 1996	$\frac{-.154}{(.084)^{*}}$	$\frac{-.161}{(.084)^{*}}$	$\stackrel{.626}{(.094)^{* * *}}$	$\begin{gathered} .632 \\ (.094)^{* * *} \end{gathered}$
Year 1997	$\begin{gathered} -.040 \\ (.068) \end{gathered}$	$\begin{gathered} -.045 \\ (.068) \end{gathered}$	$\underset{(.075)^{* * *}}{.472}$	$\begin{gathered} .474 \\ (.075)^{* * *} \end{gathered}$
Obs.	43,123	43,123	32,215	32,215
Pseudo R^{2}	. 079	. 079	. 061	. 061

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Other regressors (not reported): Trade-related, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 132: Conditional Logit Estimates of Separations, 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{gathered} .157 \\ (.035)^{* * *} \end{gathered}$	$\begin{aligned} & \hline .084 \\ & (.057) \end{aligned}$			$\begin{aligned} & \hline .084 \\ & (.057) \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{aligned} & .488 \\ & (.314) \end{aligned}$			$\begin{array}{r} .470 \\ (.315) \end{array}$
Exporter Status			$\underset{(.044)^{* * *}}{.241}$	$\underset{(.076)^{* * *}}{.447}$	$\begin{gathered} .438 \\ (.076)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.				$\begin{aligned} & -1.063 \\ & (.322)^{* * *} \end{aligned}$	$\begin{aligned} & -1.023 \\ & (.322)^{* * *} \end{aligned}$
Product Market Tariff	$\begin{gathered} -.007 \\ (.634) \end{gathered}$	$\begin{gathered} -.728 \\ (.785) \end{gathered}$	$\begin{aligned} & 1.016 \\ & (.613)^{*} \end{aligned}$	$\underset{(.642)^{* *}}{1.625}$	$\begin{gathered} -.002 \\ (.810) \end{gathered}$
Intm. Input Tariff	$\begin{aligned} & 1.137 \\ & (1.048) \end{aligned}$	$\underset{(1.168)^{*}}{1.930}$	$\begin{gathered} -1.207 \\ (.966) \end{gathered}$	$\begin{gathered} -1.242 \\ (.966) \end{gathered}$	$\begin{gathered} 1.590 \\ (1.172) \end{gathered}$
Import Penetration	$\begin{array}{r} .091 \\ (.559) \end{array}$	$\begin{aligned} & -.112 \\ & (.571) \end{aligned}$	$\begin{gathered} -.905 \\ (.533)^{*} \end{gathered}$	$\begin{gathered} -.958 \\ (.534)^{*} \end{gathered}$	$\begin{aligned} & -.313 \\ & (.571) \end{aligned}$
Sector-level covariates					
Sector real exch. rate	$\begin{gathered} 4.977 \\ (1.057)^{* * *} \end{gathered}$	$\stackrel{5.008}{(1.056)^{* * *}}$	$\begin{gathered} 5.818 \\ (1.055)^{* * *} \end{gathered}$	$\stackrel{5.747}{(1.058)^{* * *}}$	$\stackrel{4.896}{(1.062)^{* * *}}$
FDI Flow (USD billion)	$\stackrel{-.089}{(.040)^{* *}}$	$\frac{-.072}{(.041)^{*}}$	$\begin{gathered} -.053 \\ (.039) \end{gathered}$	$\begin{gathered} -.049 \\ (.039) \end{gathered}$	$\begin{gathered} -.064 \\ (.041) \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & -1.690 \\ & (.504)^{* * *} \end{aligned}$	$\begin{aligned} & -1.578 \\ & (.508)^{* * *} \end{aligned}$	$\begin{aligned} & -2.100 \\ & (.499)^{* * *} \end{aligned}$	$\begin{aligned} & -2.082 \\ & (.499)^{* * *} \end{aligned}$	$\begin{aligned} & -1.641 \\ & (.509)^{* * *} \end{aligned}$
Plant-level covariates					
Log Employment	$\begin{aligned} & -.273 \\ & (.015)^{* * *} \end{aligned}$	$\frac{-.273}{(.015)^{* * *}}$	$\frac{-.293}{(.015)^{* * *}}$	$\begin{gathered} -.291 \\ (.015)^{* * *} \end{gathered}$	$\begin{gathered} -.299 \\ (.015)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{aligned} & -.044 \\ & (.196) \end{aligned}$	$\begin{gathered} -.047 \\ (.196) \end{gathered}$	$\begin{aligned} & .109 \\ & (.197) \end{aligned}$	$\begin{aligned} & .126 \\ & (.197) \end{aligned}$	$\begin{aligned} & .067 \\ & (.198) \end{aligned}$
Share: Some High School	$\begin{aligned} & -.156 \\ & (.224) \end{aligned}$	$\begin{aligned} & -.160 \\ & (.224) \end{aligned}$	$\begin{aligned} & -.056 \\ & (.225) \end{aligned}$	$\begin{aligned} & -.046 \\ & (.226) \end{aligned}$	$\begin{aligned} & -.077 \\ & (.226) \end{aligned}$
Share: White-collar occ.	$\frac{.349}{(.117)^{* * *}}$	$\underset{(.117)^{* * *}}{.354}$	$\underset{(.117)^{* * *}}{.351}$	$\stackrel{.356}{(.117)^{* * *}}$	$\begin{gathered} .341 \\ (.117)^{* * *} \end{gathered}$
Worker-level covariates					
Tenure at plant (in years)	$.$	$\stackrel{.478}{(.032)^{* * *}}$	$\stackrel{.467}{(.032)^{* * *}}$	$\begin{gathered} .469 \\ (.032)^{* * *} \end{gathered}$	$\begin{gathered} .474 \\ (.032)^{* * *} \end{gathered}$
Pot. labor force experience	$\begin{gathered} .013 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{.013}{(.003)^{* * *}}$	$\begin{gathered} .013 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .013 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .013 \\ (.003)^{* * *} \end{gathered}$
Prof. or Manag'l. Occ.	$\begin{aligned} & -.677 \\ & (.101)^{* * *} \end{aligned}$	$\begin{gathered} -.679 \\ (.101)^{* * *} \end{gathered}$	$\begin{gathered} -.674 \\ (.101)^{* * *} \end{gathered}$	$\begin{gathered} -.675 \\ (.101)^{* * *} \end{gathered}$	$\begin{aligned} & -.683 \\ & (.101)^{* * *} \end{aligned}$
Tech'l. or Superv. Occ.	$\begin{aligned} & -.494 \\ & (.098)^{* * *} \end{aligned}$	$\frac{-.495}{(.099)^{* * *}}$	$\begin{aligned} & -.509 \\ & (.098)^{* * *} \end{aligned}$	$\begin{aligned} & -.508 \\ & (.099)^{* * *} \end{aligned}$	$\begin{gathered} -.504 \\ (.099)^{* * *} \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.209 \\ (.100)^{* *} \end{gathered}$	$\begin{gathered} -.210 \\ (.100)^{* *} \end{gathered}$	$\begin{gathered} -.204 \\ (.100)^{* *} \end{gathered}$	$\begin{gathered} -.205 \\ (.100)^{* *} \end{gathered}$	$\begin{gathered} -.220 \\ (.100)^{* *} \end{gathered}$
Skilled Bl. Collar Occ.	$\stackrel{-.157}{(.060)^{* * *}}$	$\begin{gathered} -.157 \\ (.060)^{* * *} \end{gathered}$	$\begin{gathered} -.151 \\ (.060)^{* *} \end{gathered}$	$\begin{gathered} -.150 \\ (.060)^{* *} \end{gathered}$	$\begin{gathered} -.161 \\ (.060)^{* * *} \end{gathered}$
Obs.	43,123	43,123	43,123	43,123	43,123
Pseudo R^{2}	. 077	. 077	. 077	. 078	. 079

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsectD70BGE level. Controlling for year effects. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 133: Conditional Logit Estimates of Accessions, 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{gathered} .075 \\ (.034)^{* *} \end{gathered}$	$\begin{aligned} & \hline .090 \\ & \hline .057) \end{aligned}$			$\begin{aligned} & \hline .081 \\ & (.057) \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{aligned} & -.093 \\ & (.304) \end{aligned}$			$\begin{gathered} -.020 \\ (.306) \end{gathered}$
Exporter Status			$\begin{gathered} -.470 \\ (.046)^{* * *} \end{gathered}$	$\stackrel{-.413}{(.080)^{* * *}}$	$\begin{gathered} -.418 \\ (.080)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.				$\begin{gathered} -.299 \\ (.337) \end{gathered}$	$\begin{aligned} & -.277 \\ & (.336) \end{aligned}$
Product Market Tariff	$\begin{aligned} & 1.172 \\ & (.673)^{*} \end{aligned}$	$\begin{aligned} & 1.304 \\ & (.799) \end{aligned}$	$\begin{gathered} 1.486 \\ (.647)^{* *} \end{gathered}$	$\begin{gathered} 1.634 \\ (.670)^{* *} \end{gathered}$	$\underset{(.820)}{1.166}$
Intm. Input Tariff	$\begin{gathered} -1.871 \\ (1.073)^{*} \end{gathered}$	$\begin{aligned} & -2.009 \\ & (1.166)^{*} \end{aligned}$	$\begin{aligned} & -2.486 \\ & (.978)^{* *} \end{aligned}$	$\begin{aligned} & -2.491 \\ & (.980)^{* *} \end{aligned}$	$\begin{array}{r} -1.430 \\ (1.177) \end{array}$
Import Penetration	$\begin{gathered} -1.865 \\ (.601)^{* * *} \end{gathered}$	$\begin{gathered} -1.825 \\ (.614)^{* * *} \end{gathered}$	$\begin{aligned} & -2.074 \\ & (.572)^{* * *} \end{aligned}$	$\begin{aligned} & -2.082 \\ & (.572)^{* * *} \end{aligned}$	$\begin{aligned} & -1.597 \\ & (.616)^{* * *} \end{aligned}$
Sector-level covariates					
Sector real exch. rate	$\begin{gathered} .135 \\ (1.149) \end{gathered}$	$\begin{gathered} .127 \\ (1.149) \end{gathered}$	$\begin{array}{r} .920 \\ (1.134) \end{array}$	$\begin{gathered} .903 \\ (1.134) \end{gathered}$	$\begin{gathered} .344 \\ (1.156) \end{gathered}$
FDI Flow (USD billion)	$\underset{(.046)^{* * *}}{.123}$	$\xrightarrow[(.047)^{* *}]{.119}$	$. .134$	$\begin{gathered} .135 \\ (.045)^{* * *} \end{gathered}$	$\underset{(.047)^{* *}}{.115}$
Herfindahl Index (sales)	$\begin{aligned} & -1.210 \\ & (.477)^{* *} \end{aligned}$	$\begin{aligned} & -1.232 \\ & (.481)^{* *} \end{aligned}$	$\begin{aligned} & -1.286 \\ & (.475)^{* * *} \end{aligned}$	$\begin{aligned} & -1.286 \\ & (.475)^{* * *} \end{aligned}$	$\begin{aligned} & -1.134 \\ & (.483)^{* *} \end{aligned}$
Plant-level covariates					
Log Employment	$\begin{gathered} -.231 \\ (.013)^{* * *} \end{gathered}$	$\begin{gathered} -.231 \\ (.013)^{* * *} \end{gathered}$	$\begin{gathered} -.175 \\ (.014)^{* * *} \end{gathered}$	$\stackrel{-.175}{(.014)^{* * *}}$	$\stackrel{-.178}{(.014)^{* * *}}$
Share: Middle School or less	$\begin{gathered} 1.338 \\ (.203)^{* * *} \end{gathered}$	$\begin{gathered} 1.339 \\ (.203)^{* * *} \end{gathered}$	$\begin{gathered} 1.215 \\ (.199)^{* * *} \end{gathered}$	$\begin{aligned} & 1.217 \\ & (.199)^{* * *} \end{aligned}$	$\begin{aligned} & 1.192 \\ & (.199)^{* * *} \end{aligned}$
Share: Some High School	$\begin{gathered} 1.196 \\ (.233)^{* * *} \end{gathered}$	$\begin{aligned} & 1.196 \\ & (.233)^{* * *} \end{aligned}$	$\begin{gathered} 1.124 \\ (.230)^{* * *} \end{gathered}$	$\begin{gathered} 1.125 \\ (.230)^{* * *} \end{gathered}$	$\underset{(.229)^{* * *}}{1.112}$
Share: White-collar occ.	$\frac{-.787}{(.120)^{* * *}}$	$\begin{gathered} -.788 \\ (.120)^{* * *} \end{gathered}$	$\begin{gathered} -.720 \\ (.120)^{* * *} \end{gathered}$	$\frac{-.718}{(.120)^{* * *}}$	$\stackrel{-.725}{(.119)^{* * *}}$
Worker-level covariates					
Prof. or Manag'l. Occ.	$\stackrel{-.858}{(.103)^{* * *}}$	$\begin{gathered} -.857 \\ (.103)^{* * *} \end{gathered}$	$\stackrel{-.846}{(.104)^{* * *}}$	$\frac{-.847}{(.104)^{* * *}}$	$\begin{gathered} -.847 \\ (.104)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\stackrel{-.776}{(.098)^{* * *}}$	$\frac{-.776}{(.098)^{* * *}}$	$\begin{gathered} -.763 \\ (.098)^{* * *} \end{gathered}$	$\begin{gathered} -.762 \\ (.098)^{* * *} \end{gathered}$	$\frac{-.760}{(.098)^{* * *}}$
Unskilled Wh. Collar Occ.	$\begin{gathered} -.421 \\ (.098)^{* * *} \end{gathered}$	$\begin{gathered} -.421 \\ (.098)^{* * *} \end{gathered}$	$\stackrel{-.415}{(.099)^{* * *}}$	$\stackrel{-.416}{(.099)^{* * *}}$	$\begin{gathered} -.421 \\ (.099)^{* * *} \end{gathered}$
Skilled Bl. Collar Occ.	$\stackrel{-.345}{(.057)^{* * *}}$	$\stackrel{-.345}{(.057)^{* * *}}$	$\begin{gathered} -.330 \\ (.057)^{* * *} \end{gathered}$	$\begin{aligned} & -.330 \\ & (.057)^{* * *} \end{aligned}$	$\stackrel{-.333}{(.057)^{* * *}}$
Obs.	32,215	32,215	32,215	32,215	32,215
Pseudo R^{2}	. 055	. 055	. 060	. 060	. 061

