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Abstract

The paper proposes an asymptotically valid t test in a di¤erence-in-di¤erences (DD) re-
gression when the number of time periods is large while the number of individuals can be
small or large. The proposed t test is based on a special heteroscedasticity and autocorrela-
tion robust (HAR) variance estimator that is tailored to inference problems in the DD setting.
The asymptotic distribution of the t test depends on the smoothing parameter K in the HAR
variance estimator, and a testing-optimal procedure for choosing K is developed through min-
imizing the type II error subject to a constraint on the type I error of the t test. By capturing
the estimation uncertainty of the HAR variance estimator, the t test has more accurate size
than the corresponding normal test and is just as powerful as the latter. Compared to the
nonstandard test that is designed to reduce the size distortion of the normal test, the proposed
t test is just as accurate but much more convenient to use, as the critical values are from the
standard t table. Model-based and empirical-data-based Monte Carlo simulations show that
the proposed t test works quite well in �nite samples.

Keywords: Basis Functions, Di¤erence-in-Di¤erences, Fixed-smoothing Asymptotics, Het-
eroscedasticity and Autocorrelation Robust, Student�s t distribution, t test.
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1 Introduction

The paper considers estimation and inference in a di¤erence-in-di¤erences (DD) regression. To
make trustworthy inferences, we have to obtain a reliable estimator of the standard error. In
the presence of both temporal and cross-sectional dependence, the basic clustered standard error
estimator is inconsistent. If one clusters the data by individual, observations may be correlated
for the same individual, but they are often required to be independent for di¤erent individuals.
See, for example, Bertrand, Du�o, and Mullainathan (2004, BDM hereafter). If one clusters the
data by time, then observations in the same time period can have arbitrary correlation, but they
are often required to be independent across time. In this paper, we consider clustering by time
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but allow the clusters to be temporally dependent. Our approach is in the spirit of Driscoll and
Kraay (1998), but we employ a di¤erent heteroscedasticity and autocorrelation robust (HAR)
variance estimator. In principle, we could consider clustering by individual and allow for spatial
dependence across individuals, but this requires an extra variable to indicate the direction and
strength of the spatial dependence. In fact, if such a variable is available, we can use the approach
of Kim and Sun (2013), which treats the temporal and cross-sectional dependence symmetrically.
An advantage of the clustering-by-time approach is that no additional information is needed, as
the time index provides a natural yardstick for measuring the temporal dependence.

For the DD regression, the clustering-by-time approach amounts to collapsing the panel data
into time series data. Cross-sectional dependence a¤ects the variance of the collapsed time series
but has no e¤ect on its temporal dependence. To estimate the asymptotic variance of the DD
estimator, we need to estimate only the long-run variance (LRV) of some collapsed time series.
There are many nonparametric LRV estimators, among which kernel LRV estimators are popular
in applied research (see, for example, Andrews (1991)). A recent study by Yu Sun (2017, hereafter
SY) adopts the kernel approach. In this paper, we consider the series approach to LRV estimation.
The most primitive version of this estimator is the simple average periodogram estimator, which
involves taking a simple average of the �rst few periodograms. The number of periodograms
is the smoothing parameter underlying this series LRV estimator. Equivalently, this approach
involves �rst projecting the time series onto a sequence of Fourier basis functions (i.e., sine and
cosine functions) and then taking the simple average of the squared projection coe¢ cients as the
LRV estimator. More general basis functions can be used. In fact, one of the advantages of the
series LRV approach is that we have the freedom to choose any sequence of basis functions. Each
basis function delivers a direct estimator of the LRV, and the series LRV estimator is a simple
average of these direct estimators. The number of terms in the average, K; which can be regarded
as the e¤ective sample size, characterizes the amount of smoothing.

A main contribution of the paper is to establish the �xed-smoothing asymptotics of the
Studentized t statistic. The �xed-smoothing asymptotics is obtained under the assumption that
K is �xed as T goes to in�nity. The cross-sectional sample size n can be �xed or grow with T:
We also assume that the policy change takes place in the middle of the time series so that the
number of pre-treatment periods is comparable to the number of post-treatment periods. The
asymptotic approximation so obtained captures the randomness of the nonparametric variance
estimator. It re�ects the e¤ect of the basis functions, the level of smoothing, and the e¤ect of
the trend function if a trend is present in the DD regression. Moreover, it is more accurate than
the widely used standard normal approximation, which fails to capture these e¤ects. The �xed-
smoothing asymptotic distribution is nonstandard. Nevertheless, it is free from any nuisance
parameter and can be simulated without too much di¢ culty.

Another contribution of the paper is the design of a new set of basis functions such that the
t statistic follows the standard t distribution under the �xed-smoothing asymptotics. This is
achieved by transforming a given set of basis functions in L2 [0; 1] : The transformation, a type
of Gram-Schmidt orthonormalization, ensures that the asymptotic variance estimator is equal in
distribution to an average of iid chi-square variates in large samples, which is necessary for the
asymptotic t approximation theory. The asymptotic t test is very convenient to use, as the critical
values are readily available from standard statistical tables and programming environments.

The smoothing parameter K plays a key role in determining the size and power tradeo¤
of the asymptotic t test. In the literature on LRV estimation and HAR inference, Phillips
(2005) proposes to choose K by minimizing the asymptotic mean square error (MSE) of the LRV
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estimator. However, the MSE-based choice of K may not be optimal for testing problems. In
hypothesis testing, the main objects of interest are the type I and type II errors. The choice of
K should then be targeted at these fundamental quantities. Following Sun (2011), we develop a
selection procedure that is optimal for the testing problem at hand. In particular, we choose K
to minimize the type II error of the asymptotic t test while controlling its type I error.

We conduct two sets of simulation experiments. In the �rst set of experiments, we consider
the data that is generated from a theoretical econometric model. These experiments are de-
signed to evaluate the performance of our test relative to other tests under di¤erent simulation
con�gurations such as the time-series and cross-sectional sample sizes, the time series and cross-
sectional dependence, and the smoothing-parameter choices. More speci�cally, we compare the
performance of a �xed-smoothing test with that of the corresponding asymptotic normal test.
Each type of tests actually consists of two tests, re�ecting whether a transformation is applied
to the Fourier bases or not. In all cases, a �xed-smoothing test is found to be more accurate
than the corresponding asymptotic normal test. Among the �xed-smoothing tests, the t test
based on the transformed bases is just as accurate as the corresponding nonstandard test based
on the original bases. These observations remain valid under di¤erent simulation con�gurations.
Power study under data-driven K-values shows that all tests have similar power properties. In
view of its accurate size, competitive power, and its convenience to use, we recommend using the
asymptotic t test, especially when cross-sectional dependence may be present.

In the second set of experiments, we follow BDM (2004) and consider the data that is em-
pirically calibrated to the Current Population Survey (CPS). These experiments are designed to
evaluate the relative performance of our test in an empirically relevant situation. We �nd that
our test is competitive even relative to a most trustworthy test considered by BDM (2004). This
is encouraging, especially given that the latter test exploits additional information embedded in
our simulation design while our test does not. Our test, therefore, can lead to more trustworthy
inferences in empirical applications, even when the time series sample size is relatively small.

This paper contributes to the literature on the �xed-smoothing asymptotics in general and the
asymptotic F and t test theory in particular. The asymptotic F and t tests have been developed
in Sun (2011) for linear trend regressions, in Sun (2013) for stationary moment processes, in Sun
(2014c) for highly persistent moment processes, in Hansen (2007) for stationary panel time series,
and in Hwang and Sun (2017) for stationary data in an overidenti�ed GMM framework. Lazarus,
Lewis, Stock, and Watson (2016) provide some practical guidance on the F and t tests for time
series regressions. See also Sun and Kim (2012, 2015) for the F limit theory for the J statistic,
and the F and t limit theory for the Wald statistic and t statistic in a spatial setting. None of
these papers considers the DD regression where the regressor of interest is a special deterministic
function and is hence nonstationary by de�nition. More speci�cally, for the treatment group,
this regressor takes the value 0 in the pre-treatment periods and switches to the value 1 in the
post-treatment periods. From a time series perspective, this resembles a deterministic mean shift,
and the process has energy concentrated at the origin. As a result, the asymptotic variance of
the DD estimator depends only on the long-run variance of the regression- error process. This
is in contrast to the stationary case in which the asymptotic variance depends on the long-run
variance of the product of the regressor process and the regression-error process.

More broadly, the paper is related to the �xed-b asymptotic theory where kernel LRV estima-
tors are used. See Kiefer and Vogelsang (2002a, 2002b, 2005), Atchadé and Cattaneo (2014) and
Sun (2014a) and the references therein. A paper that is closest to this paper is the paper by SY
(2017), who considers the �xed-b asymptotic theory for DD regressions. There are a number of
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theoretical and practical di¤erences between SY (2017) and this paper. First, SY (2017) requires
n to be �nite while we can allow n to be �nite or grow with T , and even larger than T . Second,
the asymptotic distribution of SY�s test statistic is a non-standard distribution while that of our
recommended test statistic is a standard t distribution. As a result, our recommended test is
easier to use than SY�s test, which requires simulations to obtain the critical values. Third, we
have provided a data-driven procedure for choosing our smoothing parameter K while SY (2017)
doesn�t provide a method to choose her smoothing parameter b. In conclusion, our asymptotic
theory accommodates more general cases, and our test is more convenient for practical use.

