A CAUTIONARY NOTE ON DESIGNING DISCRETE
CHOICE EXPERIMENTS: A COMMENT ON LUSK AND
NORWOOD’S “EFFECT OF EXPERIMENT DESIGN ON
CHOICE-BASED CONJOINT VALUATION ESTIMATES”
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Recent Monte Carlo work on choosing experimental designs for discrete choice experiments seemed
to greatly simplify this choice for applied researchers. It suggested that (¢) commonly used designs can
generate unbiased estimates for indirect utility function specifications with main effects only and main
effects plus higher order terms, and (b) random designs are more efficient than main effects designs.
We show that these results are very specific to the particular indirect utility specifications studied
and do not generalize well. We further show that conclusions drawn concerning random designs are
problematic and potentially dangerous for applied researchers.
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Discrete choice experiments (DCEs) are
widely used in many fields (Louviere, Hen-
sher, and Swait 2000) including environmen-
tal economics, health policy, marketing, and
transportation. However, economists typically
do not receive formal training in either de-
sign of surveys or statistical design of exper-
iments. In this article, we look at experimental
design issues that have wide implications for
the types of models that can be estimated and
the cost of conducting DCE projects via the
sample sizes required. As a branch of statis-
tics, the principles of optimal design are likely
to be accessible to those with strong back-
grounds in econometrics. Work on experimen-
tal design is rapidly growing; recently, highly
statistically efficient designs, new evaluation
criteria, and new generation algorithms have
been developed that offer more design choices
(see, e.g., Street and Burgess 2007; Rose and
Scarpa 2008). This poses important questions
for applied researchers, such as, does the ex-
perimental design chosen by a particular re-
searcher matter? And, if so, how much does it
matter? Evaluation and choice of designs is a
complex multi-criteria decision, dependent to

Carson is professor at the Department of Economics, University of
California, San Diego. Louviere is professor at the School of Mar-
keting and executive director of Centre for the Study of Choice,
University of Technology Sydney. Wasi is a research fellow at the
Centre for the Study of Choice and at School of Finance and Eco-
nomics, University of Technology Sydney.

The authors would like to acknowledge support from Australian
Research Council grant DP 0774142.

a large degree on the assumptions analysts are
willing to make about the nature of the under-
lying data generating process.

JL. Lusk and FB. Norwood (hereafter
“L&N”) tried to address these important
issues in their 2005 article “Effect of experi-
mental design on choice-based conjoint valu-
ation estimates.” Their main conclusions were
“...All experimental designs considered in this
study generated unbiased valuation estimates.
However, random designs or designs that ex-
plicitly incorporated attribute interactions gen-
erated more precise valuation estimates than
main effects only designs. A key result of our
analysis is that a large sample size can substi-
tute for a poor experimental design...”. While
comforting to applied researchers, these find-
ings would appear to be at odds with decades
of work by statisticians (e.g., Box, Hunter, and
Hunter 1978; Box and Draper 1987; Cochran
and Cox 1992) which suggests that (@) incorrect
experimental designs often produce biased pa-
rameter estimates, (b) random designs are in-
herently inefficient, and (c) a large sample size
is a poor substitute for a good design.

The purpose of this article is to point out that
L&N’s conclusions should be viewed as poten-
tially misleading, or at best, limited to a nar-
row range of situations. The intent of L&N’s
work was admirable and may be useful in par-
ticular circumstances; however, it is unlikely to
generalize well due to caveats associated with
the nature of L&N’s Monte Carlo experiments.
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We note and discuss several issues with L&N’s
simulation work, and suggest that researchers
should be cautious about taking their conclu-
sions for granted. We think caution is war-
ranted as anumber of researchers already have
based design choices on L&N’s recommenda-
tions.!

There are two main limitations with L&N’s
work:

1) The choice of indirect utility function pa-
rameters greatly limits their conclusions.

2) The conclusion that random designs give
more precise estimates than other designs
is likely to stem from the particular way
they performed Monte Carlo experiments
on random designs.

L&N tried to evaluate the performance of
six different designs (random design, main ef-
fects design, main effects + two-way interac-
tion effects design, two Kuhfeld et al. designs
(SAS designs), and a “FULL/BIN” design)
under different experimental conditions con-
trolled by a 32 x 2 “master” experiment.” The
master experiment is defined by 2 sample sizes
(n1, n2) x 3 indirect utility functions (here-
after “IUFs”) where all attributes are inher-
ently continuous and three IUFs where some
attributes are qualitative. The IUFs differ in
degrees of nonlinearity.