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Controlling for year effects. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 134: First-stage Predictions of Sector Regressors, subsector ibge 1986-98

	Separations			Accessions		
	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.
	(1)	(2)	(3)	(4)	(5)	(6)
USD Exch. Rate	$\begin{gathered} -.003 \\ (.0009)^{* * *} \end{gathered}$	$\begin{gathered} .044 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .007 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.0009 \\ (.0009) \end{gathered}$	$\begin{gathered} .045 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .007 \\ (.0002)^{* * *} \end{gathered}$
PPI Idx. EU	$\begin{aligned} & -2.008 \\ & (.009)^{* * *} \end{aligned}$	$\begin{gathered} -1.959 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} .290 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -2.048 \\ (.009)^{* * *} \end{gathered}$	$\begin{aligned} & -1.992 \\ & (.008)^{* * *} \end{aligned}$	$\begin{gathered} .295 \\ (.002)^{* * *} \end{gathered}$
PPI Idx. NAM	$\underset{(.008)^{* * *}}{.614}$	$\begin{gathered} .395 \\ (.006)^{* * *} \end{gathered}$	$\underset{(.002)^{* * *}}{.103}$	$\begin{gathered} .634 \\ (.008)^{* * *} \end{gathered}$	$\underset{(.006)^{* * *}}{.410}$	$\underset{(.002)^{* * *}}{.104}$
Balassa Comp. Adv.	$\begin{gathered} -.022 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.031 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.026 \\ (.00008)^{* * *} \end{gathered}$	$\begin{gathered} -.022 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.030 \\ (.0003)^{* * *} \end{gathered}$	$\begin{gathered} -.026 \\ (.00008)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\begin{gathered} .038 \\ (.0009)^{* * *} \end{gathered}$	$\begin{gathered} .037 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .005 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} .039 \\ (.0009)^{* * *} \end{gathered}$	$\begin{gathered} .037 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .006 \\ (.0002)^{* * *} \end{gathered}$
Herfindahl Index (sales)	$\begin{aligned} & .006 \\ & (.005) \end{aligned}$	$\stackrel{-.298}{(.004)^{* * *}}$	$\underset{(.001)^{* * *}}{.242}$	$\begin{aligned} & .003 \\ & (.005) \end{aligned}$	$\stackrel{-.304}{(.004)^{* * *}}$	$\underset{(.001)^{* * *}}{.243}$
Log Employment	$\begin{gathered} .013 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .009 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .002 \\ (.00004)^{* * *} \end{gathered}$	$\begin{gathered} .012 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .008 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .002 \\ (.00004)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{gathered} .039 \\ (.002)^{* * *} \end{gathered}$	$\stackrel{.026}{(.002)^{* * *}}$	$\begin{gathered} -.020 \\ (.0007)^{* * *} \end{gathered}$	$\begin{gathered} .042 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} .030 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.018 \\ (.0006)^{* * *} \end{gathered}$
Share: Some High School	$\begin{gathered} -.060 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.048 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.004 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} -.061 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.046}{(.002)^{* * *}}$	$\begin{gathered} -.002 \\ (.0008)^{* * *} \end{gathered}$
Share: White-collar occ.	$\stackrel{.005}{(.002)^{* * *}}$	$\begin{aligned} & .002 \\ & (.001) \end{aligned}$	$\begin{gathered} -.012 \\ (.0005)^{* * *} \end{gathered}$	$\stackrel{.005}{(.002)^{* * *}}$	$\begin{gathered} .003 \\ (.001)^{*} \end{gathered}$	$\stackrel{-.010}{(.0004)^{* * *}}$
F statistic	37,708.2	49,592.67	40,354.78	38,840	51,154.89	41,651.52

Sources: Sector data from various sources at subsector IBGE level; RAIS 1986-98 labor force information. Weighted regressions using workersample observation counts (as in Table 132 for separations, Table 133 for accessions). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 135: First-stage Predictions of Export Status, subsector ibge 1986-98

	Separations			Accessions		
	OLS	Firm FE	Firm FE	OLS	Firm FE	Firm FE
	(1)	(2)	(3)	(4)	(5)	(6)
World imports APD	$\begin{gathered} -.664 \\ (.070)^{* * *} \end{gathered}$	$\begin{gathered} -.403 \\ (.117)^{* * *} \end{gathered}$	$\begin{gathered} -.045 \\ (.124) \end{gathered}$	$\begin{gathered} -.783 \\ (.070)^{* * *} \end{gathered}$	$\begin{gathered} -.459 \\ (.119)^{* * *} \end{gathered}$	$\begin{gathered} -.057 \\ (.126) \end{gathered}$
World imports CEE	$\begin{gathered} -7.585 \\ (.321)^{* * *} \end{gathered}$	$\begin{gathered} -5.676 \\ (.536)^{* * *} \end{gathered}$	$\begin{gathered} -5.161 \\ (.540)^{* * *} \end{gathered}$	$\begin{gathered} -8.254 \\ (.322)^{* * *} \end{gathered}$	$\begin{gathered} -6.204 \\ (.545)^{* * *} \end{gathered}$	$\begin{gathered} -5.623 \\ (.548)^{* * *} \end{gathered}$
World imports LAC	$\begin{gathered} -.987 \\ (.177)^{* * *} \end{gathered}$	$\frac{-.532}{(.298)^{*}}$	$\stackrel{-.649}{(.298)^{* *}}$	$\stackrel{-.986}{(.176)^{* * *}}$	$\stackrel{-.620}{(.301)^{* *}}$	$\begin{gathered} -.754 \\ (.301)^{* *} \end{gathered}$
World imports NAM	$\begin{aligned} & 1.932 \\ & (.073)^{* * *} \end{aligned}$	$\begin{gathered} 1.364 \\ (.122)^{* * *} \end{gathered}$	$\underset{(.124)^{* * *}}{1.170}$	$\begin{gathered} 2.092 \\ (.073)^{* * *} \end{gathered}$	$\begin{gathered} 1.501 \\ (.123)^{* * *} \end{gathered}$	${ }_{(.125)^{* * *}}^{1.285}$
World imports ODV	$\begin{gathered} 1.439 \\ (.080)^{* * *} \end{gathered}$	$\underset{(.131)^{* * *}}{1.102}$	$\underset{(.131)^{* * *}}{1.070}$	$\xrightarrow[(.080)^{* * *}]{1.556}$	$\begin{gathered} 1.214 \\ (.133)^{* * *} \end{gathered}$	$\begin{aligned} & 1.176 \\ & (.133)^{* * *} \end{aligned}$
World imports OIN	$\underset{(.233)^{* * *}}{2.552}$	$\begin{gathered} 1.609 \\ (.390)^{* * *} \end{gathered}$	$\begin{aligned} & .506 \\ & (.410) \end{aligned}$	$\begin{gathered} 2.961 \\ (.233)^{* * *} \end{gathered}$	$\begin{aligned} & 1.791 \\ & (.395)^{* * *} \end{aligned}$	$\begin{aligned} & .555 \\ & (.416) \end{aligned}$
World imports WEU	$\stackrel{-.201}{(.013)^{* * *}}$	$\begin{gathered} -.144 \\ (.021)^{* * *} \end{gathered}$	$\stackrel{-.088}{(.022)^{* * *}}$	$\begin{gathered} -.223 \\ (.013)^{* * *} \end{gathered}$	$\stackrel{-.155}{(.021)^{* * *}}$	$\begin{gathered} -.093 \\ (.022)^{* * *} \end{gathered}$
Balassa Comp. Adv.	$\begin{gathered} -.040 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.039 \\ (.002)^{* * *} \end{gathered}$	$\stackrel{-.070}{(.004)^{* * *}}$	$\begin{gathered} -.038 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.038 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.073 \\ (.004)^{* * *} \end{gathered}$
Comp. Adv. \times Prd. Trff.			$\begin{gathered} .204 \\ (.024)^{* * *} \end{gathered}$			$\underset{(.024)^{* * *}}{.229}$
FDI Flow (USD billion)	$\stackrel{-.037}{(.003)^{* * *}}$	$\begin{gathered} -.030 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.023 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.040 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.030 \\ (.006)^{* * *} \end{gathered}$	$\stackrel{-.021}{(.006)^{* * *}}$
Herfindahl Index (sales)	$\stackrel{.407}{(.017)^{* * *}}$	$\stackrel{.449}{(.029)^{* * *}}$	$\stackrel{.423}{(.029)^{* * *}}$	$\stackrel{.415}{(.017)^{* * *}}$	$\begin{gathered} .438 \\ (.029)^{* * *} \end{gathered}$	$\begin{gathered} .409 \\ (.029)^{* * *} \end{gathered}$
Log Employment	$\underset{(.0005)^{* * *}}{.125}$	$\frac{.141}{(.001)^{* * *}}$	$\frac{.140}{(.001)^{* * *}}$	$\frac{.120}{(.0005)^{* * *}}$	$\underset{(.001)^{* * *}}{.137}$	$\underset{(.001)^{* * *}}{.136}$
Share: Middle School or less	$\begin{gathered} -.470 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.471 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.471 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.476 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.474 \\ (.014)^{* * *} \end{gathered}$	$\begin{gathered} -.474 \\ (.014)^{* * *} \end{gathered}$
Share: Some High School	$\stackrel{-.248}{(.011)^{* * *}}$	$\begin{gathered} -.339 \\ (.017)^{* * *} \end{gathered}$	$\stackrel{-.340}{(.017)^{* * *}}$	$\begin{gathered} -.246 \\ (.010)^{* * *} \end{gathered}$	$\begin{gathered} -.334 \\ (.017)^{* * *} \end{gathered}$	$\stackrel{-.335}{(.017)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} -.004 \\ . .006) \end{gathered}$	$\begin{gathered} .039 \\ (.009)^{* * *} \end{gathered}$	$\underset{(.009)^{* * *}}{.041}$	$\begin{gathered} -.005 \\ (.006) \end{gathered}$	$\xrightarrow[(.009)^{* * *}]{.039}$	$\underset{(.009)^{* * *}}{.041}$
F statistic	278.782	42.507	36.334	330.087	50.068	41.834

Sources: SECEX exporter information 1990-98; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 132 for separations, Table 133 for accessions). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Annual world imports, coefficients rescaled to imports in USD billion.