The rest of the paper is organized as follows. Section 2 presents the basic setting and intro-
duces the DD estimator. Section 3 establishes the �xed-smoothing asymptotics of the t statistic,
and Section 4 develops an asymptotically valid t test. Section 5 proposes a data-driven and
testing-optimal approach to choose the smoothing parameter K: Section 6 presents a step-by-
step summary of our testing procedure and provides some guidance on applying our t test to
multi-level data that are quite prevalent in DD regressions. Section 7 reports the simulation
evidence. The last section concludes. Proofs are given in the appendix.

2 The Basic Setting and DD Estimator

We consider the di¤erence-in-di¤erences regression

Yit = �t + � (t)
0 �i + Treati � �10 + Postt � �20 + Treati � Postt � �10 + Z 0it�20 + �it; (1)

for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T; where �t is the time �xed e¤ect and � (t)
0 �i is the individual-

speci�c time trend. If � (t) = (1; t)0 and �i = (�i0; �i1)
0, for example, we have � (t)0 �i = �i0+�i1�t;

where �i0 is the individual �xed e¤ect and �i1 is the individual-speci�c linear trend coe¢ cient.
We assume that the �rst element of � (t) is 1 so that individual �xed e¤ects are always included.
The rest elements of � (t) take a parametric form such as polynomials. Treati is a dummy
variable indicating the treatment or control group. Individual i belongs to the treatment group
if Treati is equal to 1; otherwise, individual i belongs to the control group. Without loss of
generality, we assume that observations are sorted along the cross-sectional dimension so that
Treati = 1 fi � �ng for some � 2 (0; 1): Postt is a dummy variable indicating the post-treatment
periods. That is, Postt = 1 ft � �T + 1g for some � 2 (0; 1) : For notational convenience, we
assume that �n and �T are positive integers1. Zit is a dZ � 1 vector of other covariates. The
parameter of interest is �10, which captures the e¤ect of the training program.

To estimate �10; we �rst remove the trend component � (t)
0 �i. In view of individual het-

erogeneity in the intercept and the slope coe¢ cient, we detrend each time series individually.
Let

Y �it = Yit �
 

TX
s=1

Yis� (s)
0
! 

TX
s=1

� (s) � (s)0
!�1

� (t) ;

Z�it = Zit �
 

TX
s=1

Zis� (s)
0
! 

TX
s=1

� (s) � (s)0
!�1

� (t)

1 In an empirical application where the policy intervention takes place at t� + 1, we can set � = t�=T: We can
set � similarly.
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be the detrended variables, and de�ne ��t ; Post
�
t ; and �

�
it similarly. Then

Y �it = ��t + Post
�
t � �20 + Treati � Post�t � �10 + (Z�it)0�20 + ��it:

Note that the group-speci�c e¤ect Treati � �10 has been eliminated by detrending.
Next, we remove the time �xed e¤ect ��t using the cross-sectional �xed-e¤ect transformation.

Let

~Y �it = Y �it �
1

n

nX
j=1

Y �jt; (2)

and de�ne other variables such as ~Z�it; T̂ reati; and ~�
�
it similarly. Then

~Y �it = T̂ reati � Post�t � �10 + ( ~Z�it)0�20 + ~��it: (3)

Note that the cross-sectional �xed-e¤ect transformation eliminates both ��t and Post
�
t � �20:

The above two transformations remove individual �xed e¤ects, time �xed e¤ects, and individual-
speci�c parametric trends. The order of the two transformations does not matter. We obtain
the same equation (3) if we employ cross-sectional demeaning �rst and then apply individual
detrending.

Let

Xit =

�
Treati � Postt

Zit

�
, ~X�

it =

 
T̂ reati � Post�t

~Z�it

!
; (4)

and �0 = (�10; �020)
0 : Then the OLS estimator �̂ of �0 = (�10; �020)

0 is given by

�̂ =

"
nX
i=1

TX
t=1

~X�
it(
~X�
it)
0

#�1 " nX
i=1

TX
t=1

~X�
it
~Y �it

#
: (5)

The estimator �̂ is numerically identical to the �xed-e¤ects OLS estimator based on the original
equation, that is, the OLS estimator with time dummies, individual dummies, and the interactions
between individual dummies and the trend function.

Since the coe¢ cients associated with Zit may not have any causal interpretation and are
often not the parameters of interest in empirical applications, we focus only on the parameter
�10 in this paper. As an estimator of �10; the �rst element �̂1 of �̂ is often referred to as the
di¤erence-in-di¤erences estimator, as it can be represented as a di¤erence in two di¤erences.

3 Fixed-Smoothing Asymptotics

To investigate the asymptotic properties of �̂, we make the following assumption on the trend
function.

Assumption 3.1 There exists a d� � d� diagonal matrix D� such that

�D ([Tr]) := D� � � ([Tr])! � (r)

uniformly over r 2 [0; 1] and

1

T

TX
t=1

�D (t) �D (t)
0 !

Z 1

0
�(r)�(r)0dr as T !1;

where
R 1
0 �(r)�(r)

0dr is positive de�nite.
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For commonly used polynomial trend functions, Assumption 3.1 holds trivially. For example,
when � (t) = 1; we can choose D� = 1, in which case

1

T

TX
t=1

�D (t) �D (t)
0 = 1:

When � (t) = (1; t)0 ; we can choose D� = diag(1; 1=T ), in which case

1

T

TX
t=1

�D (t) �D (t)
0 =

1

T

�
1 0
0 1

T

� PT
t=1 1

PT
t=1 tPT

t=1 t
PT
t=1 t

2

!�
1 0
0 1

T

�

=

 
T�1

PT
t=1 1 T�2

PT
t=1 t

T�2
PT
t=1 t T�3

PT
t=1 t

2

!
!
Z 1

0
�(r)�(r)0dr:

Given that the �rst element of � (t) is a constant, the (1,1)-th element of D� is always 1.
Next, we decompose Zit into a sum of three terms:

Zit = �zt + �zi � � (t) + Zit;

where �zt and �zi � � (t) represent time �xed e¤ects and parametric trend e¤ects, respectively.
Note that �zi is a matrix with dimension dZ � d� . Let

�Ztreat�;t =
1

n�

�nX
i=1

Zit and �Zcontrol�;t =
1

n(1� �)

nX
j=�n+1

Zjt

be the averaged time series of Z for the treatment group and the control group, respectively.
De�ne

~Zit = Zit � �Z�;t and ~Z�it = ~Zit �
 

TX
s=1

~Zis� (s)0
! 

TX
s=1

� (s) � (s)0
!�1

� (t)

where �Z�;t = n�1
Pn
i=1Zit is the overall cross-sectional average. We make the following assump-

tions on Zit:

Assumption 3.2

1

T

[Tr]X
t=1

�Ztreat�;t � �D (t)0 =
1

T

[Tr]X
t=1

�Zcontrol�;t � �D (t)0 + op(1)

uniformly over r 2 [0; 1]:

Assumption 3.3 (nT )�1
PT
t=1

Pn
i=1

~Z�it( ~Z�it)0 !p G for some positive-de�nite matrix G.

Assumption 3.2 is weaker than �Ztreat�;t = �Zcontrol�;t for all t: It requires that, in terms of their
projections onto the trend function, the averaged time series f �Ztreat�;t g and f �Zcontrol�;t g do not di¤er
systematically across the treatment and control groups. More precisely, if for any block of the
time series spanning t = [Tr1] ; [Tr1]+1; : : : ; [Tr2] ; the projections of f �Ztreat�;t g and f �Zcontrol�;t g onto
the trend function are approximately the same, then Assumption 3.2 holds. This is similar to
the �parallel paths�assumption that is often imposed in a di¤erence-in-di¤erences regression. To
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make such an assumption more plausible in a DD regression, we may follow a standard empirical
practice and rede�ne the treatment and control groups. We assume that this practice has been
followed, if needed, so that Assumption 3.2 holds.

Assumption 3.3 holds if
(i) T�1

PT
t=1

~Zit ~Z 0it !p G uniformly over i = 1; 2; : : : ; n;
(ii) T�1

PT
t=1

~Zit�D (t)0 = op (1) uniformly over i = 1; 2; : : : ; n:
Uniformity over i = 1; 2; : : : ; n can be obtained by using a classical argument. Consider

condition (i) as an example. We have

Pr

 
max

i2f1;2;:::;ng
jjT�1

TX
t=1

( ~Zit ~Z 0it �G)jj > "

!
�

nX
i=1

Pr

 
jj

TX
t=1

( ~Zit ~Z 0it �G)jj > T"

!
:

To evaluate the above upper bound, we use the second part of Lemma 2.1 in Merlevède and
Peligrad (2000). We assume that each element of ~Zit ~Z 0it � G is a strictly stationary and strong
mixing (�-mixing) sequence. Under some conditions that control the upper-tail quantile function
and the strong mixing coe¢ cient uniformly over i, we have

E

 
jj

TX
t=1

( ~Zit ~Z 0it �G)jj
!4

= O
�
T 2
�

(6)

uniformly over i = 1; 2; : : : ; n: By the Markov inequality, we have
nX
i=1

Pr

 
jj

TX
t=1

( ~Zit ~Z 0it �G)jj > T"

!
� O

 
nX
i=1

T 2

T 4

!
= O

� n
T 2

�
:

Therefore, condition (i) can hold when n=T 2 ! 0. Such a rate condition on n and T accommo-
dates the case that n is larger than T . In fact, using the same arguments as in Doukhan (1994,
Sec 1.4.1, Theorem 2 and Remark 2, pp. 25�31), the moment bound in (6) can be strengthened
to

E

 
jj

TX
t=1

( ~Zit ~Z 0it �G)jj
!p

= O
�
T p=2

�
for p � 4:

So condition (i) can hold when n=T p=2 ! 0. When p is large enough, the rate condition n=T p=2 !
0 can hold even if n is much larger than T: Our simulation results show that our test performs
quite well when n is much larger than T .