Limitation 1: Choice of Indirect Utility
Function (IUF) Parameters

There are three major caveats associated with
L&N’s choice of IUF parameters. The first
caveat is that both nonlinear IUFs that L&N
considered are “nearly linear.” Specifically, the
three IUFs do not differ much, which can be
seen by comparing differences in choice out-
comes produced by these IUFs. We begin by
noting that only differences in utility matter
(i.e., only a ranking of choice options matters),
and consider L&N’s three continuous IUFs,
“Linear,” “Nonlinear 1,” and “Nonlinear 2.”

! For example, Goldberg and Roosen (2007) use a random design
for their choice experiment based on L&N’s recommendation in
their study of food safety.

2 “FULL/BIN” design was created by generating the full facto-
rial for a single 3* design. Identical copies of this design were placed
in three “bins.” Choice sets were created by randomly pulling one
profile from each “bin” (see Lusk and Norwood 2005, p. 776, for
further information).
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Table 1. L&N IUF Parameters

Linear Nonlinear 1 Nonlinear 2
B -1 -1 -1
B2 2 2 2
B3 3 3 3
B2 0 0.2 0.5
B33 0 0.2 0.5
B3 0 -0.5 —-1.25

To wit, the utility of person i from choice j is
given by

1)
Uij =o; + Bleij + 82x2i]‘ —+ B3x3ij + BZZ(XZij)Z

2
+ B33(x3ij) + BZ3(x2ij * X3;7) + €

wherej=1,...,3;i=1,..., N; {xy, x25, x3;}
take on three discrete values (1,2 or 3); o is an
alternative-specific constant (ASC) for choice
j, a3 = 0. The three IUFs differ by specifying
different parameters as shown in table 1.

Table 2 gives utility values calculated for all
possible options and their ranking based on
calculated utility values associated with each
IUF. If the rankings are the same for any pair
or triple of profiles in a design, the observed
choice outcomes will be the same.

Table 2 reveals that, while the IUF parame-
ters produce different latent utility values, the
rankings are very similar. For example, the
Spearman correlation between linear utility
and “Nonlinear 1” utility is 0.997; the Spear-
man correlation between linear utility and
“Nonlinear 2” ranking is 0.926.3 Thus, it is un-
likely that these three “nearly linear” IUFs
differ sufficiently so as to permit general con-
clusions about ignoring versus including inter-
action terms.* L&N noted that the parameters
that they chose were consistent with case stud-
ies; yet if one views this set of parameters as
a “typical” case study, it is unclear why one

3 Part of the problem with the Monte Carlo design is choosing
the interaction terms to be five to ten times smaller than the main
effects. This is said to be based on case studies in Louviere, Hen-
sher, and Swait (2000). While many of the interaction terms are
small and insignificant, there are some interaction parameters that
are fairly large relative to main effects and statistically significant.
Further, one has to be careful about the interpretation of the in-
teraction terms in logit models (Ai and Norton 2003) as the effect
of the attribute interaction on choice probabilities is not the same
as the effect of the attribute interaction on latent utility. The in-
teraction effects on choice probability can be very important and
highly significant even when the point estimate on the interaction
parameter is zero.

4 A similar example can be given for their cases of discrete utility
function.
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Table 2. Ultilities for and Rankings of Choice Options Based on L&N IUFs

Attributes Linear Nonlinear 1 Nonlinear 2

Profile x1 x2 x3 Utility Rank Utility Rank Utility Rank
1 1 1 1 4 3.5 3.9 3 3.75 3