Table 136: Pseudo-IV Conditional Logit Estimates, 1990-98

	Separations		Accessions	
	Tariff IV	Exporter IV	Tariff IV	Exporter IV
	(1)	(2)	(3)	(4)
Predicted Product Mkt. Tariff	$\begin{aligned} & 13.289 \\ & (7.763)^{*} \end{aligned}$		$\begin{aligned} & -17.353 \\ & (8.652)^{* *} \end{aligned}$	
Residual Product Mkt. Tariff	$\begin{array}{r} .134 \\ (.649) \end{array}$		$\begin{gathered} .972 \\ (.702) \end{gathered}$	
Predicted Intm. Input Tariff	$\begin{gathered} -13.944 \\ (8.443)^{*} \end{gathered}$		$\begin{gathered} 19.066 \\ (9.458)^{* *} \end{gathered}$	
Residual Intm. Input Tariff	$\begin{gathered} .842 \\ (1.051) \end{gathered}$		$\begin{gathered} -1.298 \\ (1.089) \end{gathered}$	
Predicted Import Penetration				
Residual Import Penetration	$\begin{aligned} & -.033 \\ & (.567) \end{aligned}$		$\begin{aligned} & -1.678 \\ & (.614)^{* * *} \end{aligned}$	
Predicted Exporter Status		$\begin{aligned} & 4.263 \\ & (.868)^{* * *} \end{aligned}$		$\begin{aligned} & -.201 \\ & (.872) \end{aligned}$
Residual Exporter Status		$\frac{.241}{(.044)^{* * *}}$		$\frac{-.471}{(.046)^{* * *}}$
Obs.	43,123	43,123	32,215	32,215
Pseudo R^{2}	. 079	. 078	. 061	. 061

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 137: Fixed-Effects Linear Least-Squares Estimates, Short subsector ibge Regressions 1990-98

	Separations			Accessions		
	Cdl. Logit	OLS-FE		Cdl. Logit	OLS-FE	
			IV			IV
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\frac{.158}{(.035)^{* * *}}$	$\frac{.011}{(.002)^{* * *}}$	$\begin{gathered} .034 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} .079 \\ (.034)^{* *} \end{gathered}$	$\begin{gathered} .008 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} \hline .005 \\ \hline .006) \end{gathered}$
Exporter Status	$\stackrel{.241}{(.044)^{* * *}}$	$\stackrel{.016}{(.002)^{* * *}}$	$\begin{gathered} .863 \\ (.436)^{* *} \end{gathered}$	$\stackrel{-.471}{(.046)^{* * *}}$	$\begin{gathered} -.028 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.562 \\ (.222)^{* *} \end{gathered}$
Product Market Tariff	$\underset{(.634)}{.088}$	$\begin{gathered} -.011 \\ (.030) \end{gathered}$	$\begin{gathered} -.112 \\ (.108) \end{gathered}$	$\begin{gathered} .997 \\ (.678) \end{gathered}$	$\frac{.058}{(.025)^{* *}}$	$\begin{aligned} & .057 \\ & (.065) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} .901 \\ (1.048) \end{gathered}$	$\stackrel{.123}{(.049)^{* *}}$		$\begin{aligned} & -1.387 \\ & (1.080) \end{aligned}$	$\begin{aligned} & -.080 \\ & (.042)^{*} \end{aligned}$	
Import Penetration	$\begin{aligned} & -.048 \\ & (.559) \end{aligned}$	$\begin{gathered} -.069 \\ (.027)^{* * *} \end{gathered}$		$\begin{gathered} -1.595 \\ (.602)^{* * *} \end{gathered}$	$\begin{gathered} -.018 \\ (.023) \end{gathered}$	
Obs.	43,123	173,803	173,803	32,215	177,072	177,072

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Instruments: World imports by year and real exchange rate components by sector and year (two instruments with sector variation). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 138: Conditional Logit Estimates of Separations by Education Group, 199098

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	.084	.215	-.409	-.554	.109	.079
Comp. Adv. \times Prd. Trff.	$(.057)$	$(.069)^{* * *}$	$(.251)$	$(.354)$	$(.058)^{*}$	$(.057)$
Exporter Status	.470	-.087	2.493	4.234	.614	.609
	.438	$(.372)$	$(1.383)^{*}$	$(2.29)^{*}$	$(.314)^{*}$	$(.316)^{*}$
Exporter \times Prd. Trff.	$(.076)^{* * *}$	$(.496$.395	-.064	. .428	.429
	-1.023	-1.093	-1.479	.732	$(.076)^{*^{* * *}}$	$(.077)^{* * *}$
Product Market Tariff	$(.322)^{* * *}$	$(.391)^{* * *}$	(1.317)	(1.988)	$(.321)^{*^{* * *}}$	$(.327)^{* * *}$
	-.002	.391	-2.456	-11.092	.268	-.258
Obs.	$(.810)$	$(.973)$	(2.948)	$(4.929)^{* *}$	$(.805)$	$(.812)$
Pseudo R^{2}	43,123	29,963	4,901	2,882	43,123	42,485

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 139: Conditional Logit Estimates of Accessions by Education Group, 199098

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\begin{aligned} & .081 \\ & (.057) \end{aligned}$	$\begin{aligned} & .072 \\ & (.067) \end{aligned}$	$\begin{aligned} & .286 \\ & (.234) \end{aligned}$	$\begin{aligned} & \hline .159 \\ & (.351) \end{aligned}$	$\frac{.102}{(.058)^{*}}$	$\begin{aligned} & .069 \\ & (.058) \end{aligned}$
Comp. Adv. \times Prd. Trff.	$\begin{aligned} & -.020 \\ & (.306) \end{aligned}$	$\begin{aligned} & -.080 \\ & (.344) \end{aligned}$	$\underset{(1.474)}{-.750}$	$\begin{gathered} 1.078 \\ (1.873) \end{gathered}$	$\begin{aligned} & .080 \\ & (.307) \end{aligned}$	$\begin{aligned} & .035 \\ & (.310) \end{aligned}$
Exporter Status	$\frac{-.418}{(.080)^{* * *}}$	$\begin{gathered} -.401 \\ (.097)^{* * *} \end{gathered}$	$\begin{gathered} -.669 \\ (.279)^{* *} \end{gathered}$	$\begin{aligned} & -.518 \\ & (.403) \end{aligned}$	$\frac{-.424}{(.080)^{* * *}}$	$\begin{gathered} -.423 \\ (.081)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.	$\begin{aligned} & -.277 \\ & (.336) \end{aligned}$	$\begin{aligned} & -.263 \\ & (.402) \end{aligned}$	$\begin{gathered} -.393 \\ (1.136) \end{gathered}$	$\begin{gathered} -2.154 \\ (1.664) \end{gathered}$	$\begin{aligned} & -.250 \\ & (.336) \end{aligned}$	$\begin{aligned} & -.225 \\ & (.342) \end{aligned}$
Product Market Tariff	$\begin{aligned} & 1.166 \\ & (.820) \end{aligned}$	$\begin{aligned} & .533 \\ & (.925) \end{aligned}$	$\begin{aligned} & 3.772 \\ & (3.504) \end{aligned}$	$\begin{gathered} 2.216 \\ (4.767) \end{gathered}$	$\begin{aligned} & 1.512 \\ & (.833)^{*} \end{aligned}$	$\begin{aligned} & 1.162 \\ & (.830) \end{aligned}$
Obs.	32,215	22,010	3,405	1,751	32,215	31,623
Pseudo R^{2}	. 061	. 051	. 109	. 109	. 061	. 061

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 140: Alternative Logit Estimates of Separations, 1986-98

	Cdl. Logit baseline	Logit			Cdl. Logit	Cdl. Logit
	cond'l sample	full sample		Sector FE	1986-98	

Source: RAIS 1986-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 141: Alternative Logit Estimates of Accessions, 1986-98

	Cdl. Logit baseline	Logit		Cdl. Logit Sector FE	Cdl. Logit 1986-98
		cond'l sample	full sample		
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{aligned} & .081 \\ & (.057) \end{aligned}$	$\begin{gathered} .041 \\ (.042) \end{gathered}$	$\begin{aligned} & .050 \\ & (.032) \end{aligned}$	$\begin{aligned} & -.034 \\ & (.105) \end{aligned}$	$\stackrel{.086}{(.032)^{* * *}}$
Comp. Adv. \times Prd. Trff.	$\begin{aligned} & -.020 \\ & (.306) \end{aligned}$	$\begin{aligned} & .269 \\ & (.235) \end{aligned}$	$\begin{gathered} .842 \\ (.181)^{* * *} \end{gathered}$	$\begin{aligned} & -.058 \\ & (.336) \end{aligned}$	$\begin{gathered} -.095 \\ (.071) \end{gathered}$
Exporter Status	$\begin{gathered} -.418 \\ (.080)^{* * *} \end{gathered}$	$\frac{-.245}{(.059)^{* * *}}$	$\stackrel{-.503}{(.046)^{* * *}}$	$\stackrel{-.443}{(.080)^{* * *}}$	
Exporter \times Prd. Trff.	$\begin{aligned} & -.277 \\ & (.336) \end{aligned}$	$\begin{aligned} & -.550 \\ & (.269)^{* *} \end{aligned}$	$\stackrel{-.465}{(.215)^{* *}}$	$\begin{aligned} & -.138 \\ & (.335) \end{aligned}$	
Product Market Tariff	$\begin{gathered} 1.166 \\ (.820) \end{gathered}$	$\begin{gathered} -.354 \\ (.563) \end{gathered}$	$\begin{gathered} -2.997 \\ (.448)^{* * *} \end{gathered}$	$\begin{gathered} 1.734 \\ (1.019)^{*} \end{gathered}$	$\begin{gathered} .894 \\ (.439)^{* *} \end{gathered}$
Obs.	32,215	32,215	177,072	32,215	60,055
Pseudo R^{2}	. 061	. 036	. 111	. 062	. 057