To investigate the strength of the signal in ~X�
it, we write

1

nT

TX
t=1

nX
i=1

~X�
it( ~X

�
it)
0 = S :=

�
S11 S12
S21 S22

�
; (7)

where

S11 =
1

T

TX
t=1

[Post�t ]
2 � 1
n

nX
i=1

[T̂ reati]
2;

S21 =
1

T

TX
t=1

Post�t �
1

n

nX
i=1

~Z�it � T̂ reati;

S22 =
1

T

TX
t=1

1

n

nX
i=1

~Z�it( ~Z
�
it)
0:
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Let

H� (r) = 1 (r � �)�
�Z 1

0
1 (s � �) �(s)0ds

� �Z 1

0
�(s)�(s)0ds

��1
� (r)

be the projection of 1 (r � �) onto the orthogonal complement of the space spanned by the trend
function � (r). H� (r) is the limit of Post�[Tr] as T !1:

The following lemma establishes the asymptotic properties of S11; S21; and S22:

Lemma 3.1 Let Assumptions 3.1�3.3 hold. Then
(a) S11 = � (1� �)

R 1
0 H

2
� (s) ds+O

�
T�1

�
;

(b) S21 = op (1) ;
(c) S22 = G+ op (1) :

Given that S21 = op (1), Lemma 3.1 shows that the regressor of interest in the serially de-
trended and cross-sectionally demeaned regression is asymptotically orthogonal to other regres-
sors. The reason to include Zit in the regression is to reduce the regression error so that we can
have a more e¢ cient estimator. The crucial assumption that drives this result is Assumption
3.2. Without this assumption, S21 will not be op (1) :We leave the case when S21 does not vanish
asymptotically to future research.

To establish the limiting distributions of �̂ and the asymptotic variance estimator to be de�ned
later, we maintain the following assumption.

Assumption 3.4 (a) 1p
T

P[Tr]
t=1

�
1p
n

Pn
i=1 T̂ reati � �it

�
!d �B (r) for some � > 0:

(b) 1p
nT

PT
t=1

Pn
i=1

~Z�it � �it = Op (1) :

We discuss Assumption 3.4(a) only as similar discussions apply to Assumption 3.4(b).
When n is �xed, Assumption 3.4(a) is a functional central limit theorem (FCLT) for the time

series f
Pn
i=1 T̂ reati � �it=

p
ng: When n grows with T; f

Pn
i=1 T̂ reati � �it=

p
ng should be regarded

as a triangular array, and Assumption 3.4(a) is an FCLT for a triangular array. There is a vast
literature on time series FCLT, both for cases where the underlying time series is a triangular
array and for cases where it is not. Assumption 3.4(a) is a high-level assumption. Su¢ cient
conditions for it often involve some moment and mixing conditions. For example, when n grows
with T; we can invoke Theorem 7.18 of White (2001) to show that the following conditions are
su¢ cient.

Condition 3.1 (i) E
�
(nT )�1

P[Tr]
t=1

Pn
i=1 T̂ reati � �it

�
= 0 for all n and T:

(ii) For all n; E
�
jn�1=2

Pn
i=1 T̂ reati � �itj�

�
� � <1 for some � > 2:

(iii) For all n; the sequence fn�1=2
Pn
i=1 T̂ reati � �itgTt=1 is �-mixing with �-mixing coe¢ cient

satisfying � (m) = O
�
m��=(��2)+��� for some � > 2 and �� > 0:

(iv) For all n; var
�
(nT )�1=2

Pn
i=1

PT
t=1 T̂ reati � �it

�
> C > 0 for su¢ ciently large T .
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To verify Condition 3.1(i), we note that

1

nT

[Tr]X
t=1

 
nX
i=1

T̂ reati � �it

!

= (1� �)� � 1
T

[Tr]X
t=1

24 1
n�

n�X
i=1

�it �
1

n (1� �)

nX
i=n�+1

�it

35
= (1� �)� � 1

T

[Tr]X
t=1

�
��treat�;t � ��control�;t

�
:

So Condition 3.1(i) holds if

E

24T�1 [Tr]X
t=1

�
��treat�;t � ��control�;t

�35 = 0: (8)

That is, the condition holds if there is no systematic di¤erence in the averages of ��treat�;t and ��control�;t
over t = [Tr1] ; : : : ; [Tr2] for any r2 > r1: This is a version of the �parallel paths�assumption in
the DD regression.

Note that if the trend function � (t) is present but detrending is not applied, then �it e¤ectively

contains � (t)0 �i as a component. In this case, a component of 1
nT

P[Tr]
t=1

�Pn
i=1 T̂ reati � �it

�
is

(1� �)� � 1
T

[Tr]X
t=1

� (t)0

0@ 1

n�

n�X
i=1

�i �
1

n (1� �)

nX
i=n�+1

�i

1A
:= (1� �)� � 1

T

[Tr]X
t=1

� (t)0 �
�
��treat � ��control

�
:

So, unless the average trend e¤ects are the same across the two groups, i.e., E
�
��treat

�
=

E
�
��control

�
; Condition 3.1(i) will be violated and the DD estimator will be inconsistent.

Condition 3.1(ii) is a type of Rosenthal inequality. It holds if the cross-sectional dependence
is weak enough and �it has enough moments. See, for example, Doukhan (1994, Sec 1.4.1).
Condition 3.1(iii) is a standard mixing condition. If each time series �it satis�es the given mixing
condition, then Condition 3.1(iii) holds. Condition 3.1(iv) rules out the degenerate case in which
the variance goes to zero.

Lemma 3.2 Let Assumptions 3.1�3.4 hold. Then

p
nT (�̂1 � �10)!d �

� (1� �)

R 1
0 H� (r) dB (r)R 1
0 H

2
� (r) dr

d
=

�

� (1� �)
qR 1

0 H
2
� (r) dr

N(0; 1): (9)

For Lemma 3.2 to hold, we need Assumption 3.4(a) for only r = � and 1 and

1p
T

TX
t=1

�D (t)
1p
n

nX
i=1

T̂ reati � �it !d �

Z 1

0
� (r) dB (r) :

9



In this case, (8) needs to hold for only r = � and 1. That is, the averages of ��treat�;t and ��control�;t
over the pre-treatment periods (and post-treatment periods) are the same in the mean sense.
This is the usual �parallel paths�assumption for identi�cation in the absence of a deterministic
trend. We maintain the stronger Assumption 3.4 for technical convenience and for establishing
the asymptotic distribution of the asymptotic variance estimator to be de�ned later.

Note that we obtain the
p
nT rate of convergence of �̂1 when both T and n approach in-

�nity, because we have implicitly assumed weak cross-sectional dependence. The Rosenthal-
type inequality in Condition 3.1(ii) holds only if the cross-sectional dependence is weak enough.
If there is a group e¤ect in �it such that �it = Treati � e

(1)
t + (1� Treati) � e

(2)
t + ��it for

some sequences e(1)t and e
(2)
t where f��itg are independent for di¤erent i or t, then Condition

3.1(ii) cannot hold when n ! 1: In this case, we have to use a di¤erent argument. In-

stead of requiring that n�1=2T�1=2
P[Tr]
t=1 (

Pn
i=1 T̂ reati � �it) satis�es an FCLT, we require that

n�1T�1=2
P[Tr]
t=1 (

Pn
i=1 T̂ reati � �it) satis�es an FCLT. As a consequence,

p
nT asymptotic nor-

mality in Lemma 3.2 will be reduced to
p
T asymptotic normality. To re�ect this, we need to

make some minor changes to our theoretical results and their proofs, but our proposed testing
procedure remains asymptotically valid without any modi�cation.

Lemma 3.2 is similar to what one obtains in a trend regression or cointegrating regression.
A common feature of these regressions and the DD regression is that the regressor of interest
is a deterministic function whose energy is concentrated at the origin. Because of such energy
concentration, the asymptotic variance of the parameter estimator depends only on the long-
run variance of the regression-error process. This is in contrast to regressions with a stationary
regressor where the asymptotic variance depends on the interaction between the regressor process
and the regressor-error process.

Lemma 3.2 shows that

p
nT (�̂1 � �10)!d N

 
0;

�2

� (1� �)
1

� (1� �)
R 1
0 H

2
� (r) dr

!
: (10)

All the components in the asymptotic variance other than �2 can be estimated easily. More
speci�cally, � (1� �)

R 1
0 H

2
� (r) dr can be estimated by

S11 =
1

T

TX
t=1

[Post�t ]
2 � 1
n

nX
i=1

[T̂ reati]
2;

and � (1� �) can be estimated by n�1
Pn
i=1[T̂ reati]

2: It su¢ ces to estimate �2, the long-run

variance of
Pn
i=1 T̂ reati � �it=

p
n, in order to make inferences about �10:

Let

�̂�it =
~Y �it � ( ~X�

it)
0�̂ and êt =

1p
n

nX
i=1

T̂ reati � �̂�it:

Then �2 can be estimated by

�̂2 =
1

T

TX
t=1

TX
s=1

QK

�
t

T
;
s

T

�
êtês;

where QK (�; �) is a symmetric weighting function and K is the smoothing parameter. The above
estimator belongs to the general class of quadratic long-run variance estimators, which includes

10



most if not all commonly used nonparametric LRV estimators as special cases. In this paper, we
focus on the series LRV estimator with QK (r; s) given by

QK (r; s) =
1

K

KX
k=1

�k (r) �k (s) ;

where f�k (r)g are basis functions in L2[0; 1]: In the econometrics literature, the series LRV
estimator has been recently used, for example, in Phillips (2005), Müller (2007), and Sun (2011,
2013, 2014a, 2014b). Plugging the above weighting function into �̂2; we obtain

�̂2 =
1

K

KX
k=1

�̂2k

for

�̂k =
1p
T

TX
t=1

�k

�
t

T

�
êt:

Thus �̂2 is a simple average of some �direct�estimators �̂2k, and K is the e¤ective sample size.
If K is even and f�k (r)g = f

p
2 sin (2�kr) ;

p
2 cos (2�kr) ; k = 1; 2; : : : ;K=2g; then the series

LRV estimator is proportional to the spectral density estimator at the origin that takes a simple
average of the �rstK=2 periodograms. The averaged periodogram estimator is a common spectral
density estimator. In the traditional asymptotic framework, Phillips (2005) has shown that the
averaged periodogram estimator is asymptotically equivalent to the kernel LRV estimator based
on the Daniell kernel. For further discussions of series LRV estimation, see Sun (2013).