2 1 1 2 7 11 7 11 7 10.5
3 1 1 3 10 20 10.5 21 11.25 26
4 1 2 1 6 8 6 7.5 6 8

5 1 2 2 9 17 8.6 16.5 8 13.5
6 1 2 3 12 24.5 11.6 25 11 25
7 1 3 1 8 14 8.5 14.5 9.25 18.5
8 1 3 2 11 22.5 10.6 22.5 10 21.5
9 1 3 3 14 27 13.1 27 11.75 27
10 2 1 1 3 2 2.9 2 2.75 2
11 2 1 2 6 8 6 7.5 6 8
12 2 1 3 9 17 9.5 18 10.25 23
13 2 2 1 5 5.5 5 5.5 5 5.5
14 2 2 2 8 14 7.6 13 7 10.5
15 2 2 3 11 22.5 10.6 22.5 10 21.5
16 2 3 1 7 11 7.5 12 8.25 15
17 2 3 2 10 20 9.6 19.5 9 16.5
18 2 3 3 13 26 12.1 26 10.75 24
19 3 1 1 2 1 1.9 1 1.75 1
20 3 1 2 5 5.5 5 5.5 5 5.5
21 3 1 3 8 14 8.5 14.5 9.25 18.5
22 3 2 1 4 3.5 4 4 4 4
23 3 2 2 7 11 6.6 10 6 8
24 3 2 3 10 20 9.6 19.5 9 16.5
25 3 3 1 6 8 6.5 9 7.25 12
26 3 3 2 9 17 8.6 16.5 8 13.5
27 3 3 3 12 24.5 11.1 24 9.75 20

would worry about ignoring interaction effects
anyway. Further, given the well-known diffi-
culties with estimating interaction effects in
general (McClelland and Judd 1993) and the
failure of many if not most designs used in the
economics literature to clearly identify such ef-
fects, it is unclear how much is known about
what the “typical” case looks like.

The second caveat associated with L&N’s
choice of parameters seems to be accidental,
and whether it impacts their main conclusions
will depend upon a particular application.
L&N used marginal willingness to pay of mov-
ing from (x; =2,x3 =2)to (x, =3,x3 =2) asa
criterion to evaluate design performance. This
can be expressed as MWTP = —(B, + 5B +
2B23)/B1. Using MWTP as a criterion to eval-
uate design choices would not be problematic
had they examined a sufficiently large range
of true parameters, but they did not do that.
Instead, L&N assigned true parameters to B2,
and B3 as 0.2 and —0.5, respectively, for “Non-
linear 1,” and By and B3 as 0.5 and -1.25,

respectively, for “Nonlinear 2.” This implies
that the term (582, + 2B23) actually equals zero
in both cases. If a design yields biased estimates
such that (B2, B23) = (B2, AB23) where \ can
be any number, then the term (582 + 2B23)
always will equal zero, and MWTP will be un-
biased.’ We suggest that one should also check
whether estimates of individual Bs are biased
as unbiased Bs imply unbiased MWTP, but not
vice versa.b

The third caveat involves an identification
issue. All parametersin the [UF in equation (1)
are identified in a main effects design, but this
is also a fortunate accident, which will not be

3 For example, one can think of \ as a scale parameter. If the
variance of the unobserved component is smaller (larger) than 1.67,
all parameters will be proportionally biased upward (downward).

©There are a number of other issues that one would want to
take into account in examining the property of experiment designs
since more complicated models such as mixed logit and models
allowing for heterogeneous error variances across agents are now
commonly employed (see, e.g., Ferrini and Scarpa 2007). L&N do
not examine the influence of their recommended designs on such
models, further limiting the scope of their conclusions.
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Table 3. Complete Factorial Design of 23

Profiles Fraction X1 X, X3
1 1 -1 ! -1
2 1 -1 1 1
3 1 1 -1 1
4 1 1 1 -1
5 2 -1 -1 1
6 2 -1 1 -1
7 2 1 -1 -1
8 2 1 1 1

true in general.” Consider the following simple
example of a binary choice problem with three
attributes, each with two levels that gives all
possible combinations in table 3 (full factorial).
Two possible “main effects only” designs are
either the first or last four combinations.

We conducted three Monte Carlo experi-
ments to interact two different designs with
two IUFs. The results are in table 4. The first
experiment assumes that the true IUF is lin-
ear and uses one main effects only design. The
mean coefficient estimates are unbiased as ex-
pected; the average bias in absolute value is
0.09 for all three parameters. The second ex-
periment uses the same main effects design,
but assumes that the true IUF has attribute in-
teraction effects. The estimates are seriously
biased from the true values in the latter case.
The last experiment involves the same nonlin-
ear IUF as the second experiment, but now
uses the full factorial design; the estimates are
unbiased in this case. This example clearly pro-
vides a case where a main effects design can-
not identify interaction effects: the parameters
are estimable, but the design matrix is very
ill-conditioned. It is also worth noting that all
two-way interactions are perfectly confounded
with main effects in this case.