Source: RAIS 1986-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

7.6 Separations and accessions of prime-age male workers in metropolitan areas, CNAE sector

Table 142: Conditional Logit Estimates of Separations and Accessions, cnae 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Balassa Comp. Adv.	$\begin{gathered} .053 \\ (.030)^{*} \end{gathered}$	$\begin{aligned} & .056 \\ & (.042) \end{aligned}$	$\begin{aligned} & .021 \\ & (.028) \end{aligned}$	$\begin{aligned} & -.021 \\ & (.041) \end{aligned}$
Comp. Adv. \times Prd. Trff.	$\begin{gathered} .333 \\ (.168)^{* *} \end{gathered}$	$\underset{(.241)^{* *}}{.520}$	$\begin{aligned} & .081 \\ & (.167) \end{aligned}$	$.$
Exporter Status	$\underset{(.091)^{* * *}}{.294}$	$\begin{gathered} .352 \\ (.112)^{* * *} \end{gathered}$	$\stackrel{-.415}{(.095)^{* * *}}$	$\begin{gathered} -.519 \\ (.116)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.	$\begin{aligned} & -.410 \\ & (.392) \end{aligned}$	$\begin{aligned} & -.225 \\ & (.490) \end{aligned}$	$\begin{gathered} -.064 \\ \hline .406) \end{gathered}$	$\begin{aligned} & .200 \\ & \hline \end{aligned}$
Comp. Adv. \times Exporter		$\begin{gathered} -.004 \\ (.054) \end{gathered}$		$\begin{aligned} & .066 \\ & (.050) \end{aligned}$
Comp. Adv. \times Exp. \times Prd. Trff.		$\begin{aligned} & -.335 \\ & (.307) \end{aligned}$		$\begin{aligned} & -.181 \\ & (.300) \end{aligned}$
Product Market Tariff	$\begin{aligned} & -.102 \\ & (.518) \end{aligned}$	$\begin{aligned} & -.188 \\ & (.541) \end{aligned}$	$\begin{gathered} -.220 \\ (.503) \end{gathered}$	$\begin{aligned} & -.351 \\ & (.525) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} -.285 \\ (.899) \end{gathered}$	$\begin{gathered} -.281 \\ (.900) \end{gathered}$	$\begin{aligned} & .036 \\ & (.876) \end{aligned}$	$\begin{gathered} -.026 \\ (.877) \end{gathered}$
Import Penetration	$\begin{gathered} -.851 \\ (.497)^{*} \end{gathered}$	$\begin{gathered} -.847 \\ (.497)^{*} \end{gathered}$	$\begin{aligned} & -1.900 \\ & (.513)^{* * *} \end{aligned}$	$\begin{aligned} & -1.906 \\ & (.513)^{* * *} \end{aligned}$
Obs.	34,346	34,346	25,781	25,781
Pseudo R^{2}	. 101	. 101	. 067	. 067

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 143: Year Effects in Conditional Logit Estimates of Separations and AcCESSIONS, CNAE 1990-98

	Separations		Accessions	
	(1)	(2)	(3)	(4)
Year 1990	$\begin{aligned} & -1.030 \\ & (.251)^{* * *} \end{aligned}$	$\begin{gathered} -1.039 \\ (.251)^{* * *} \end{gathered}$	$\begin{gathered} 1.177 \\ (.256)^{* * *} \end{gathered}$	$\stackrel{1.186}{(.256)^{* * *}}$
Year 1991	$\begin{aligned} & -1.649 \\ & (.123)^{* * *} \end{aligned}$	$\begin{aligned} & -1.650 \\ & (.123)^{* * *} \end{aligned}$	$\frac{.998}{(.130)^{* * *}}$	$\begin{gathered} 1.000 \\ (.130)^{* * *} \end{gathered}$
Year 1992	$\begin{gathered} -1.886 \\ (.205)^{* * *} \end{gathered}$	$\begin{aligned} & -1.888 \\ & (.205)^{* * *} \end{aligned}$	$\underset{(.221)^{* *}}{.438}$	$\stackrel{.437}{(.221)^{* *}}$
Year 1993	$\begin{aligned} & -1.587 \\ & (.124)^{* * *} \end{aligned}$	$\begin{gathered} -1.589 \\ (.124)^{* * *} \end{gathered}$	$\begin{gathered} .821 \\ (.134)^{* * *} \end{gathered}$	$\frac{.821}{(.135)^{* * *}}$
Year 1994	$\begin{aligned} & -1.018 \\ & (.090)^{* * *} \end{aligned}$	$\begin{aligned} & -1.021 \\ & (.090)^{* * *} \end{aligned}$	$\begin{gathered} .949 \\ (.095)^{* * *} \end{gathered}$	$\xrightarrow[(.095)^{* * *}]{.950}$
Year 1995	$\begin{aligned} & -.167 \\ & (.165) \end{aligned}$	$\begin{aligned} & -.171 \\ & (.165) \end{aligned}$	$\frac{.987}{(.174)^{* * *}}$	$\frac{.988}{(.174)^{* * *}}$
Year 1996	$\stackrel{-.337}{(.099)^{* * *}}$	$\begin{gathered} -.339 \\ (.098)^{* * *} \end{gathered}$	$\frac{.848}{(.106)^{* * *}}$	$\frac{.850}{(.106)^{* * *}}$
Year 1997	$\begin{gathered} -.164 \\ (.079)^{* *} \end{gathered}$	$\begin{gathered} -.166 \\ (.079)^{* *} \end{gathered}$	$\underset{(.085)^{* * *}}{.615}$	$\underset{(.085)^{* * *}}{.616}$
Obs.	34,346	34,346	25,781	25,781
Pseudo R^{2}	. 101	. 101	. 067	. 067

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Other regressors (not reported): Trade-related, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 144: Conditional Logit Estimates of Separations, cnae 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\frac{.104}{(.019)^{* * *}}$	$\underset{(.030)^{*}}{ }$			$\underset{(.030)^{*}}{.053}$
Comp. Adv. \times Prd. Trff.		$\begin{gathered} .319 \\ (.167)^{*} \end{gathered}$			$\begin{gathered} .333 \\ (.168)^{* *} \end{gathered}$
Exporter Status			$\frac{.231}{(.053)^{* * *}}$	$\begin{gathered} .331 \\ (.090)^{* * *} \end{gathered}$	$\begin{gathered} .294 \\ (.091)^{* * *} \end{gathered}$
Exporter \times Prd. Trff.				$\begin{aligned} & -.515 \\ & (.387) \end{aligned}$	$\begin{aligned} & -.410 \\ & (.392) \end{aligned}$
Product Market Tariff	$\begin{gathered} -.102 \\ (.446) \end{gathered}$	$\begin{gathered} -.357 \\ (.474) \end{gathered}$	$\begin{gathered} -.197 \\ (.444) \end{gathered}$	$\begin{aligned} & .093 \\ & \text { (.493) } \end{aligned}$	$\begin{gathered} -.102 \\ (.518) \end{gathered}$
Intm. Input Tariff	$\begin{gathered} -.307 \\ (.893) \end{gathered}$	$\begin{gathered} -.194 \\ (.896) \end{gathered}$	$\begin{gathered} -.834 \\ (.892) \end{gathered}$	$\begin{gathered} -.835 \\ (.890) \end{gathered}$	$\begin{gathered} -.285 \\ (.899) \end{gathered}$
Import Penetration	$\begin{aligned} & -.748 \\ & (.495) \end{aligned}$	$\begin{gathered} -.742 \\ (.495) \end{gathered}$	$\begin{gathered} -1.386 \\ (.482)^{* * *} \end{gathered}$	$\begin{gathered} -1.402 \\ (.482)^{* * *} \end{gathered}$	$\frac{-.851}{(.497)^{*}}$
Sector-level covariates					
Sector real exch. rate	$\begin{gathered} 4.028 \\ (1.210)^{* * *} \end{gathered}$	$\begin{gathered} 3.880 \\ (1.213)^{* * *} \end{gathered}$	$\underset{(1.206)^{* * *}}{4.608}$	$\begin{gathered} 4.600 \\ (1.207)^{* * *} \end{gathered}$	$\begin{gathered} 3.867 \\ (1.215)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\begin{gathered} -.095 \\ (.038)^{* *} \end{gathered}$	$\begin{gathered} -.083 \\ (.038)^{* *} \end{gathered}$	$\begin{gathered} -.055 \\ (.037) \end{gathered}$	$\begin{gathered} -.054 \\ (.037) \end{gathered}$	$\begin{aligned} & -.077 \\ & (.038)^{* *} \end{aligned}$
Herfindahl Index (sales)	$\begin{aligned} & -1.109 \\ & (.442)^{* *} \end{aligned}$	$\begin{aligned} & -1.079 \\ & (.441)^{* *} \end{aligned}$	$\begin{aligned} & -.689 \\ & (.430) \end{aligned}$	$\begin{aligned} & -.686 \\ & (.431) \end{aligned}$	$\begin{aligned} & -1.084 \\ & (.442)^{* *} \end{aligned}$
Plant-level covariates					
Log Employment	$\frac{-.257}{(.018)^{* * *}}$	$\stackrel{-.258}{(.018)^{* * *}}$	$\begin{aligned} & -.276 \\ & (.019)^{* * *} \end{aligned}$	$\stackrel{-.275}{(.019)^{* * *}}$	$\stackrel{-.282}{(.019)^{* * *}}$
Share: Middle School or less	$\underset{(.236)^{*}}{ }$	$\stackrel{.421}{(.236)^{*}}$	$\underset{(.235)^{* *}}{.488}$	$\begin{gathered} .499 \\ (.235)^{* *} \end{gathered}$	$\underset{(.238)^{* *}}{.518}$
Share: Some High School	$\begin{aligned} & .265 \\ & (.273) \end{aligned}$	$\begin{aligned} & .273 \\ & (.274) \end{aligned}$	$\begin{aligned} & .250 \\ & (.272) \end{aligned}$	$\begin{aligned} & .258 \\ & (.272) \end{aligned}$	$\begin{aligned} & .343 \\ & (.275) \end{aligned}$
Share: White-collar occ.	$\underset{(.141)^{* * *}}{.680}$	$\frac{.687}{(.141)^{* * *}}$	$\underset{(.140)^{* * *}}{.610}$	$\underset{(.140)^{* * *}}{.611}$	$\underset{(.142)^{* * *}}{.662}$
Worker-level covariates					
Tenure at plant (in years)	$\underset{(.045)^{* * *}}{.638}$	$\underset{(.045)^{* * *}}{.639}$	$\underset{(.044)^{* * *}}{.620}$	$\underset{(.045)^{* * *}}{.621}$	$\underset{(.045)^{* * *}}{.634}$
Pot. labor force experience	$\begin{gathered} .013 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .013 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .014 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .014 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} .013 \\ (.004)^{* * *} \end{gathered}$
Prof. or Manag'l. Occ.	$\begin{gathered} -.7200 \\ (.123)^{* * *} \end{gathered}$	$\begin{gathered} -.722 \\ (.123)^{* * *} \end{gathered}$	$\begin{gathered} -.721 \\ (.122)^{* * *} \end{gathered}$	$\begin{gathered} -.720 \\ (.122)^{* * *} \end{gathered}$	$\begin{gathered} -.726 \\ (.123)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.450 \\ (.119)^{* * *} \end{gathered}$	$\begin{gathered} -.452 \\ (.120)^{* * *} \end{gathered}$	$\begin{gathered} -.428 \\ (.119)^{* * *} \end{gathered}$	$\begin{gathered} -.424 \\ (.119)^{* * *} \end{gathered}$	$\begin{gathered} -.461 \\ (.120)^{* * *} \end{gathered}$
Unskilled Wh. Collar Occ.	$\begin{aligned} & -.136 \\ & (.122) \end{aligned}$	$\begin{aligned} & -.138 \\ & (.122) \end{aligned}$	$\begin{aligned} & -.128 \\ & (.120) \end{aligned}$	$\begin{aligned} & -.126 \\ & (.121) \end{aligned}$	$\begin{aligned} & -.149 \\ & (.122) \end{aligned}$
Skilled B1. Collar Occ.	$\begin{aligned} & -.123 \\ & (.072)^{*} \end{aligned}$	$\begin{aligned} & -.126 \\ & (.072)^{*} \end{aligned}$	$\begin{gathered} -.110 \\ (.071) \end{gathered}$	$\begin{gathered} -.108 \\ (.071) \end{gathered}$	$\begin{aligned} & -.128 \\ & (.072)^{*} \end{aligned}$
Obs.	34,346	34,346	34,935	34,935	34,346
Pseudo R^{2}	. 100	. 100	. 099	. 099	. 101

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at CNAE level. Controlling for year effects. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 145: Conditional Logit Estimates of Accessions, cnae 1990-98