The asymptotic variance of �̂1 can then be estimated by2

�̂2 = �̂2 �
"
1

n

nX
i=1

(T̂ reati)
2

#�2(
1

T

TX
t=1

[Post�t ]
2

)�1
:

The corresponding t statistic is

T =
p
nT (�̂1 � �10)

�̂
:

To establish the asymptotic distribution of T, we maintain the following assumption on the
basis functions f�k (r)g :

Assumption 3.5 The basis functions �k (�), k = 1; 2; : : : ;K; are piecewise monotonic and con-
tinuously di¤erentiable.

Theorem 3.1 Let Assumptions 3.1�3.5 hold. Then
(a)

�̂2 !d

 
�2 [� (1� �)]�2

�Z 1

0
H2
� (s) ds

��1!
�
 
1

K

KX
k=1

�Z 1

0
�Hk (r) dB (r)

�2!
2The asymptotic variance can also be estimated using the usual sandwich form that does not exploit the fact

that the regressor of interest has energy concentrated at the origin. See Liu and Sun (2007) for a detailed treatment
of this case.
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jointly with (9), where

�Hk (r) = �k (r)� (PH�k) �H� (r)�
�Z 1

0
�k (s) � (s)

0 ds

� �Z 1

0
� (s) � (s)0 ds

��1
� (r) (11)

and

PH�k =

�Z 1

0
�k (r)H� (r) dr

� �Z 1

0
H2
� (s) ds

��1
:

(b)

T!d T1 :=

R 1
0 H� (r) dB (r)�

1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2 �R 1
0 H

2
� (s) ds

�1=2
d
=

N(0; 1)�
1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2 : (12)

The term (PH�k)H� (r) in �Hk (r) re�ects the e¤ect of the estimation uncertainty in �̂1: If
the projection of �k (r) onto H� (r) is zero, then this term disappears. The remaining terms in
�Hk (r) are the L

2 projection of �k (r) onto the orthogonal complement of the space spanned by
the trend functions in � (r) : We can also write

�Hk (r) = �k (r)� ~ck � 1 (r � �)� ~d0k � � (r)

for

~ck = PH�k and ~dk =
�Z 1

0
�(s)�(s)0ds

��1�Z 1

0
[�k (s)� (PH�k) � 1 (s � �)] �(s)ds

�
:

So, �Hk (r) is the L
2 projection of �k (r) onto the orthogonal complement of the space spanned

by 1 (r � �) and the trend function � (r) :
Like the �nite sample distributions, the limiting distribution of T depends on the trend func-

tion included in the regression, the basis functions used in the asymptotic variance estimation,
and the number of basis functions used. This is an attractive feature of the �xed-smoothing
approximation, as it captures the e¤ects of the trend function and the asymptotic variance esti-
mator, which clearly a¤ect the �nite sample distribution of T:

The limiting distribution T1 is the same regardless of whether time �xed e¤ects or individual
�xed e¤ects are included in the regression. Moreover, it does not depend on the relative sizes
of the two groups. These features make the limiting distribution easy to use. However, it does
depend on the length of the post-treatment periods relative to that of the pre-treatment periods.

Figure 1 plots the nonstandard critical values against the values of K: The critical values are
for a two-sided 5% test. We consider two choices of � (t) : � (t) = 1 and � (t) = (1; t)0; leading
to a model without trend and a model with a linear trend, respectively. It is clear that the
critical values depend on �, especially when K is small, which characterizes the time at which
the policy change takes place. They also depend on the form of the trend function � (t) and the
number of basis functions used. In all cases, the critical value decreases with K and approaches
the standard normal critical value, i.e., 1.96, as K increases. While the standard normal critical

12



value stays the same regardless of the time at which the policy change takes place, the form of
the trend function, and the number of basis functions, the nonstandard critical value is tailored
to each speci�c case. That is why the asymptotic nonstandard test has more accurate size than
the asymptotic normal test.

2 4 6 8 10 12 14 16 18 20
K

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

without trend (  = 0.5)
with trend (  = 0.5)
without trend (  = 0.7)
with trend (  = 0.7)

Figure 1: Nonstandard �xed-smoothing critical values for models with and without linear trends
and for di¤erent values of �:

4 Asymptotic t Test

4.1 Asymptotic t theory

The limiting distribution is pivotal but nonstandard. One advantage of using the series LRV
estimator is that we have the freedom to choose the basis functions. We hope to choose a set of
basis functions such that T1 becomes the standard t distribution.

De�ne

�0 =

R 1
0 H� (r) dB (r)�R 1
0 H

2
� (s) ds

�1=2
and

�k =

Z 1

0
�Hk (r) dB (r) ; k = 1; : : : ;K;

which are all normal. Then
T1 =

�0�
1
K

PK
k=1 �

2
k

�1=2 : (13)
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Since
R 1
0 H� (r) �

H
k (r) dr = 0; we have

cov(�0; �k) =

�Z 1

0
H2
� (s) ds

��1=2 Z 1

0
H� (r) �

H
k (r) dr = 0; for k = 1; 2; : : : ;K:

For normal random variables, zero covariance implies independence. So �0 and �k are independent
for k = 1; 2; : : : ;K: If �k s iid N(0; 1) for k = 1; 2; : : : ;K, then T1 follows the standard t
distribution with K degrees of freedom.

Some simple calculations show that for k1; k2 = 1; 2; : : : ;K;

cov(�k1 ; �k2) =

Z 1

0
�Hk1 (r) � �

H
k2 (r) dr =

Z 1

0

Z 1

0
�k1 (r)C

H
� (r; s) �k2 (s) drds;

where

CH� (r; s) = � (r � s)� H� (r)H� (s)R 1
0 H

2
� (t) dt

� � (r)0
�Z 1

0
� (t) � (t)0 dt

��1
� (s) (14)

is the implied covariance kernel and � (�) is the Dirac delta function such thatZ 1

0

Z 1

0
�k1 (r) � (r � s) �k2 (s) drds =

Z 1

0
�k1 (r) �k2 (r) dr:

To ensure that �k s iid N(0; 1) for k = 1; 2; : : : ;K, we require thatZ 1

0

Z 1

0
�k1 (r)C

H
� (r; s) �k2 (s) drds = 1 fk1 = k2g for k1; k2 = 1; : : : ;K: (15)

Instead of searching for the basis functions that satisfy (15), we search for their discrete
versions: the basis vectors. For each basis function �k (r) ; the corresponding basis vector is
de�ned as

�k =

�
�k

�
1

T

�
;�k

�
2

T

�
; : : : ;�k

�
T

T

��0
:

We focus on the basis vectors for two reasons. First, it is computationally more convenient to
obtain the basis vectors. Second, it is the basis vectors that are actually used in the variance
estimation.

Let CH be the T � T matrix whose (i; j)-th element is equal to

1fi = jgT �H�
�
i

T

�
H�

�
j

T

�"
1

T

TX
t=1

H2
�

�
t

T

�#�1

� � 0
�
i

T

�"
1

T

TX
`=1

�

�
`

T

�
�

�
`

T

�0#�1
�

�
j

T

�
:

By de�nition, CH is a positive-de�nite symmetric matrix. For any two vectors `1; `2 2 RT , we
de�ne the inner product

h`1; `2i = `01CH`2=T
2; (16)

which makes RT a Hilbert space. The discrete analogue of (15) is

h�k1 ;�k2i = 1 fk1 = k2g for k1; k2 = 1; : : : ;K: (17)
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Note that (17) is di¤erent from the usual orthonormality in the Euclidean sense. In gen-
eral, the basis vectors f�kg do not satisfy (17) even if they are orthonormal according to
the usual inner product in RT : However, given any set of candidate basis functions or vec-
tors f�k; k = 1; 2; : : : ;Kg, we can make them satisfy the above conditions via the Gram-Schmidt
orthogonalization.

More speci�cally, we let

~�1 = �1;

~�2 = �2 �
h�2;~�1i
h~�1;~�1i

~�1;

. . .

~�K = �K �
h�K ;~�K�1;i
h~�K�1;~�K�1i

~�K�1 � : : :�
h�K ;~�1i
h~�1;~�1i

~�1:

By construction,
D
~�k1 ;

~�k2

E
= 0 for k1 6= k2: Let

�k;H =
~�krD
~�k; ~�k

E ;
then f�1;H; : : :;�K;Hg is a set of bases in RT that satis�es the conditions in (17).