Another example is in table 5.4 of Louviere,
Hensher, and Swait (2000). In that example, an
LMA design is used to generate a paired DCE.
Although the example focused on alternative-
specific designs, we can treat it as a design
for a generic problem. If we convert the num-
bers in table 5.4 to traditional 0, 1 codes for

7L&N do state (p. 778) that “researchers must incorporate a
priori information about interactions into experimental design of
choice sets.” It is, though, precisely the usual lack of a priori infor-
mation about these interactions and the suggestion in L&N that
they are identified in their main effects and random designs that
is troubling. In some ways, the problem running through the L&N
article is confusing the precision of parameter estimates under par-
ticular utility specifications with what parameters are clearly iden-
tified when they can take on unknown values.
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attribute levels, and calculate the attribute-by-
attribute difference matrix, the main effects
columns are orthogonal. If we also include the
two- and three-way interactions, these columns
are NOT orthogonal, and one cannot identify
two of the two-way interactions. There are also
very high correlations (>0.7) between some in-
teractions and main effects; so identification is
very fragile.

Limitation 2: Nature of Random Designs
Implementation

The concern here is whether the finding that
random designs give more precise estimates
than other designs (including main effects only
designs) is associated with conceptual flaws in
the Monte Carlo experiments for random de-
signs. L&N (pp. 777-78) described how they
performed their Monte Carlo experiments:

Step 1: A particular experimental design was
chosen and generated.

Step 2: The experimental design was repli-
cated to achieve the desired sample size.

Step 3-7 [omitted] involves simulating choice
outcomes from the given designs in Steps 1
and 2, estimating MNL model, and calculating
welfare measures.

Step 8: Steps 1 through 7 were repeated 500
times. The end result of the exercise is a dis-
tribution of 500 marginal and total WTP esti-
mates for each functional form, experimental
design, and sample size.

By repeating Step 1, L&N produce a new
design, being generated for each of the 500 it-
erations. L&N clearly note this on p. 775:

“The RAND [random] design was created by
randomly drawing choices from the full facto-
rial design consisting of 3° x 3° x 3° = 19,683
choice sets. In the “low” sample size treatments,
243 choice sets were randomly drawn at each
Monte Carloiteration and in the “high” sample
size treatments, 729 choice sets were randomly
drawn at each Monte Carlo iteration.”

By drawing 500 random designs, L&N’s ap-
proach likely approximates a full factorial, or
at least it ensures coverage of a large portion
of the total design space. Of course, a single
random design, which is what would be used
in any particular study with a fixed sample size,
will not have this property. The issue is straight-
forward: by averaging over different randomly
chosen designs that result in biased estimates
in different directions one obtains areasonable
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Table 4. Results of Monte Carlo Simulation for Main Effects Versus Complete Factorial Designs

Interacting with Linear and Nonlinear IUFs

Experiment I

Experiment II

Experiment 111

. Linear Nonlinear (Main Effects + Nonlinear (Main Effects +
True Utility (Main Effects Only) Two-Way Int.) Two-Way Int.)
Function
Design Main Effects Only Main Effects Only Complete Factorial
Attributes Birue B bias Birue B bias Birue B bias
x1 —-1.00 -1.02 009 -1.00 —0.77 0.23 —1.00 -1.04 0.10
(0.12) (0.07) (0.12)
x2 0.50 0.50  0.09 0.50 0.15 0.35 0.50 0.51 0.09
(0.11) (0.07) (0.12)
x3 0.50 0.50  0.09 0.50 0.14 0.36 0.50 0.51 0.09
(0.11) (0.07) (0.12)
x1 x 2 - 025 —-0.10 0.35 0.25 0.26 0.10
(0.05) (0.12)
x1x3 — 025 -0.10 0.35 0.25 0.26 0.10
(0.05) (0.12)
x2 X3 - 0.25 0.50 0.25 0.25 0.25 0.09
(0.05) (0.12)
xI1x2x3 — 0.00 0.00 0.09 0.00 —0.01 0.10
(0.12) (‘0.13)

Note: We assign the profiles given in table 3 as profiles of option 1, and treatment option 2 as status quo (all attributes are zeros). Equivalently, one can
assign two options with nonzero attributes, provided that the differences in attribute levels are those values given in the table 3. For the complete factorial
design, we replicate these eight choice sets sixty times. For the main effects design, we replicate the first four choice sets 120 times. As a result, there
are 480 observations in all experiments. The number of Monte Carlo replications is 500. If B, denotes the true parameter values, B = % Z:?ﬁl Bm

and bias = 51m Z:?:OI\B”, — Brrue| where m is the Monte Carlo replication index. The numbers in parentheses are empirical standard deviation, given by

sqri(22, (B — B)2/499).