	Specification				
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{aligned} & \hline .026 \\ & (.016) \end{aligned}$	$\begin{aligned} & \hline .015 \\ & (.028) \end{aligned}$			$\begin{aligned} & \hline .021 \\ & (.028) \end{aligned}$
Comp. Adv. \times Prd. Trff.		$\begin{aligned} & .081 \\ & (.166) \end{aligned}$			$\begin{aligned} & .081 \\ & (.167) \end{aligned}$
Exporter Status			$\begin{gathered} -.432 \\ (.052)^{* * *} \end{gathered}$	$\begin{gathered} -.414 \\ (.094)^{* * *} \end{gathered}$	$\frac{-.415}{(.095)^{* * *}}$
Exporter \times Prd. Trff.				$\begin{aligned} & -.095 \\ & (.404) \end{aligned}$	$\begin{aligned} & -.064 \\ & (.406) \end{aligned}$
Product Market Tariff	$\begin{aligned} & -.141 \\ & (.448) \end{aligned}$	$\begin{aligned} & -.201 \\ & (.468) \end{aligned}$	$\begin{aligned} & -.245 \\ & (.444) \end{aligned}$	$\begin{gathered} -.201 \\ (.485) \end{gathered}$	$\begin{aligned} & -.220 \\ & (.503) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} -.246 \\ (.873) \end{gathered}$	$\begin{gathered} -.230 \\ (.875) \end{gathered}$	$\begin{gathered} -.106 \\ (.862) \end{gathered}$	$\begin{gathered} -.107 \\ (.862) \end{gathered}$	$\begin{aligned} & .036 \\ & (.876) \end{aligned}$
Import Penetration	$\begin{aligned} & -2.091 \\ & (.510)^{* * *} \end{aligned}$	$\begin{gathered} -2.084 \\ (.511)^{* * *} \end{gathered}$	$\begin{aligned} & -2.133 \\ & (.497)^{* * *} \end{aligned}$	$\begin{aligned} & -2.134 \\ & (.497)^{* * *} \end{aligned}$	$\begin{gathered} -1.900 \\ (.513)^{* * *} \end{gathered}$
Sector-level covariates					
Sector real exch. rate	$\underset{(1.256)^{*}}{2.455}$	$\underset{(1.259)^{*}}{2.421}$	$\underset{(1.250)^{* *}}{2.622}$	$\underset{(1.249)^{* *}}{2.626}$	$\underset{(1.266)^{*}}{2.375}$
FDI Flow (USD billion)	$\underset{(.045)}{.014}$	$\begin{array}{r} .018 \\ (.046) \end{array}$	$\begin{array}{r} .021 \\ (.044) \end{array}$	$\underset{(.044)}{.021}$	$\begin{array}{r} .009 \\ (.046) \end{array}$
Herfindahl Index (sales)	$\begin{aligned} & -.681 \\ & (.496) \end{aligned}$	$\begin{aligned} & -.672 \\ & (.496) \end{aligned}$	$\frac{-.763}{(.453)^{*}}$	$\frac{-.762}{(.453)^{*}}$	$\begin{gathered} -.547 \\ (.501) \end{gathered}$
Plant-level covariates					
Log Employment	$\stackrel{-.269}{(.017)^{* * *}}$	$\stackrel{-.269}{(.017)^{* * *}}$	$\frac{-.206}{(.017)^{* * *}}$	$\frac{-.206}{(.017)^{* * *}}$	$\frac{-.219}{(.018)^{* * *}}$
Share: Middle School or less	$\begin{gathered} 1.177 \\ (.236)^{* * *} \end{gathered}$	$\frac{1.178}{(.236)^{* * *}}$	$\begin{gathered} 1.060 \\ (.232)^{* * *} \end{gathered}$	$\underset{(.232)^{* * *}}{1.061}$	$\frac{1.042}{(.231)^{* * *}}$
Share: Some High School	$\stackrel{.998}{(.276)^{* * *}}$	$\begin{gathered} .999 \\ (.276)^{* * *} \end{gathered}$	$\frac{.928}{(.272)^{* * *}}$	$\frac{.928}{(.272)^{* * *}}$	$\stackrel{.925}{(.271)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} -1.078 \\ (.151)^{* * *} \end{gathered}$	$\begin{aligned} & -1.076 \\ & (.151)^{* * *} \end{aligned}$	$\frac{-.949}{(.149)^{* * *}}$	$\begin{gathered} -.948 \\ (.149)^{* * *} \end{gathered}$	$\begin{gathered} -.979 \\ (.151)^{* * *} \end{gathered}$
Worker-level covariates					
Prof. or Manag'l. Occ.	$\begin{gathered} -.934 \\ (.129)^{* * *} \end{gathered}$	$\stackrel{-.934}{(.129)^{* * *}}$	$\frac{-.949}{(.129)^{* * *}}$	$\begin{gathered} -.949 \\ (.129)^{* * *} \end{gathered}$	$\begin{gathered} -.930 \\ (.130)^{* * *} \end{gathered}$
Tech'l. or Superv. Occ.	$\begin{gathered} -.910 \\ (.121)^{* * *} \end{gathered}$	$\begin{gathered} -.910 \\ (.121)^{* * *} \end{gathered}$	$\frac{-.913}{(.121)^{* * *}}$	$\begin{gathered} -.913 \\ (.121)^{* * *} \end{gathered}$	$\frac{-.894}{(.121)^{* * *}}$
Unskilled Wh. Collar Occ.	$\frac{-.542}{(.119)^{* * *}}$	$\frac{-.542}{(.119)^{* * *}}$	$\frac{-.554}{(.120)^{* * *}}$	$\frac{-.554}{(.120)^{* * *}}$	$\frac{-.532}{(.120)^{* * *}}$
Skilled B1. Collar Occ.	$\begin{gathered} -.423 \\ (.068)^{* * *} \end{gathered}$	$\begin{gathered} -.424 \\ (.068)^{* * *} \end{gathered}$	$\frac{-.418}{(.068)^{* * *}}$	$\frac{-.418}{(.068)^{* * *}}$	$\begin{gathered} -.415 \\ (.068)^{* * *} \end{gathered}$
Obs.	25,781	25,781	26,064	26,064	25,781
Pseudo R^{2}	. 062	. 062	. 066	. 066	. 067

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Controlling for year effects. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 146: First-stage Predictions of Sector Regressors, cnae 1986-98

	Separations			Accessions		
	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.	Prd. Mkt. Tariff	Intm. Tariff	Imp. Pen.
	(1)	(2)	(3)	(4)	(5)	(6)
USD Exch. Rate	$\begin{gathered} .002 \\ (.001)^{* *} \end{gathered}$	$\begin{gathered} .044 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .024 \\ (.0004)^{* * *} \end{gathered}$	$\stackrel{.005}{(.001)^{* * *}}$	$\begin{gathered} .045 \\ (.0008)^{* * *} \end{gathered}$	$\begin{aligned} & .023 \\ & (.0004)^{* * *} \end{aligned}$
PPI Idx. EU	$\begin{aligned} & -1.344 \\ & (.009)^{* * *} \end{aligned}$	$\begin{aligned} & -1.357 \\ & (.007)^{* * *} \end{aligned}$	$\xrightarrow[(.003)^{* * *}]{.058}$	$\begin{gathered} -1.355 \\ (.009)^{* * *} \end{gathered}$	$\begin{aligned} & -1.369 \\ & (.007)^{* * *} \end{aligned}$	$\begin{gathered} .061 \\ (.003)^{* * *} \end{gathered}$
PPI Idx. NAM	$\begin{gathered} .079 \\ (.008)^{* * *} \end{gathered}$	$\begin{gathered} -.080 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} .224 \\ (.003)^{* * *} \end{gathered}$	$\xrightarrow[(.008)^{* * *}]{.084}$	$\stackrel{-.072}{(.006)^{* * *}}$	$\underset{(.003)^{* * *}}{.228}$
Balassa Comp. Adv.	$\begin{gathered} -.018 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.014 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.013 \\ (.00008)^{* * *} \end{gathered}$	$\begin{gathered} -.018 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.014 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} -.013 \\ (.00008)^{* * *} \end{gathered}$
FDI Flow (USD billion)	$\stackrel{.027}{(.001)^{* * *}}$	$\begin{gathered} .013 \\ (.0008)^{* * *} \end{gathered}$	$\begin{gathered} .001 \\ (.0004)^{* * *} \end{gathered}$	$\begin{gathered} .029 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} .014 \\ (.0008)^{* * *} \end{gathered}$	$\begin{aligned} & .002 \\ & (.0004)^{* * *} \end{aligned}$
Herfindahl Index (sales)	$\begin{gathered} -.048 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.111 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .021 \\ (.001)^{* * *} \end{gathered}$	$\stackrel{-.050}{(.003)^{* * *}}$	$\begin{gathered} -.109 \\ (.003)^{* * *} \end{gathered}$	$\underset{(.001)^{* * *}}{.019}$
Log Employment	$\begin{gathered} .020 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} .010 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .001 \\ (.00007)^{* * *} \end{gathered}$	$\begin{gathered} .019 \\ (.0002)^{* * *} \end{gathered}$	$\begin{gathered} .009 \\ (.0001)^{* * *} \end{gathered}$	$\begin{gathered} .002 \\ (.00007)^{* * *} \end{gathered}$
Share: Middle School or less	$\begin{aligned} & .050 \\ & (.003)^{* * *} \end{aligned}$	$\stackrel{.046}{(.002)^{* * *}}$	$\begin{gathered} -.088 \\ (.001)^{* * *} \end{gathered}$	$\xrightarrow[(.003)^{* * *}]{.058}$	$\underset{(.002)^{* * *}}{.052}$	$\stackrel{-.080}{(.001)^{* * *}}$
Share: Some High School	$\begin{gathered} -.092 \\ (.004)^{* * *} \end{gathered}$	$\begin{gathered} -.056 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.023 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.090 \\ (.004)^{* * *} \end{gathered}$	$\stackrel{-.056}{(.003)^{* * *}}$	$\stackrel{-.015}{(.001)^{* * *}}$
Share: White-collar occ.	$\stackrel{.011}{(.002)^{* * *}}$	$\begin{gathered} .008 \\ (.002)^{* * *} \end{gathered}$	$\begin{gathered} -.027 \\ (.0009)^{* * *} \end{gathered}$	$\stackrel{.016}{(.002)^{* * *}}$	$\xrightarrow[(.002)^{* * *}]{.011}$	$\begin{gathered} -.023 \\ (.0008)^{* * *} \end{gathered}$
F statistic	22,089.93	35,586.78	12,426.02	22,236.78	36,024.05	12,880.65

Sources: Sector data from various sources at CNAE level; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 144 for separations, Table 145 for accessions). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, *** one percent.