Let � = (�1; : : :;�K): To obtain �H = (�1;H; : : :;�K;H) in a matrix programming envi-
ronment, we �rst compute the upper triangular factor RH of the Cholesky decomposition of
�0CH�=T

2 such that �0CH�=T 2 = R0HRH: We then let

�H = � (RH)
�1 :

For such a choice of �H, we have

(�H)
0CH�H=T

2 =
�
R0H
��1

�0CH� (RH)
�1 =T 2 =

�
R0H
��1

R0HRH (RH)
�1 = IK ;

so the conditions in (17) are satis�ed.
As T !1; �0CH�=T 2 converges to the variance �� of � = (�1; : : : ; �K)0. This implies that

RH converges to the upper triangular factor of the Cholesky decomposition of ��: As a result,
every transformed basis vector is approximately equal to a linear combination of the original
basis vectors. The implied basis functions are thus equal to linear combinations of the original
basis functions. Therefore, if Assumption 3.5 holds for the original basis functions, it also holds
for the transformed basis functions.

Using f�k;Hg as the basis vectors for construction of the asymptotic variance estimator, we
have

T1 =d tK :

That is, the t statistic T constructed based on the transformed basis functions is asymptotically
distributed as the standard t distribution with K degrees of freedom.

4.2 Understanding the asymptotic t test

To understand the asymptotic t theory, we abstract away nonessential details in a DD regression
and consider the time series regression

Yt = � (t)0 �+ Postt � � + et; t = 1; 2; : : : ; T (18)
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with � as the parameter of interest, where Yt is the outcome of interest and et satis�es the FCLT
T�1=2

P[Tr]
t=1 et !d �B (r) : After partialling out the trend component, the time series model

becomes Y�t = Post�t � � + e�t : The OLS estimator of � is then

�̂ =

"
TX
t=1

(Post�t )
2

#�1 TX
t=1

(Post�t � Y�t );

and the t statistic for testing the null � = �0 is

T� =
p
T (�̂ � �0)rh

T�1
PT
t=1(Post

�
t )
2
i�1

�̂2
=

p
T (�̂ � �0)rh

T�1
PT
t=1(Post

�
t )
2
i�1

�2
�

s
�2

�̂2
(19)

where

�̂2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k

�
t

T

�
� ê�t

#2
(20)

and ê�t = Y�t � Post�t � �̂.
It is not di¢ cult to show that the �xed-K limit distribution of T� is identical to what is

given in (13). Therefore, the time series regression in (18) and the DD regression can be regarded
as asymptotically equivalent. To develop the asymptotic t theory for T�, we have to use the
Gram-Schmidt orthogonalization as in the DD regression. The reason is that the basis functions
f�Hk (r)g are not orthonormal on L2[0; 1] and so �k is not iid, even if the original basis functions
f�k (r)g are. In fact, for the asymptotic t theory, we do not care whether f�k (r)g are orthonormal
per se. What we care about is whether f�Hk (r)g are orthonormal.

There are some special cases where the Gram-Schmidt orthogonalization is not needed. The
�rst example is Sun (2011) who considers a linear trend regression, which is a special case of the
model in (18) and can be obtained by setting � (t) = (1; t)0 and dropping the regressor Postt. It
is not hard to show that the limiting distribution of the t statistic for the linear-trend coe¢ cient
can still be represented by (13), but now

�Hk (r) = �k (r)� � (r)
0
�Z 1

0
� (s) � (s)0 ds

��1 �Z 1

0
�k (s) � (s) ds

�
:

If we employ the special cosine bases f�k (r) :=
p
2 cos (�kr) ; k = 0; 1; : : :g; then

R 1
0 �k (s) � (s) ds =

0 with � (s) = (1; s)0 and hence �Hk (r) = �k (r) : So �k =
R 1
0 �

H
k (r) dB (r) =

R 1
0 �k (r) dB (r) :

Given that these cosine bases are orthonormal on L2[0; 1]; we have �k s iid N(0; 1) for k =
1; 2; : : : ;K. Asymptotic t theory can be then developed without applying the Gram-Schmidt
orthogonalization to the special cosine bases. Such a theory in Sun (2011) takes advantage of
the nature of the regressor, i.e., the linear trend, and the special property of the carefully crafted
cosine bases. If the regression contains other deterministic regressors such as higher-order poly-
nomial trends and the regressor Postt, an asymptotic t theory cannot be developed without
employing the Gram-Schmidt orthogonalization

The second example is Sun (2013) who develops the asymptotic t theory in the GMM frame-
work for stationary data. To understand the asymptotic t theory there, we consider the simplest
location model, which can serve as the limit experiment of more general models. The location
model can be cast as the regression model in (18) with the special regressor � (t) = 1 but without
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the regressor Postt. Again the representation in (13) is still valid for the limiting distribution of
the t statistic. Simple calculations show that now

�Hk (r) = �k (r)�
Z 1

0
�k (s) ds:

If the basis functions f�k (�)g are orthonormal on L2[0; 1] and satisfy
R 1
0 �k (s) ds = 0; then

�Hk (r) = �k (r) and �k =
R 1
0 �

H
k (r) dB (r) =

R 1
0 �k (r) dB (r) s iid N(0; 1): To develop the as-

ymptotic t theory, we only need to maintain that f�k (�)g are orthonormal and satisfy
R 1
0 �k (s) ds =

0: The commonly used Fourier bases meet these requirements. As in the linear trend regression,
we do not need to employ the Gram-Schmidt orthogonalization in order to develop the asymptotic
t theory.

The idea of using the Gram-Schmidt orthogonalization to develop the asymptotic t approx-
imations (and F approximations) in series HAR inference is quite general. It can be readily
extended to regressions with other types of deterministic regressors. It can also be extended to
the cases where the standard FCLT T�1=2

P[Tr]
t=1 et !d �B (r) does not hold and the limiting

process may not have independent increments. For example, if et is a near unit root process with
local-to-unity parameter c, then we could have: T�1=2e[Tr] !d �Jc (r) where Jc (r) is an OU
process whose increments are not independent of each other in general. In such cases, the as-
ymptotic t theory can still be developed, but more sophisticated orthonormalizations are needed.
See Sun (2014c) for a study in this direction.

5 Testing-Optimal Choice of K

In this section, we propose a testing-optimal choice of the smoothing parameter K: The proposed
method is based on high-order approximations of the type I and type II errors of the asymptotic
t test in the previous section.

We consider the DD regression without additional covariates Zit and assume that the error
term �it is Gaussian. More general models with non-Gaussian errors or with covariates that
can vary in arbitrary ways across both the time dimension and the cross-sectional dimension
require highly technical arguments. For example, when the errors are not Gaussian, we have to
follow the most general approach to develop Edgeworth expansions for time series data. This
often requires highly technical assumptions that are di¢ cult to verify. See, for example, Sun
and Phillips (2009) for the technical assumptions and a full-�edged Edgeworth expansion. While
the asymptotic testing-optimal rule for the smoothing-parameter choice that we develop for the
special case may not be theoretically optimal for more general cases in large samples, it may still
be quite informative in �nite samples. The results of our simulations lend some support to this
possibility.

In the absence of Zit; the DD estimator �̂1 is numerically identical to the OLS estimator based
on the regression model

M�Yt =M� � Postt �
p
n� (1� �) �10 +M�et; (21)
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where

Yt =
p
n� (1� �)

0@ 1

n�

n�X
i=1

Yit �
1

n(1� �)

nX
i=n�+1

Yit

1A =
1p
n

nX
i=1

T̂ reati � Yit;

et =
p
n� (1� �)

0@ 1

n�

n�X
i=1

�it �
1

n (1� �)

nX
i=n�+1

�it

1A =
1p
n

nX
i=1

T̂ reati � �it; (22)

M� = IT�T � � (�� 0)�1 � 0, and IT�T is a T � T dimensional identity matrix. In fact, it is easy
to rigorously establish the numerical equivalence. To highlight the estimation method behind �̂1,
in this section we write

�̂1 = �̂1;OLS =
1p

n� (1� �)
�
Post0 �M� � Post

��1 �
Post0 �M� � Y

�
;

where Post = (Post1; Post2; : : : ; PostT )0 and Y = (Y1;Y2; : : : ;YT )0 :
Denote the variance matrix of e = (e1; e2; : : : ; eT )

0 by 
. On the basis of (21), we can also
estimate �1 by the generalized least-squares estimator:

�̂1;GLS =
1p

n� (1� �)

h
(M�Post)

0 �M�
M
0
�

��
M�Post

i�1 h
(M�Post)

0 �M�
M
0
�

��
M�Y

i
;

where (M�
M
0
� )
� is the Moore-Penrose pseudoinverse of M�
M

0
� :

By direct calculation, it�s easy to show that E(�̂1;GLS��10)(�̂1;GLS� �̂1;OLS) = 0. In addition,
letting

ê� = [IT�T �M� � Post �
�
Post0 �M� � Post

��1
Post0 �M� ]M�e

be the OLS residual, we can show that

E(�̂1;GLS � �10) (ê� )0 = 0:

Hence �̂1;GLS� �10 is independent of both �̂1;GLS� �̂1;OLS and ê� : Using the de�nition of et given
in (22), we can show that ê�t =

Pn
i=1 T̂ reati � �̂�it=

p
n: It then follows that

�̂2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k;H;tê
�
t

#2
[� (1� �)]�2

(
1

T

TX
t=1

[Post�t ]
2

)�1
; (23)

which is a quadratic form in ê�t . Therefore, �̂1;GLS � �10 is also independent of �̂2.
Let 	 and  be the cdf and pdf of the standard normal distribution, respectively. Denote

�2GLS = var
hp

nT (�̂1;GLS � �10)
i
. Using the independence of �̂1;GLS � �10 from �̂1;GLS � �̂1;OLS
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and �̂2; we obtain, for any z 2 R,

P

 p
nT (�̂1;OLS � �10)

�̂
� z

!
= P

 p
nT (�̂1;OLS � �10)

�GLS

�GLS
�̂

� z

!