average estimate that obscures the risk of using
any particular random design. In any empirical
application, the researcher draws only one de-
sign chosen randomly from the allowable set.®
L&N’s procedure is conceptually equivalent to
having many different researchers, each with a
separate independent sample and experimen-
tal design drawn from the full factorial, pool
their results to obtain a single set of point esti-
mates but then calculating the standard errors
as if the sample size used was only that em-
ployed by one of the researchers. Thus, L&N’s
procedure does not mimic what would be done
in empirical field applications, and the Monte

8 Technically it is possible to give each individual their own
randomly chosen design, particularly in a computer administered
choice experiment. However, this has not been the typical practice
in applications in the economics literature, although it is sometimes
seen in marketing. There are two serious drawbacks to randomly
choosing a design for each individual. The first is that the resulting
design matrix may be ill-conditioned and/or have poor efficiency
properties. Second, use of this procedure makes it impossible to
separate differences between and within individual error variabil-
ity and, more generally, estimation of models incorporating prefer-
ence heterogeneity become more difficult, if not impossible, due to
the confounding of design assignment and individual preferences.
A general discussion of these issues is beyond the scope of this
article.

Carlo simulation results using this approach
are potentially misleading.

Table 5 gives estimates from four differ-
ent Monte Carlo experiments that use pa-
rameters from their “Linear” continuous IUF
with a sample size of 243 with 500 replica-
tions, with MWTP calculated the same way as
L&N. Experiment A uses the main effects de-
sign (nine replications of twenty-seven choice
sets). For Experiment B, we display results
of three different random designs with 500
more Monte Carlo replications on the error
term.” L&N’s procedure of drawing a new de-
sign each time a new vector of error terms
was drawn is labeled as Experiment C. Exper-
iment D picks a random design and performs
500 Monte Carlo replications with different
random components, repeating this procedure
500 times. Experiment D shares the conceptual

¥ We created random designs following L&N’s procedure. We
note though that because their procedure allows for the possibility
of replicated alternatives and/or choice sets it is not what is usually
called a random design in the experimental design literature. This
effect appears to be small here as the number of potential designs
is sizeable. The three individual designs displayed for experiment
B are the first, 250th, and last designs from the suite of 500 designs
that comprise Experiment D.
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Table 5. Results of Monte Carlo Simulation for Main Effects Versus Random Designs

Experiment B
One Fixed Random Design

Experiment C Experiment D

Experiment A 500 Random Average
Main Effects Random Design Random Design Random Design Designs over 500
Design #1 #250 #500 (L&N Procedure) Random Designs
500 MC 500 MC 500 MC 500 MC 500 MC 500 * 500 MC
True Iterations Iterations Iterations Iterations Iterations Iterations
Value Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St. Dev.
5t 1 1.03 0.27 1.07 0.29 1.06 0.32 1.06 0.35 1.06 0.30 1.06 0.32
) 2 2.06 0.31 2.10 0.37 2.10 0.34 2.11 0.38 2.09 0.36 2.09 0.36
B1 -1 —1.03 0.18 —1.03 0.21 —1.04 0.19 —1.05 0.22 —1.03 0.21 —1.04 0.21
B2 2 2.07 0.30 2.08 0.28 2.08 0.28 2.09 0.30 2.08 0.27 2.08 0.28
B3 3 3.12 0.41 3.12 0.38 3.12 0.37 3.14 0.37 3.12 0.38 3.13 0.38
True
MWTP Mean St.Dev. Mean St. Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean _ St. Dev.
= —B2/B1 2 2.05 0.38 2.07 0.41 2.05 0.35 2.09 0.52 2.08 0.40 2.06 0.40

flaw with Experiment C that averaging over
designs that span much of the space is likely
to obscure the larger average (absolute) bias
associated with a random design. These two
experiments differ in what they are implicitly
simulating. As noted earlier, Experiment C is
consistent with a researcher running 500 dif-
ferent projects each of which uses a different
random design and draws its own vector of
random components. Experiment D is consis-
tent with 500 researchers each of whom has a
particular randomly chosen design repeatedly
running a study 500 times.