Table 147: First-stage Predictions of Export Status, cnae 1986-98

	Separations			Accessions		
	OLS	Firm FE	Firm FE	OLS	Firm FE	Firm FE
	(1)	(2)	(3)	(4)	(5)	(6)
World imports APD	$\begin{gathered} .395 \\ (.072)^{* * *} \end{gathered}$	$\underset{(.127)^{* * *}}{.438}$	$\underset{(.130)^{* * *}}{.498}$	$\underset{(.072)^{* * *}}{.294}$	$\underset{(.129)^{* * *}}{.422}$	$\underset{(.132)^{* * *}}{.506}$
World imports CEE	$\begin{aligned} & -1.693 \\ & (.325)^{* * *} \end{aligned}$	$\begin{array}{r} -.841 \\ (.567) \end{array}$	$\begin{gathered} -.761 \\ . .569) \end{gathered}$	$\begin{gathered} -2.445 \\ (.326)^{* * *} \end{gathered}$	$\underset{(.578)^{*}}{-1.130}$	$\underset{(.579)^{*}}{-1.020}$
World imports LAC	$\begin{gathered} -.756 \\ (.186)^{* * *} \end{gathered}$	$\begin{gathered} -.122 \\ (.328) \end{gathered}$	$\begin{gathered} -.148 \\ (.328) \end{gathered}$	$\begin{gathered} -.704 \\ (.185)^{* * *} \end{gathered}$	$\begin{aligned} & .005 \\ & \text { (.333) } \end{aligned}$	$\begin{gathered} -.028 \\ (.333) \end{gathered}$
World imports NAM	$\begin{gathered} .393 \\ (.076)^{* * *} \end{gathered}$	$\begin{aligned} & .053 \\ & (.133) \end{aligned}$	$\begin{aligned} & .024 \\ & (.134) \end{aligned}$	$\frac{.533}{(.075)^{* * *}}$	$\begin{aligned} & .044 \\ & (.135) \end{aligned}$	$\begin{aligned} & .004 \\ & (.135) \end{aligned}$
World imports ODV	$\begin{gathered} .533 \\ (.081)^{* * *} \end{gathered}$	$\begin{gathered} .348 \\ (.138)^{* *} \end{gathered}$	$\begin{gathered} .342 \\ (.138)^{* *} \end{gathered}$	$\begin{gathered} .683 \\ (.081)^{* * *} \end{gathered}$	$\begin{gathered} .451 \\ (.140)^{* * *} \end{gathered}$	$\underset{(.140)^{* * *}}{.445}$
World imports OIN	$\frac{-1.150}{(.241)^{* * *}}$	$\begin{gathered} -1.332 \\ (.422)^{* * *} \end{gathered}$	$\begin{gathered} -1.517 \\ (.430)^{* * *} \end{gathered}$	$\begin{gathered} -.809 \\ (.241)^{* * *} \end{gathered}$	$\begin{gathered} -1.305 \\ (.430)^{* * *} \end{gathered}$	$\begin{gathered} -1.561 \\ (.437)^{* * *} \end{gathered}$
World imports WEU	$\begin{aligned} & .008 \\ & (.013) \end{aligned}$	$\begin{aligned} & .033 \\ & (.022) \end{aligned}$	$\stackrel{.042}{(.023)^{*}}$	$\begin{gathered} -.006 \\ (.013) \end{gathered}$	$\begin{aligned} & .036 \\ & (.023) \end{aligned}$	$\begin{gathered} .049 \\ (.023)^{* *} \end{gathered}$
Balassa Comp. Adv.	$\underset{(.0006)^{* * *}}{.006}$	$\stackrel{.004}{(.001)^{* * *}}$	$\begin{gathered} -.002 \\ (.003) \end{gathered}$	$\begin{gathered} .007 \\ (.0006)^{* * *} \end{gathered}$	$\begin{gathered} .005 \\ (.001)^{* * *} \end{gathered}$	$\begin{gathered} -.003 \\ (.003) \end{gathered}$
Comp. Adv. \times Prd. Trff.			$\begin{gathered} .036 \\ (.016)^{* *} \end{gathered}$			$\underset{(.016)^{* * *}}{.051}$
FDI Flow (USD billion)	$\begin{gathered} -.065 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} -.044 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.043 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.068 \\ (.003)^{* * *} \end{gathered}$	$\stackrel{-.046}{(.006)^{* * *}}$	$\stackrel{-.044}{(.006)^{* * *}}$
Herfindahl Index (sales)	$\frac{-.108}{(.011)^{* * *}}$	$\stackrel{-.081}{(.029)^{* * *}}$	$\begin{gathered} -.079 \\ (.029)^{* * *} \end{gathered}$	$\stackrel{-.071}{(.010)^{* * *}}$	$\begin{aligned} & -.056 \\ & (.029)^{*} \end{aligned}$	$\begin{aligned} & -.053 \\ & (.030)^{*} \end{aligned}$
Log Employment	$\begin{gathered} .132 \\ (.0006)^{* * *} \end{gathered}$	$\underset{(.001)^{* * *}}{.147}$	$\underset{(.001)^{* * *}}{.147}$	$\underset{(.0006)^{* * *}}{.127}$	$\underset{(.001)^{* * *}}{.144}$	$\underset{(.001)^{* * *}}{.144}$
Share: Middle School or less	$\begin{gathered} -.499 \\ (.009)^{* * *} \end{gathered}$	$\stackrel{-.552}{(.016)^{* * *}}$	$\frac{-.552}{(.016)^{* * *}}$	$\begin{gathered} -.498 \\ (.009)^{* * *} \end{gathered}$	$\begin{gathered} -.569 \\ (.016)^{* * *} \end{gathered}$	$\begin{gathered} -.569 \\ (.016)^{* * *} \end{gathered}$
Share: Some High School	$\stackrel{-.195}{(.011)^{* * *}}$	$\begin{gathered} -.354 \\ (.019)^{* * *} \end{gathered}$	$\begin{gathered} -.353 \\ (.019)^{* * *} \end{gathered}$	$\stackrel{-.183}{(.011)^{* * *}}$	$\stackrel{-.366}{(.019)^{* * *}}$	$\stackrel{-.366}{(.019)^{* * *}}$
Share: White-collar occ.	$\begin{gathered} .089 \\ (.007)^{* * *} \end{gathered}$	$\frac{.115}{(.010)^{* * *}}$	$\underset{(.010)^{* * *}}{.116}$	$\stackrel{.085}{(.006)^{* * *}}$	$\frac{.108}{(.010)^{* * *}}$	$\xrightarrow[(.010)^{* * *}]{.109}$
F statistic	31.461	12.656	14.147	38.573	15.433	17.859

Sources: SECEX exporter information 1990-98; RAIS 1986-98 labor force information. Weighted regressions using worker-sample observation counts (as in Table 144 for separations, Table 145 for accessions). Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Annual world imports, coefficients rescaled to imports in USD billion.

Table 148: Pseudo-IV Conditional Logit Estimates, CnAe 1990-98

	Separations		Accessions	
	Tariff IV	Exporter IV	Tariff IV	Exporter IV
	(1)	(2)	(3)	(4)
Predicted Product Mkt. Tariff				
Residual Product Mkt. Tariff	$\begin{aligned} & -.091 \\ & (.446) \end{aligned}$		$\begin{aligned} & -.213 \\ & (.451) \end{aligned}$	
Predicted Intm. Input Tariff	$\begin{gathered} .577 \\ (1.189) \end{gathered}$		$\begin{gathered} .516 \\ (1.219) \end{gathered}$	
Residual Intm. Input Tariff	$\begin{aligned} & -.368 \\ & (.902) \end{aligned}$		$\begin{array}{r} .043 \\ (.883) \end{array}$	
Predicted Import Penetration	$\begin{gathered} -5.942 \\ (6.735) \end{gathered}$		$\begin{gathered} -4.752 \\ (7.227) \end{gathered}$	
Residual Import Penetration	$\frac{-.831}{(.497)^{*}}$		$\begin{gathered} -1.904 \\ (.514)^{* * *} \end{gathered}$	
Predicted Exporter Status				
Residual Exporter Status		$\underset{(.054)^{* * *}}{.214}$		$\stackrel{-.428}{(.053)^{* * *}}$
Obs.	34346	34346	25781	25781
Pseudo R^{2}	. 101	. 100	. 067	. 067

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 149: Fixed-Effects Linear Least-Squares Estimates, Short cnae RegresSIONS 1990-98

	Separations			Accessions		
	Cdl. Logit	OLS-FE		Cdl. Logit	OLS-FE	
			IV			IV
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	$\frac{.101}{(.019)^{* * *}}$	$\begin{gathered} .007 \\ (.0009)^{* * *} \end{gathered}$	$\begin{gathered} .008 \\ (.003)^{* * *} \end{gathered}$	$\begin{gathered} .033 \\ (.016)^{* *} \end{gathered}$	$\begin{gathered} .002 \\ (.0008)^{* *} \end{gathered}$	$\begin{gathered} \hline .012 \\ \hline . .008) \end{gathered}$
Exporter Status	$\underset{(.054)^{* * *}}{.214}$	$\begin{gathered} .013 \\ (.003)^{* * *} \end{gathered}$	$\begin{aligned} & .047 \\ & (.344) \end{aligned}$	$\stackrel{-.428}{(.053)^{* * *}}$	$\stackrel{-.027}{(.002)^{* * *}}$	
Product Market Tariff	$\begin{gathered} -.066 \\ (.446) \end{gathered}$	$\begin{gathered} -.030 \\ (.017)^{*} \end{gathered}$	$\begin{aligned} & .038 \\ & (.186) \end{aligned}$	$\begin{aligned} & -.190 \\ & (.449) \end{aligned}$	$\begin{aligned} & .008 \\ & (.014) \end{aligned}$	$\begin{aligned} & -.464 \\ & (.289) \end{aligned}$
Intm. Input Tariff	$\begin{aligned} & -.399 \\ & (.897) \end{aligned}$	$\begin{gathered} .090 \\ (.036)^{* *} \end{gathered}$		$\begin{gathered} .020 \\ (.874) \end{gathered}$	$\begin{gathered} -.044 \\ (.031) \end{gathered}$	
Import Penetration	$\begin{gathered} -.841 \\ (.496)^{*} \end{gathered}$	$\frac{-.112}{(.022)^{* * *}}$		$\begin{aligned} & -1.906 \\ & (.512)^{* * *} \end{aligned}$	$\begin{gathered} -.043 \\ (.019)^{* *} \end{gathered}$	$\begin{aligned} & -1.029 \\ & (.545)^{*} \end{aligned}$
Obs.	34,346	147,532	147,532	25,781	149,693	149,693

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations and accessions exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation or accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Instruments: World imports by year and real exchange rate components by sector and year (two instruments with sector variation). Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 150: Conditional Logit Estimates of Separations by Education Group, cnae 1990-98

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	.053	.054	.049	.279	.160	.053
Comp. Adv. \times Prd. Trff.	$(.030)^{*}$	$(.034)$	$(.186)$	$(.187)$	$(.074)^{* *}$	$(.030)^{*}$
	$(.333$.364	.747	-.327	.077	.381
Exporter Status	.294	$(.191)^{*}$	(1.041)	(1.257)	$(.535)$	$(.169)^{* *}$
	$(.091)^{* * *}$	$(.305$.365	-.401	-.193	.296
Exporter \times Prd. Trff.	-.410	-.381	-.937	3.485	$(.293)$	$(.092)^{* * *}$
	$(.392)$	$(.478)$	(1.444)	(2.852)	(1.770)	-.411
Product Market Tariff	-.102	-.159	-1.509	-3.792	1.700	$(.397)$
	$(.518)$	$(.626)$	(1.987)	(4.060)	(2.033)	$(.526)$
Obs.	34,346	24,336	3,836	2,284	10,049	33,922
Pseudo R^{2}	.101	.120	.264	.294	.201	.102

Source: RAIS 1990-98 (5% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 151: Conditional Logit Estimates of Accessions by Education Group, cnae 1990-98

	Cdl. Logit baseline	Primary school	High school	College educ.	Privatiz. control	Outsourc. job indic.
	(1)	(2)	(3)	(4)	(5)	(6)
Balassa Comp. Adv.	.021	.006	-.025	-.292	.100	.027
Comp. Adv. \times Prd. Trff.	.$(.028)$	$(.032)$	$(.127)$	$(.344)$	$(.062)$	$(.028)$
	$(.167)$.046	-.152	1.534	-.621	.039
Exporter Status	-.415	-.400	$(.967)$	(1.411)	$(.435)$	$(.168)$
	$(.095)^{* * *}$	$(.116)^{* * *}$	$(.357$	-.676	-.784	-.437
Exporter \times Prd. Trff.	-.064	.032	.561	$(.502)$	$(.264)^{* * *}$	$(.096)^{* * *}$
	$(.406)$	$(.494)$	(1.355)	-.717	1.835	.049
Product Market Tariff	-.220	.278	-2.278	-2.740	(1.665)	$(.415)$
	$(.503)$	$(.591)$	(2.068)	(2.649)	(1.739)	-.214
Obs.	25,781	18,104	2,697	1,422	7,988	25,372
Pseudo R^{2}	.067	.065	.122	.107	.104	.066

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 152: Alternative Logit Estimates of Separations, cnae 1990-98