= P

0@pnT (�̂1;GLS � �10)
�GLS

� z�̂

�GLS
+

p
nT
�
�̂1;GLS � �̂1;OLS

�
�GLS

1A
= E	

0@ z�̂

�GLS
+

p
nT
�
�̂1;GLS � �̂1;OLS

�
�GLS

1A
= E	

�
z�̂

�GLS

�
+ E

24 � z�̂

�GLS

� pnT ��̂1;GLS � �̂1;OLS�
�GLS

35+O �E[pnT (�̂1;GLS � �̂1;OLS)]2�
= E	

�
z�̂

�GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
;

where the last equation holds because �̂ does not change and �̂1;GLS � �̂1;OLS changes sign when
e is replaced by �e: Similarly, we have

P

 p
nT (�̂1;OLS � �10)

�̂
� z

!
= E	

�
� z�̂

�GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
:

Let G (�) be the cdf of the �21 distribution. Then

P

 �����
p
nT (�̂1;OLS � �10)

�̂

����� � z

!
= EG

�
z2�̂2

�2GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
:

Our asymptotic expansion is based on the above approximation. Further expansions require
us to approximate the asymptotic bias and variance of �̂2 and establish the convergence rate of
E[
p
nT (�̂1;GLS � �̂1;OLS)]2: To this end, we maintain the following assumption.

Assumption 5.1 (a) fetg is a stationary Gaussian process with a spectral density that is twice
continuously di¤erentiable and bounded above and away from zero uniformly over n in a neigh-
borhood around the origin.

(b) For �HF (r) =
�
�H1 (r) ; : : : ;�

H
K (r)

�0
; the smallest eigen value of

R 1
0 �

H
F (r) �

H
F (r)

0 dr is
bounded away from zero uniformly over K:

(c) The basis functions f�k (r)g and � (r) are twice continuously di¤erentiable.
(d) For �F (r) = [�1 (r) ; : : : ;�K (r)]

0; _�F (i) =
h
_�1 (r) ; : : : ; _�K (r)

i
; and _�k (r) = d�k (r) =dr;

the following holds: Z 1

0
k�F (r)k2 dr = O (K)

k�F (i)k2 = O(K); i = 0; 1 _�F (i)2 = O(K3); i = 0; �; and 1;

where k�k is the Euclidean norm.
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The conditions on the spectral density in Assumption 5.1 ensure that E[
p
nT (�̂1;GLS �

�̂1;OLS)]
2 = O (1=T ). They are also needed for evaluating the asymptotic bias and variance

of �̂2: The other conditions in Assumption 5.1 are further restrictions on the basis functions and
trend functions. It is not hard to show that they are satis�ed for Fourier basis functions and
polynomial trend functions.

Let t�=2K be the 1 � �=2 quantile of Student�s t-distribution with K degrees of freedom; and
let ��1 be the 1 � � quantile of the �21 distribution. Let G�2(�) and G3;�2(�) be the cdf�s of
the noncentral �21 and �

2
3 distributions with noncentrality parameter �

2. The following theorem
establishes high-order approximations to the type I and type II errors of the asymptotic t test
based on T.

Theorem 5.1 Let Assumptions 3.1 and 5.1 hold. Consider the asymptotics under which K !1
such that K=T + T=K2 ! 0.

(a) The type I error of the t test based on T satis�es

P (jTj > t
�=2
K jH0) = �� K2 �B

T 2
G0(��1 )�

�
1 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (24)

(b) Under the local alternative H1(�2) : �1 � �10 = (nT )�1=2�%; where % = �� with equal
probability 1/2, the type II error of the t test based on T satis�es

P (jTj < t
�=2
K jH1(�2)) = G�2(�

�
1 ) +

K2 �B

T 2
G0�2(�

�
1 )�

�
1

+
�2

2K
G03;�2(�

�
1 )�

�
1 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
; (25)

where �B = B=�2;

B = �!(2)(0)
1X

p=�1
p2�2e;p; �

2 =
1X

p=�1
�2e;p; �

2
e;p = E(etet�p);

!(2)(0) =
1

2
lim
K!1

1

K3

Z 1

0

_�F (s)
0
�Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1
_�F (s) ds

=
1

2
lim
K!1

1

K3
tr

 �Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1 Z 1

0

_�F (s) _�F (s)
0 ds

!
:

The above results are similar to Theorem 5 in Sun (2011) with p = 1 but with a di¤erent
�B. Suppose we use the Fourier basis functions �2j�1 =

p
2 cos (2�j) and �2j =

p
2 sin (2�j) for

j = 1; : : : ;K=2: If � (t) is a vector of polynomial trend functions, then Proposition 9.1 in the
appendix shows that !(2)(0) = �2=6: This gives rise to a B̂ that is di¤erent from what is obtained
in Sun (2011). The di¤erence is due to the use of cosine basis functions in Sun (2011), while we
use both cosine and sine basis functions here.

Following Sun (2011), we ignore the high-order terms and approximate the type I and type
II errors by

eI = �� K2 �B

T 2
G0(��1 )�

�
1 ;

eII = G�2(�
�
1 ) +

K2 �B

T 2
G0�2(�

�
1 )�

�
1 +

�2

2K
G03;�2(�

�
1 )�

�
1 :
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To obtain an optimal smoothing parameter K for testing, we propose to choose K by mini-
mizing the type II error while controlling the type I error. More speci�cally, we solve the following
problem:

min eII s:t: eI � ��;

where � > 1 is a tolerance parameter. We allow the type I error to be di¤erent from the nominal
type I error �; but it cannot be larger than ��: For example, when � = 1:2 and � = 5%, the
upper bound is 6% rather than 5%: Our approach to selecting K has a decision-theoretic basis,
as it amounts to selecting K to minimize a loss function that is a weighted average of type I
and type II errors with the weight given by the implied Lagrangian multiplier for the constraint
eI � ��. See Sun, Phillips, and Jin (2011) for related ideas.

Following an argument similar to that in Sun (2011), we �nd that the optimal K for the
above problem is

Kopt =

(
�2G03;�2(�

�
1 )

4 �B
�
G0
�2
(��1 )� �optG0(��1 )

�)1=3 T 2=3; (26)

where

�opt =

8<:0; if �B > 0
G0
�2
(��1 )

G0(��1 )
+ �2

j �Bj1=2G0
3;�2

(��1 )[�
�
1 ]
3=2[G0(��1 )]

1=2

4[(��1)�]3=2T ; if �B � 0:
(27)

The optimal Kopt in (26) depends on the noncentrality parameters � and �. As in Sun (2011),
we allow � to depend on the sample size T . For a larger T , we may require � to be closer to 1.
We suggest choosing �2 so that the �rst-order power of the asymptotic two-sided t test is 75%,
that is, choosing �2 so that 1�G�2(�

�
1 ) = 75% for a given signi�cance level �. We refer to Sun

(2011) for more detailed discussions on how to choose � and �2.
For practical implementation, we use the parametric plug-in approach to estimate the un-

known B and �2. Suppose we use the simple AR(1) plug-in by �tting an AR(1) model to

êt =
Pn
i=1 T̂ reati � �̂�it=

p
n. Let �̂e be the estimated AR coe¢ cient and �̂2e be the estimated error

variance. Then the plug-in estimators of �2 and �B are

�̂2 =
�̂2e

(1� �̂e)2
; and �Best = �2!

(2)(0)�̂e

(1� �̂e)2
;

and the plug-in estimator of K is

K̂opt =

8>><>>:
�

(1��̂e)2
8!(2)(0)j�̂ej

�1=3�G0
3;�2

(��1 )�
2

G0
�2
(��1 )

�1=3
T 2=3; if �Best > 0�

(1��̂e)2
2!(2)(0)j�̂ej

�1=2 �
(��1)�
G0(��1 )�

�
1

�1=2
T; if �Best � 0:

(28)

It is clear that for j�̂ej 2 (0; 1); K̂ decreases as j�̂ej increases. A smaller K is desired in the
presence of stronger autocorrelation. Intuitively, when the autocorrelation is high, we should use
only very few periodogram coordinates that are close to the origin. We do so in order to avoid
smoothing bias, which can be large if smoothing is taken over a wide window in the frequency
domain. For a given window size K; the larger the value of j�ej, the larger the absolute smoothing
bias.
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6 Testing Procedure and Practical Guidance

6.1 Summary of the Proposed t Test

Our asymptotic t test consists of the following steps:

1. Construct model (1) and estimate the parameter of interest.

(a) Detrend each time series separately, and then remove the cross-sectional average from
each detrended variable as described in (2).

(b) Estimate �10 and �20 by running the OLS regression

~Y �it = ( ~X
�
it)
0�0 + ~�

�
it;

where ~Y �it and ~X�
it are the transformed variables given in (2) and (4), respectively.

Denote the estimates by �̂1 and �̂2 and the residual by �̂�it:

2. Transform the original basis vectors.

(a) Let � = (� (1) ; : : : ; � (T ))0 2 RT�d� and Post� = (Post�1 ; : : : ; Post�T )
0 2 RT�1, where

Post�t is the detrended �Postt�dummy:

Post�t = Postt �
 

TX
s=1

Posts � � (s)0
! 