L&N’s results suggested that random de-
signs should outperform main effects designs,
but this is not typical of our results.!” First,
we compare the three random designs (Ex-
periment B) to the main effects design (Ex-
periment A). These three designs taken from
the Experiment D runs are typical of what
one might see in practice. The first design is
slightly worse than Experiment A in terms of
the empirical standard deviations and bias in
the parameters and MWTP estimates, while
the second is slightly better, with the third no-
ticeably worse.

Comparing L&N’s approach in Experiment
C to Experiment A, the results suggest only
a modest increase in the bias and a standard
deviation for the key MWTP statistic. This
certainly obscures the risk of using a random
design as the last random design in Experiment
B has a standard deviation for MWTP that is
36% larger than Experiment A. We plot the

10 Surprised at getting a different result than L&N, we performed
Experiment C several times with different seeds and occasionally
found runs where Experiment C performed slightly better than
Experiment A but this was not typical. Rose and Scarpa (2008)
also find that random designs perform poorly.

density function for the standard main effects
design versus a single random design, and ver-
sus L&N’s procedure in figure 1. This helps
make it clear (@) how dangerous a random de-
sign can be, which is why the random design
approach is undesirable; and (b) how L&N’s
procedure obscures the risk of random designs.
The most telling statistic is that only 1.4% of
the Experiment A iterations yield a MWTP
estimate > 3 (a 50% increase over the true
value), while the comparable percentage for
this particular random design and Experiment
C are 4.6% and 2.8%, respectively.

Experiment D behaves somewhat better
than Experiment C but sends a mixed mes-
sage about the individual parameter estimates
compared with Experiment A. The MWTP
(average) estimate is closer to its true value
than in Experiment C, but the standard de-
viation is of similar magnitude. Although the
results of Experiment D are somewhat more
favorable than Experiment C, it is still dom-
inated by Experiment A, with Experiment D
having over twice the density for MWTP > 3
than Experiment A.

Thus, it is unclear why one would want to
choose a random design when a standard main
effects design performs better on average, and
has a lower risk of adverse outcomes. While
one might get lucky with a random design in
terms of matching up with true values of the
underlying data generating process, this would
not seem to be a good bet in expectation terms.
That is, one might consider thinking formally
about basing an experimental design on an in-
formative prior as a better way to go, but this
would involve the classic tradeoff of greater
efficiency if the prior is close to being correct,
or greater risk if it is not. Moreover, the latter
requires much more design expertise, which is
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Note: The solid line in both panels is the density plot for Experiment A (main effects design). The dash-dot line in the left panel is for the last Experiment B

design. The dash-dot line in the right panel is for Experiment C.

Figure 1. MWTP density plots for Experiment A (main effects design), Experiment B, and

Experiment C (L&N procedure)

contrary to the thrust of L&N’s article, namely
to simplify life for applied researchers.

Another rationale for using random designs
is a common belief that higher order terms will
be identified. This is true ex ante in a proba-
bilistic sense before one chooses a particular
experiment design and may be true ex post if
one averages over a large number of random
designs like Experiments C and D. However,
ex post any single randomly chosen design does
not necessarily identify any particular higher
order term. This should be obvious because it
almost always will be the case that a randomly
chosen design from an allowable set can be a
main effects design. Some interactions clearly
will not be identified in such designs, while
other randomly chosen designs in an allowable
set may confound a very specific set of effects.
Identification of the parameters of interest in
a study is not something that should be left to
chance.

Concluding Remarks

An issue in interpreting the results of any
Monte Carlo experiment is whether a suffi-
ciently broad range of conditions was covered
to generalize so as to give useful guidance to
applied researchers. This was not the case with
L&N’s experiment. In the case of main effects
designs, it is easy to find examples where the
parameters of interest are not statistically iden-
tified in the presence of unobserved but signif-
icant interaction effects. While there may be

instances where interaction terms are unim-
portant, there may also be other instances
where attribute interactions are a key research
focus. Random designs often are very ineffi-
cient, and at best provide tenuous identifica-
tion of key parameters if the IUF of interest
is more complex than a main effects specifi-
cation. Hence, bias can be a serious issue in
such designs. It is true that larger sample sizes
can compensate for inefficient designs if inef-
ficiency is the only problem associated with a
design. However, researchers should be aware
of and cautious about potentially large costs as-
sociated with sample sizes needed to achieve
given degrees of precision. Unfortunately, life
for applied researchers who want to design and
implement DCE:s is unlikely to be as simple as
choosing a random design anytime soon.

[Received July 2008;
accepted January 2009.]
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