	Cdl. Logit baseline	Logit		Cdl. Logit Sector FE	Cdl. Logit 1986-98
		cond'l sample	full sample		
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	$\begin{gathered} .053 \\ (.030)^{*} \end{gathered}$	$\begin{aligned} & \hline .022 \\ & (.018) \end{aligned}$	$\begin{gathered} .064 \\ (.012)^{* * *} \end{gathered}$	$\begin{gathered} .058 \\ (.030)^{*} \end{gathered}$	$\frac{.073}{(.019)^{* * *}}$
Comp. Adv. \times Prd. Trff.	$\begin{gathered} .333 \\ (.168)^{* *} \end{gathered}$	$\stackrel{.247}{(.109)^{* *}}$	$\stackrel{.160}{(.074)^{* *}}$	$\begin{gathered} .319 \\ (.167)^{*} \end{gathered}$	$\begin{aligned} & .077 \\ & (.057) \end{aligned}$
Exporter Status	$\underset{(.091)^{* * *}}{.294}$	$\begin{aligned} & -.008 \\ & (.055) \end{aligned}$	$\frac{-.187}{(.043)^{* * *}}$		
Exporter \times Prd. Trff.	$\begin{gathered} -.410 \\ (.392) \end{gathered}$	$\begin{array}{r} .318 \\ (.245) \end{array}$	$\begin{gathered} .392 \\ (.182)^{* *} \end{gathered}$		
Product Market Tariff	$\begin{aligned} & -.102 \\ & (.518) \end{aligned}$	$\begin{aligned} & -.220 \\ & (.279) \end{aligned}$	$\stackrel{-.661}{(.217)^{* * *}}$	$\begin{aligned} & -.357 \\ & (.474) \end{aligned}$	$\begin{aligned} & -.194 \\ & (.313) \end{aligned}$
Obs.	34,346	34,346	147,532	34,346	54,383
Pseudo R^{2}	. 101	. 036	. 081	. 100	. 089

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Separations exclude transfers, deaths, and retirements. Reference observations are employments with no reported separation in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

Table 153: Alternative Logit Estimates of Accessions, cnae 1990-98

	Cdl. Logit	Logit			Cdl. Logit	Cdl. Logit baseline
	(1)	cond'l sample	full sample		Sector FE	1986-98

Source: RAIS 1990-98 (5\% random sample), male workers in metropolitan area, 25 to 64 years old, with manufacturing job at plant with 1995 presence. Accessions exclude transfers. Reference observations are employments with no reported accession in a given year. Sector information at CNAE level. Further regressors (not reported): Year indicators, sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

7.7 Rehiring hazards after displacements of prime-age male workers nationwide, subsector IBGE

Table 154: Hazard Specification Comparisons

	exponential	Weibull	lognormal	loglogistic	gamma
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	-.045	-.059	-.074	-.060	-.046
	$(.008)^{* * *}$	$(.010)^{* * *}$	$(.011)^{* * *}$	$(.008)^{* * *}$	$(.008)^{* * *}$
Exporter Status	.010	.016	.015	.006	.015
	$(.014)$	$(.017)$	$(.017)$	$(.014)$	$(.015)$
Product Market Tariff	.330	.466	.943	.776	.102
Intm. Input Tariff	$(.226)$	$(.267)^{*}$	$(.249)^{* * *}$	$(.209)^{* * *}$	$(.304)$
	-.358	-.547	-1.312	-.984	-.288
Import Penetration	$(.343)$	$(.402)$	$(.367)^{* * *}$	$(.308)^{* * *}$	$(.668)$
	.267	.416	.941	.561	.339
First ancillary parameter (\log)	$(.172)$	$(.208)^{* *}$	$(.216)^{* * *}$	$(.163)^{* * *}$	$(.207)$
Second ancillary parameter (κ)		-.228	-.031	-.684	-.691
		$(.007)^{* * *}$	$(.007)^{* * *}$	$(.007)^{* * *}$	$(.051)^{* * *}$
Log likelihood				-1.314	
Akaike's information criterion	81687.35	80839.23	79328.42	78614.54	75977.05

Source: RAIS 1990-2001. Male workers nationwide (1% random sample), 25 to 64 years old (in highest paying job if many), displaced from formal-sector manufacturing job between 1990 and 1997 (58,623 obs.). Maximumlikelihood estimation of rehiring into formal job in any sector before December 31, 2001 (censored sample). Sector information at subsector IBGE level. Further regressors (not reported): Year indicators, sector and plant covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Akaike (1973) information criterion: $-2 \ln L+2(c+p+1)$, where c is the number of covariates and p the number of ancillary parameters.

Table 155: Hazard Specification Comparisons, no Year Effects

	exponential	Weibull	lognormal	loglogistic	gamma
	(1)	(2)	(3)	(4)	(5)
Balassa Comp. Adv.	-.055	-.068	-.109	-.115	-.126
Exporter Status	$(.008)^{* * *}$	$(.009)^{* * *}$	$(.010)^{* * *}$	$(.009)^{* * *}$	$(.012)^{* * *}$
	.009	.007	.023	.036	.034
Product Market Tariff	$(.014)$	$(.017)$	$(.018)$	$(.016)^{* *}$	$(.017)^{*}$
Intm. Input Tariff	.102	.224	.582	.620	.779
	$(.208)$	$(.242)$	$(.234)^{* *}$	$(.217)^{* * *}$	$(.233)^{* * *}$
Import Penetration	-.147	.454	-1.652	-3.190	-2.640
	$(.296)$	$(.346)$	$(.336)^{* * *}$	$(.310)^{* * *}$	$(.499)^{* * *}$
First ancillary parameter (\log)	.127	-.379	.890	2.152	1.526
	$(.150)$	$(.180)^{* *}$	$(.193)^{* * *}$	$(.157)^{* * *}$	$(.311)^{* * *}$
Second ancillary parameter (κ)		-.206	-.019	-.624	-.114
		$(.006)^{* * *}$	$(.006)^{* * *}$	$(.006)^{* * *}$	$(.034)^{* * *}$
Log likelihood					-.275
Akaike's information criterion	$81,712.9$	$80,945.36$	$79,431.31$	$79,305.98$	$79,358.51$

Source: RAIS 1990-2001. Male workers nationwide (1% random sample), 25 to 64 years old (in highest paying job if many), displaced from formal-sector manufacturing job between 1990 and 1997 (58,623 obs.). Maximum-likelihood estimation of rehiring into formal job in any sector before December 31, 2001 (censored sample). Sector information at subsector IBGE level. Further regressors (not reported): Sector and plant covariates. Robust standard errors in parentheses: * significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent. Akaike (1973) information criterion: $-2 \ln L+2(c+p+1)$, where c is the number of covariates and p the number of ancillary parameters.

Table 156: Rehiring Hazard Estimation, 1990-2001

	Censored in 2001		Rehires within 48 months		
	(1)	(2)	(3)	(4)	(5)
Displacing sector and firm covariates					
Balassa Comp. Adv.	$\begin{gathered} -.126 \\ (.012)^{* * *} \end{gathered}$	$\stackrel{-.046}{(.008)^{* * *}}$	$\begin{gathered} -.063 \\ (.006)^{* * *} \end{gathered}$	$\begin{gathered} -.038 \\ (.007)^{* * *} \end{gathered}$	$\begin{gathered} -.011 \\ (.004)^{* * *} \end{gathered}$
Exporter Status	$\underset{(.017)^{*}}{.034}$	$\begin{array}{r} .015 \\ (.015) \end{array}$	$\stackrel{.059}{(.010)^{* * *}}$	$\stackrel{.084}{(.011)^{* * *}}$	$\begin{gathered} .024 \\ (.006)^{* * *} \end{gathered}$
Product Market Tariff	$\frac{.779}{(.233)^{* * *}}$	$\begin{array}{r} .102 \\ (.304) \end{array}$	$\frac{.442}{(.147)^{* * *}}$	$\begin{gathered} .429 \\ (.162)^{* * *} \end{gathered}$	$\begin{aligned} & -.051 \\ & (.109) \end{aligned}$
Intm. Input Tariff	$\begin{gathered} -2.640 \\ (.499)^{* * *} \end{gathered}$	$\begin{gathered} -.288 \\ (.668) \end{gathered}$	$\begin{gathered} -4.714 \\ (.194)^{* * *} \end{gathered}$	$\begin{aligned} & -2.867 \\ & (.251)^{* * *} \end{aligned}$	$\begin{aligned} & .116 \\ & (.172) \end{aligned}$
Import Penetration	$\begin{gathered} 1.526 \\ (.311)^{* * *} \end{gathered}$	$\begin{aligned} & .339 \\ & (.207) \end{aligned}$	$\begin{gathered} 3.531 \\ (.117)^{* * *} \end{gathered}$	$\begin{gathered} 2.125 \\ (.130)^{* * *} \end{gathered}$	$\begin{aligned} & .091 \\ & (.074) \end{aligned}$
Rehiring sector and firm covariates					
Balassa Comp. Adv.				$\begin{gathered} -.024 \\ (.007)^{* * *} \end{gathered}$	$\begin{gathered} -.003 \\ (.003) \end{gathered}$
Exporter Status				$\begin{aligned} & -.084 \\ & (.010)^{* * *} \end{aligned}$	$\begin{gathered} -.060 \\ (.006)^{* * *} \end{gathered}$
Product Market Tariff				$\begin{aligned} & -.344 \\ & (.146)^{* *} \end{aligned}$	$\stackrel{.200}{(.108)^{*}}$
Intm. Input Tariff				$\begin{aligned} & -1.750 \\ & (.225)^{* * *} \end{aligned}$	$\begin{gathered} -.426 \\ (.159)^{* * *} \end{gathered}$
Import Penetration				$\begin{gathered} 1.930 \\ (.121)^{* * *} \end{gathered}$	$\begin{gathered} .113 \\ (.068)^{*} \end{gathered}$
Year effects		yes			yes
Obs.	58,623	58,623	19,360	19,360	19,360

Source: RAIS 1990-2001. Male workers nationwide (1% random sample), 25 to 64 years old (in highest paying job if many), displaced from formal-sector manufacturing job between 1990 and 1997. Maximum-likelihood estimation of gamma distributed accelerated "failure time" (success) model for formal job reallocation in any sector before December 31, 2001 (censored sample) or into manufacturing job within 48 months (rehires sample). Sector information at subsector IBGE level. Further regressors (not reported): Sector, plant and worker covariates. Robust standard errors in parentheses: ${ }^{*}$ significance at ten, ${ }^{* *}$ five, ${ }^{* * *}$ one percent.

To be reallocated 1986-2001

To be reallocated 1990-2001

Sources: RAIS 1986-2001 (1% random sample), male workers nationwide, 25 to 64 years old (in highest paying job if many), displaced from a formal-sector job and to-be-reallocated (censoring in December 2001).

Figure 81: Kaplan-Meier continuation estimates for workers to be reallocated

8 Appendix

	Rais Age Category	Imputed Age
1.	Child (10-14)	excluded
2.	Youth (15-17)	excluded
3.	Adolescent (18-24)	excluded
4.	Nascent Career (25-29)	27
5.	Early Career (30-39)	34.5
6.	Peak Career (40-49)	44.5
7.	Late Career (50-64)	57
8.	Post Retirement (65-)	excluded

	Education Level (A)	RAIS Education
A1.	Illiterate, or Primary or Middle School Educated	$1-5$
A2.	Some High School or High School Graduate	$6-7$
A3.	Some College	8
A4.	College Graduate	9

	Education Level (B)	RAIS Education
B1.	Illiterate or Primary School Dropout	$1-2$
B2.	Primary School Graduate or Middle School Dropout	$3-4$
B3.	Middle School Graduate or High School Dropout	$5-6$
B4.	High School Graduate or College Dropout	$7-8$
B5.	College Graduate	9

Table 157: AgGregate Sector Definition

	Subsector IBGE (two-digit level)	Grand sector	Sector definition
1	Mining and quarrying	1	Mining
2	Manufacture of non-metallic mineral products	1	Manufacturing
3	Manufacture of metallic products	1	Manufacturing
4	Manufacture of machinery, equipment and instruments	1	Manufacturing
5	Manufacture of electrical and telecommunic. equipment	1	Manufacturing
6	Manufacture of transport equipment	1	Manufacturing
7	Manufacture of wood products and furniture	1	Manufacturing
8	Manufacture of paper and paperboard, and publishing	1	Manufacturing
9	Manufacture of rubber, tobacco, leather, and products n.e.c.	1	Manufacturing
10	Manufacture of chemical and pharmaceutical products	1	Manufacturing
11	Manufacture of apparel and textiles	1	Manufacturing
12	Manufacture of footwear	1	Manufacturing
13	Manufacture of food, beverages, and ethyl alcohol	1	Manufacturing
14	Electricity, gas and water supply	1	Other
15	Construction	2	Other
16	Retail trade	3	Commerce
17	Wholesale trade	3	Commerce
18	Financial intermediation and insurance	4	Services
19	Real estate and business services	4	Services
20	Transport, storage and telecommunications	4	Services
21	Hotels and restaurants, repair and maintenance services	4	Services
22	Medical, dental and veterinary services	4	Services
23	Education	4	Services
24	Public administration and social services	4	Other
25	Agriculture, farming, hunting, forestry and fishing	5	Agriculture
26	Activities n.e.c.	6	Other

Source: RAIS 1986-2001.

Table 158: SIX METROPOLITAN AREAS

Metropolitan area		Municipalities
003	Recife	$\begin{aligned} & \text { 260005, 260105, 260290, 260345, 260680, 260720, } \\ & 260760,260775,260790,260940,260960,261070, \\ & 261160,261370 \end{aligned}$
004	Salvador	$\begin{aligned} & 290570,290650,291005,291610,291920,291992, \\ & 292740,292920,293070,293320 \end{aligned}$
005	Belo Horizonte	310500, 310540, 310620, 310640, 310670, 310810, $310900,311000,311250,311787,311860,312410$, 312600, 312640, 312720, 312980, 313010, 313100, 313190, 313220, 313370, 313380, 313460, 313660, $313665,313760,314015,314070,314110,314230$, 314480, 314710, 314930, 315360, 315390, 315460, 315480, 315530, 315670, 315720, 315780, 316292, 316295, 316310, 316553, 316720, 316830, 317120
006	Rio de Janeiro	$\begin{aligned} & 330045,330170,330185,330190,330227,330250, \\ & 330285,330320,330330,330350,330360,330414, \\ & 330455,330490,330510,330555,330575 \end{aligned}$
007	São Paulo	350390, 350570, 350660, 350900, 350920, 351060, 351300, 351380, 351500, 351510, 351570, 351630, 351640, 351830, 351880, 352220, 352250, 352310, 352500, 352620, 352850, 352940, 353060, 353440, 353910, 353980, 354330, 354410, 354500, 354680, 354730, 354780, 354870, 354880, 354995, 355030, 355250, 355280, 355645
009	Porto Alegre	430060, 430087, 430110, 430310, 430390, 430460, 430468, 430535, 430640, 430676, 430760, 430770, 430905, 430920, 430930, 431080, 431240, 431306, 431337, 431340, 431405, 431480, 431490, 431760, 431840, 431870, 431990, 432000, 432120, 432200, 432300

Source: RAIS 1986-2001.

Table 159: Location Definitions

$\left.\begin{array}{cl}\text { Code } & \text { Description } \\ \hline \text { APD } & \begin{array}{l}\text { Asia-Pacific Developing countries } \\ \text { including Hong Kong, South Korea, Singapore, Taiwan; } \\ \text { including dominions of OIN and WEU countries; } \\ \text { including China, Mongolia and North Korea; } \\ \text { excluding South Asia (India, Pakistan) }\end{array} \\ \text { CEE } & \begin{array}{l}\text { Central and Eastern European countries } \\ \text { including EU accession countries and candidates }\end{array} \\ \text { LAC } & \begin{array}{l}\text { Latin American and Caribbean countries } \\ \text { including Mexico and Central America }\end{array} \\ \text { NAM } & \begin{array}{l}\text { North American countries } \\ \text { including U.S. dominions } \\ \text { excluding Mexico } \\ \text { ODV }\end{array} \\ \begin{array}{l}\text { Other Developing countries } \\ \text { including South Asia (India/Pakistan), Africa, Middle East; } \\ \text { including dominions of OIN and WEU }\end{array} \\ & \begin{array}{l}\text { countries; excluding China } \\ \text { Other Industrialized countries } \\ \text { including Japan, Australia, and New Zealand } \\ \text { as well as Iceland and Greenland } \\ \text { Western European countries }\end{array} \\ \text { including EU-15, Norway, and Switzerland } \\ \text { excluding EU accession countries in 2002 }\end{array}\right]$

Table 160: Occupation DEFinitions

	ISCO-88 Category	Occupation Level
1.	Legislators, senior officials, and managers	Professional \& Managerial
2.	Professionals	Professional \& Managerial
3.	Technicians and associate professionals	Technical \& Supervisory
4.	Clerks	Other White Collar
5.	Service workers and shop and market sales workers	Other White Collar
6.	Skilled agricultural and fishery workers	Skill Intensive Blue Collar
7.	Craft and related workers	Skill Intensive Blue Collar
8.	Establishment and machine operators and assemblers	Skill Intensive Blue Collar
9.	Elementary occupations	Other Blue Collar

References

Akaike, Hirotugu, "Information Theory and an Extension of the Maximum Likelihood Principle," in Boris Nikolaevich Petrov and Frigyes Csáki, eds., Second International Symposium on Information Theory, Budapest: Akadémiai Kiadó, 1973, pp. 267-281.

Balassa, Bela, "Trade Liberalization and Revealed Comparative Advantage," Manchester School of Economic and Social Studies, May 1965, 33, 99-123.

Botero, Juan C., Simeon Djankov, Rafael La Porta, Florencio Lopez de Silanes, and Andrei Shleifer, "The Regulation of Labor," Quarterly Journal of Economics, November 2004, 119 (4), 1339-82.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller, "Robust Inference with Multi-way Clustering," Journal of Business and Economic Statistics, April 2011, 29 (2), 238-249.

Haltiwanger, John C., "Measuring and Analyzing Aggregate Fluctuations: The Importance of Building from Microeconomic Evidence," Federal Reserve Bank of St. Louis Review, May-June 1997, 79 (3), 55-77.

Katz, Lawrence F. and Kevin M. Murphy, "Changes in Relative Wages, 1963-1987: Supply and Demand Factors," Quarterly Journal of Economics, February 1992, 107 (1), 35-78.

Kume, Honório, Guida Piani, and Carlos Frederico Bráz de Souza, "A Política Brasileira de Importação no Período 1987-98: Descrição e Avaliação," in Carlos Henrique Corseuil and Honório Kume, eds., A abertura comercial brasileira nos anos 1990: Impactos sobre emprego e salários, Rio de Janeiro: MTE and IPEA, 2003, chapter 1, pp. 9-37.

Muendler, Marc-Andreas, "Trade, Technology, and Productivity: A Study of Brazilian Manufacturers, 1986-1998," CESifo Working Paper, March 2004, 1148.

Olley, G. Steven and Ariel Pakes, "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, November 1996, 64 (6), 1263-97.

Ramos, Roberto Luís Olinto and Claudia Nessi Zonenschain, "The Performance of the Brazilian Imports and Exports Based on the System of National Accounts: 1980-1998," August 2000. IBGE Rio de Janeiro.

Vollrath, Thomas L., "A Theoretical Evaluation of Alternative Trade Intensity Measures of Revealed Comparative Advantage," Weltwirtschaftliches Archiv, 1991, 127 (2), 265-80.

[^0]: *We thank Paulo Furtado and the Brazilian Ministry of Labor for assistance with RaIS. We thank Alexandre Brandão and Aline Visconti at IBGE for tabulations of PIA, and Mary Amiti and Luis Servén for trade data. Jennifer Poole and Andrea Curi provided superb research assistance. Muendler acknowledges NSF support (SES-0550699) with gratitude. In-depth statistics beyond this paper are available from URL econ.ucsd.edu/muendler/research.
 ${ }^{\text {® }}$ muendler@ucsd.edu (www.econ.ucsd.edu/muendler). $\mathrm{Ph}:+1$ (858) 534-4799.

[^1]: ${ }^{a}$ Balassa (1965) comparative advantage, transition year quintile (5th: strongest advantage).
 ${ }^{b}$ Failure adjustment of stationary distribution based on estimate of 4-year nonformal-to-nonformal transitions from PME (for 1986-98 64.9\% of nonformal PME workers are in nonformal work status after three annual transitions, replacing the zero from RAIS, 65.3% for 1990-94, and 71.7% for 1994-98).

 Sources: RAIS 1986, 1990, 1994 and 1998 (1-percent random sample), workers nationwide of any gender or age; and PME 1986-1999. UN Comtrade 1986-98 for Balassa comparative advantage at subsector IBGE level.
 Note: Transition frequencies refer to employments in Brazil four years after separation, based on last employment of year (highest paying job if many). Failed accessions are separations followed by no formal-sector employment anywhere in Brazil within four years, excluding workers with retirement or death, or age 65 or above in past job. The stationary distribution is the normalized left eigenvector of the PME-corrected RAIS transition matrix associated with the eigenvalue of one.

[^2]: ${ }^{a}$ Total employment (million workers), scaled to population equivalent.
 ${ }^{b}$ Mining included in manufacturing.

[^3]: ${ }^{a}$ Total employment (thousands of workers), samples scaled to population equivalents.

[^4]: Source: RAIS 1986-2001 (1% random sample), male workers, 25 years or older. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Overall and between-industry demand shift measures for education group k are of the form $\Delta D_{k}=\sum_{j} \alpha_{j k}\left(\Delta E_{j} / E_{k}\right)$, where $\alpha_{j k}$ is the average share for group k of employment in sector j over the period 1986-2001, E_{j} is the share of aggregate employment in sector j, and E_{k} is the average share of total employment of group k over the period 1986-2001 traded and 12 nontraded goods sectors). The within-industry index for group k is the difference of the overall and between-industry measures. Employment is measured in efficiency units.

[^5]: Source: RAIS 1986-2001 (5% random sample), male workers, 25 years or older, employed in metropolitan area. Traded goods sectors are agriculture, mining and manufacturing (subsectors IBGE 1-13 and 25), nontraded goods are all other sectors. Overall and between-industry demand shift measures for education group k are of the form $\Delta D_{k}=\sum_{j} \alpha_{j k}\left(\Delta E_{j} / E_{k}\right)$, where $\alpha_{j k}$ is the
 average share for group k of employment in sector j over the period 1986-2001, E_{j} is the share of aggregate employment in sector j, and E_{k} is the average share of total employment of group k over the period 1986-2001 Katz and Murphy (1992). Reported numbers are of the form $\log \left(1+\Delta D_{k}\right)$. In the overall measure j indexes 130 industry-occupation cells; in the between-industry measure, j indexes 26 industries (14 traded and 12 nontraded goods sectors). The within-industry index for group k is the difference of the overall and between-industry measures. Employment is measured in efficiency units.

[^6]: Source: RAIS 1986-97 (5\% random sample), male workers, 25 years or older, employed in metropolitan area. The between demand shift measures for education group k are of the form $\Delta D_{k}=\sum_{j} \alpha_{j k}\left(\Delta E_{j} / E_{k}\right)$, where $\alpha_{j k}$ is the average share for group k of employment in sector j over the period 1986-2001, E_{j} is the share of aggregate employment in sector j, and E_{k} is the average share of total employment of group k over the period 1986-2001 Katz and Murphy (1992). In column 1, j indexes 26 subsector IBGE industries (Table 157). In column 3, j indexes 130 industry-occupation cells using 5 occupation categories (Table 160). In column 5, the overall relative employment change measure is of the form $\Delta D_{k}=\Delta E_{k} / E_{k}$. In columns 2 and 4 , the within demand shift measures for group k are the differences of the overall (column 5) and between measures (columns 1 and 3). Employment is measured in efficiency units. Employment is measured in efficiency units.

[^7]: ${ }^{a}$ In weekly wage equivalents.
 ${ }^{b}$ Country sum of exports from and imports to Brazil.

[^8]: ${ }^{a}$ Revealed comparative advantage quintile (5: strongest advantage) in 1990.