TX
s=1

� (s) � (s)0
!�1

� (t) :

Construct the projection matrix

CH = T
h
IT�T � Post� �

�
(Post� )0 Post�

��1
(Post� )0 � �

�
� 0�
��1

� 0
i
:= T �MPost;� :

(29)

(b) Let � = (�1; : : : ;�K) 2 RT�K be the matrix of the original basis vectors, where K
is the greatest even number less than K̂opt given by equation (28). The columns of �
are

�2j�1 =
�p
2 cos(2j� � 1=T );

p
2 cos(2j� � 2=T ); : : : ;

p
2 cos(2j� � T=T )

�0
; (30)

�2j =
�p
2 sin(2j� � 1=T );

p
2 sin(2j� � 2=T ); : : : ;

p
2 sin(2j� � T=T )

�0
; (31)

for j = 1; 2; : : : ;K=2:
Compute the upper triangular factor RH of the Cholesky decomposition of �0CH�=T 2

such that �0CH�=T 2 = R0HRH:

(c) Compute the matrix

�H = (�1;H; : : : ;�K;H) = � (RH)
�1 ;

where each column of �H consists of a transformed basis vector.

3. Compute the variance estimator and perform the t test.
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(a) Estimate the asymptotic variance of �̂ by

�̂2 = �̂2 �
"
1

n

nX
i=1

(T̂ reati)
2

#�2(
1

T

TX
t=1

[Post�t ]
2

)�1
;

where

�̂2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k;H;t
1p
n

nX
i=1

T̂ reati � �̂�it

#2
and �k;H;t is the t-th element of the vector �k;H.

(b) Perform the test using T =
p
nT (�̂1 � �10)=�̂ as the test statistic and Student�s t

distribution with K degrees of freedom as the reference distribution.

6.2 Practical Guidance for Multi-level Data

In empirical applications, DD analyses are often applied to multi-level data that consist of indi-
viduals from di¤erent groups such as states and regions and each individual is observed over a
number of periods. The DD regression at the individual level is

Yig(i)t = �t + � (t)
0 �g(i) + Treatg(i) � �10 + Postt � �20

+ Treatg(i) � Postt � �10 + Z
0
ig(i)t

�20;g(i)t + �g(i)t + �ig(i)t; (32)

where the new subscript g(i) indexes the group that individual i belongs to and �g(i)t is an
additional error component capturing unobserved group/time e¤ects. The model can be rewritten
in a two-levels form:

Yig(i)t = Yg(i)t + Z
0
ig(i)t

�20;g(i)t + �ig(i)t (33)

and
Ygt = �t + � (t)

0 �g + Treatg � �10 + Postt � �20 + Treatg � Postt � �10 + �gt: (34)

The �rst equation is for the data at the individual level, and the second equation is for the
aggregate data at the group level. If we observe Ygt and formally change the index g into i, then
the aggregate model in (34) is exactly the same as the model we consider in (1). So our proposed
test can be directly applied3.

The problem is that we do not observe Ygt and have to estimate it. To this end, we can �rst
use the individual-level data for each (g; t) pair and run the OLS regression in (33) to obtain an
estimator �̂20;gt of �20;gt and then estimate Ygt by

Ŷgt =
1

Ngt

X
i:g(i)=g

�
Yig(i)t � Z

0
ig(i)t

�̂20;g(i)t

�
;

where Ngt is the number of individuals in the (g; t) pair. If Ngt is reasonably large in the sense
that it is much larger than the number of groups and the number of time periods, we can safely
ignore the estimation error in �̂20;gt: In this case, we can proceed as if Ŷgt is the same as Ygt: Our
asymptotic t theory continues to hold, and we can follow the testing procedure in the previous
subsection to perform the asymptotic t test.

3The only exception is that there are additional covariates Zit in (1). In principle, we can add a group and time
speci�c component Z0g(i)t�20 to the multi-level model in (32). Such a component is then present in the aggregate
model in (34). Nevertheless, in empirical applications, such a component is often not included in the multi-level
model.
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7 Simulation Evidence

7.1 Model-based Simulation

We consider the following data generating process

Yit = �t + � (t)
0 �i + Treati � �10 + Postt � �20 + Treati � Postt � �10 + �it;

for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T , where Treati = 1 fi � 0:5ng and Postt = 1 ft � 0:5T + 1g :
The error f�itg follows independent AR(1) processes with AR parameter �:

�it = ��it�1 + e
�
it, t � 1 and �i0 = 0:

While fe�itg is iid over time, there may be cross-sectional dependence. We consider the case with
n = m2 for some positive integer m: Individuals are assumed to be located on a regular m �m
integer lattice so that we can write

e�it = e�i1;i2;t for 1 � i1; i2 � m;

where (i1; i2) is the location of the i-th individual. For each time period t; e�it is a spatial average
of iid innovations:

e�i1;i2;t = � (vi1�1;i2;t + vi1;i2�1;t + vi1+1;i2;t + vi1;i2+1;t)

+ �2 (vi1�2;i2;t + vi1;i2�2;t + vi1+2;i2;t + vi1;i2+2;t)

+ �2 (vi1+1;i2+1;t + vi1�1;i2�1;t + vi1+1;i2�1;t + vi1�1;i2+1;t) + vi1;i2;t;

where vi1;i2;t is iid N(0; 1) across i1; i2; and t: That is, e
�
it s SMA(2), a spatial moving average

of order 2 according to the taxicab distance.
For the trend component, we consider two common cases. In the �rst case, � (t) = 1,

i.e., there is no trending function, and only individual �xed e¤ects are included. In this case,
time series detrending reduces to demeaning. In the second case, � (t) = (1; t)0 ; i.e., there
are both individual �xed e¤ects and linear time trends. For other model parameters, we take
� = �0:6;�0:3; 0; 0:3; 0:6; and 0:9 and set � to be � = 0 and 0:5: We set all other parame-
ters to zero, as all the tests we consider are invariant to them. The (n; T ) combinations under
consideration are

�
32; 10

�
;
�
32; 100

�
;
�
82; 10

�
;
�
82; 50

�
; (82; 100); and (82; 200):

We are interested in testing H0 : �10 = 0 with two-sided alternatives so that each test rejects
the null when the absolute value of the t statistic is large enough. We consider two signi�cance
levels: � = 5% and � = 10%: We consider the following tests: the nonstandard �xed-K test
based on the sine and cosine basis functions and simulated critical values, the standard (�xed-K)
t test as described in Section 4, and the nonstandard �xed-b test developed in SY (2017). For the
former two tests, we also consider the corresponding normal tests that employ standard normal
critical values. There are �ve types of tests in total.

The test statistic for the �xed-b test is

tb =

p
nT (�̂1 � �10)q

R0V̂bR
;
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where R = (1; 0; : : : ; 0) 2 RdZ+1,

V̂b =

 
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

!�1

̂b

 
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

!�1
;


̂b =
1

T

TX
t=1

TX
s=1

k

�
jt� sj
bT

� 
1p
n

nX
i=1

~X�
it�̂
�
it

! 
1p
n

nX
i=1

~X�
is�̂
�
is

!
;

k (�) is a kernel function, and b 2 (0; 1] is a smoothing parameter. We employ the same kernel
function, namely, the Bartlett kernel, as in SY (2017). Since no data-driven method for choosing
b is given in SY (2017), we consider the �xed-b test with b = 0:01; 0:5; and 1.

For the standard �xed-smoothing t test, we use the data-driven K̂opt given in (28), but we
make two adjustments. First, we use the truncated LS estimator

~�e =
�̂e
j�̂ej

0:97 +

�
�̂e �

�̂e
j�̂ej

0:97

�
1 fj�̂ej � 0:97g

instead of the original estimator �̂e in computing K̂opt: Second, we truncate K̂opt to be between
4 and T=2, and we round it to the greatest even number less than K̂opt: Therefore, K is always
equal to 4 when T = 10. Rounding is used to speed up the computation. It has a minimal e¤ect
on test performances and is not necessary in practical implementation. We impose the lower
bound K̂opt � 4 because 4 is the smallest even degree of freedom for Student�s t distribution to
have a �nite variance. We impose the lower bound to avoid extreme power loss. We set � to
be 1.3 in our testing-oriented criterion for choosing K: The size of our proposed t test does not
change much when we consider � = 1:1:; 1:2 ; : : : ; 1:5:

For the nonstandard �xed-K test, we choose K to minimize the mean squared error of the
long-run variance estimator. The long-run variance under consideration is the long-run variance
�2 of the process et :=

Pn
i=1 T̂ reati � �it=

p
n:When the Fourier basis functions are used, the MSE

optimal K is given by

K =

$�
�2

2B2

�1=5
T 4=5

%
;

where b�c is the �oor function. See Phillips (2005). Following a common practice, we use the
parametric plug-in approach to estimate the unknown B and �2: Suppose we use the simple
AR(1) plug-in by �tting an AR(1) model to êt =

Pn
i=1 T̂ reati � �̂�it=

p
n. Let �̂e be the estimated

AR coe¢ cient and �̂2e be the estimated error variance, then the plug-in estimator of K is

K̂mse =

6664 9 (1� �̂e)6
2�4�̂2e �̂

2
e

!1=4
T 4=5

7775 : (35)

We also truncate K̂ to be between 4 and T=2, and round it to the greatest even number less than
K̂mse:

Tables 1�3 report simulation results of the �ve di¤erent types of tests when (n; T ) = (32; 10),
(n; T ) = (82; 10), and (n; T ) = (82; 100); respectively. First, it�s clear that the standard �xed-
smoothing t test has quite accurate size in all cases when T = 100 and acceptable size when
T = 10. Second, the �xed-K tests are more accurate than the corresponding standard normal
tests in almost all cases, especially when the AR parameter is positive and T is small. In
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those cases, the data-driven K values are relatively small, and the estimation uncertainty in the
asymptotic variance estimator becomes large. This is exactly the scenario where the �xed-K
approximations can be more accurate. Third, the asymptotic t test outperforms the nonstandard
�xed-K test in almost all cases. The reason is that the asymptotic t test employs the test-
optimal K that controls the type I error and minimizes the type II error asymptotically while
the nonstandard �xed-K test employs the MSE-optimal K that is not targeted at the type I
and II errors. Fourth, comparing the standard t test to the nonstandard �xed-b test, we �nd
that both tests under-reject when � is negative and over-reject when � are positive. However,
the standard t test performs much better than the �xed-b test when � � 0 and T = 10. Fifth,
comparing the results when � = 0 with those when � = 0:5, we can see that the cross-sectional
dependence does not a¤ect the size properties of any of the �ve tests: there is no big di¤erence
between the empirical rejection probabilities in the two cases, especially when T = 100. Finally, it
appears that the e¤ect of the linear trend interacts with the strength of the temporal dependence.
When the AR parameter is large, e.g., � = 0:9, it is bene�cial to have a linear trend. A possible
explanation is that detrending can help reduce strong temporal dependence without introducing
too much extra variation from the trend estimation.

We also investigate the e¤ect of the sample size on the test performances. Comparing the
results in Tables 1 and 2, we �nd that the null rejection probabilities remain more or less the
same for di¤erent values of n when the time series sample size stays the same. This is compatible
with the simulation result that cross-sectional dependence does not a¤ect the size properties of
all �ve tests. In essence, each test involves collapsing the panel data into time series data. The
cross-sectional dependence and cross-sectional sample size do not a¤ect the persistence of the
collapsed time series. As a result, they do not a¤ect the size properties of all �ve tests. On the
other hand, when there is substantial temporal dependence, all �ve tests become more accurate
as T increases as shown in Tables 2 and 3.

Figures 2 and 3 present the size-adjusted power for the �ve tests when (n; T ) = (32; 10) and
(n; T ) = (82; 100), respectively. Note that the �xed-K test and the corresponding asymptotic
normal test have the same size-adjusted power, as they use the same test statistic. We only
report the case with a linear trend and without cross-sectional dependence (i.e., � (t) = (1; t)0

and � = 0): The �gures for the other cases are similar. The basic observation is that all tests
have more or less the same size-adjusted power function. This, coupled with its size accuracy
and convenience to use, suggests that we use the proposed t test in empirical applications.

7.2 Empirical-data-based Simulation

In this section, we apply our proposed tests to women�s wages constructed from the Current
Population Survey (CPS). Following BDM (2004), we extract the variables � weekly earnings
(from their fourth interview month), employment status, education, age (between 25 and 50),
and state of residence from the Merged Outgoing Rotation Group of the CPS from 1979 to 1999.
We use the sample with positive reported weekly earnings with a sample size around 540,000.

The log weekly earnings, denoted as Yist; are the outcomes of interest for individual i in state
s at year t. We employ the following linear model to study the treatment e¤ect of a hypothetical
policy intervention:

Yist = �s + �t + Ist� + Z
0
istc+ �ist; (36)

where �s and �t are state and year �xed e¤ects, Zist contains individual-level covariates, Ist is
the policy indicator with Ist = Treats � Postt, and �ist is the error term.
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We follow BDM (2004) to randomly generate the pseudo-sample and the intervention. We
treat the state as the sampling unit and draw an iid sample of 50 states with replacement from
the real empirical data. Individuals within the same state are either all drawn into the pseudo-
sample or none of them is drawn into the pseudo-sample. We then randomly select 25 states,
i.e., half of the states in the pseudo-sample and designate them �a¤ected�by the intervention.
We designate the rest �una¤ected�by the intervention. Finally, we randomly draw a year, say
t� + 1; between 1985 to 1995 as the year when the policy intervention takes place. Ist = 1 only
for the treatment states and for the years after year t�: We perform each candidate test on the
pseudo-sample and record the outcome of each test. Repeating the whole process a number of
times, we obtain the relative rejection frequency of each test.

Our simulation design mimics the following hypothetical scenario: Hundreds of researchers
obtain a simple random sample of 50 states and each analyzes the e¤ects of various laws in the
CPS independently. We expect 5% of the researchers to reject the null of no e¤ect if the laws
indeed have no e¤ect and each researcher uses an accurate 5% test.

By design, each pseudo-sample retains time series dynamics including the temporal depen-
dence and the trend e¤ect, if any, in individual time series. For individuals in the same state,
cross-sectional dependence is also retained. To a great extent, each pseudo-sample represents
cross-sectional and time-series dependence in the CPS data. Note that there is no cross-sectional
dependence for individuals in di¤erent states. This is an empirically plausible assumption, which
could also be restrictive in other empirical applications.

Table 4 reports the rejection frequencies for seven di¤erent tests, including the tests considered
by BDM (2004) and the tests proposed here. The tests are based on di¤erent point estimators
of � (or di¤erent ways of estimating �) and di¤erent variance estimators.

The �rst two tests are based on individual-level data. The �rst test (t1), reported in Column
1, is based on the OLS estimator of � in model (36). For the standard error estimation, the
test assumes that �ist is iid across i; s; t: The test, therefore, does not account for cross-sectional
dependence, time series dependence or conditional heteroscedasticity. For this reason, the test is
expected to have a large size distortion. This is supported by the simulation result in Table 4.
The second test (t2), reported in Column 2, is based on the same OLS estimator as test t1 but
employs a cluster-robust variance estimator that allows for arbitrary correlation among errors in
the same state-year cell. This test accounts for cross-sectional dependence within each state and
conditional heteroscedasticity but not time series dependence. As expected, Table 4 shows that
the second test is still quite size distorted but less so than the �rst test.

The rest �ve tests are based on the aggregate data: we aggregate the data into state-year
cells using the same procedure discussed in Subsection 6.2. As in BDM (2004), we assume that
the e¤ect of Zist is a constant. So we can pool all data at the individual level to estimate c, and
the estimation error in estimating c can be safely ignored. The model based on the aggregate
data is

Yst = �s + �t + �Ist + �st: (37)

Let

Y �st = Yst �
1

T

TX
t=1

Yst; ~Y
�
st = Y �st �

1

S

SX
s=1

Y �st;

where S = 50 is the number of states. De�ne ��st similarly. Then

~Y �st = T̂ reats � Post�t � � + ~��st:
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Assume that the pseudo-sample has been sorted so that the �rst S=2 states receive the treatment.
The DD estimator �̂DD of � satis�es

p
ST
�
�̂DD � �

�
=

"
1

ST

X
s;t

�
T̂ reats � Post�t

�2#�1 1p
ST

X
s;t

T̂ reatsPost
�
t � ~��st

!
: (38)

Depending on how the standard error of the DD estimator is constructed, we obtain di¤erent
t statistics and tests. The test in Column 3 (t3) is based on the OLS standard error under the
assumption that �st is iid across s and t: Since the test ignores the autocorrelation in each time
series f�st; t = 1; 2; : : : ; Tg ; the test does not have accurate size. Table 4 shows that the null
rejection probability is 51%, which is much larger than the nominal level of 5%. The test in
Column 4 (t4) assumes that each time series f�st; t = 1; 2; : : : ; Tg follows an independent AR(1)
process with possibly di¤erent AR parameters. Such a test can be reliable if the AR(1) model
is correctly speci�ed. Even if the model is not correctly speci�ed, the test based on t4 should be
more reliable than that based on t3; as the time series dependence is partially accounted for. The
simulation results in Table 4 support this observation.

The test in Column 5 (t5) computes the standard error under the assumption that �st1 and
�st2 are correlated for all t1 and t2 and the covariance between �st1 and �st2 is the same for
di¤erent states. Under this assumption, cov(�st1 ; �st2) is estimated by S

�1PS
s=1 �̂

�
st1 �̂

�
st2 where

�̂�st1 =
~Y �st � T̂ reats � Post�t � �̂DD: The test in Column 6 (t6) is based on a di¤erent estimation

procedure. For each state, we �rst de�ne and compute two time series averages:

�Y 1s =
1

t�

t�X
t=1

Yst and �Y 2s =
1

T � t�
TX

t=t�+1

Yst:

Then
�Y 2s � �Y 1s =

��2 � ��1 + Treats � � + ��2s � ��1s; s = 1; : : : ; S; (39)

where ��j and ��js are de�ned similarly as �Y
j
s for j = 1; 2. The OLS estimator of � based on the

above cross-sectional regression is the DD estimator. That is, the cross-section OLS estimator is
numerically identical to �̂DD given in (38). However, the above formulation allows us to employ
the usual heteroscedasticity-robust variance estimator, which is the asymptotic variance estimator
used in Column 6. While the test in Column 5 assumes that the variances and autocovariances of
�st are the same across all s; the test in Column 6 allows them to be di¤erent across the treatment
states and the control states.

Both tests t5 and t6 allow for rich enough error correlation, although both tests assume that the
states are independent of each other, an assumption that holds in each pseudo sample. Also, the
two tests employ cross-sectional averages to estimate autocovariances, and so they are expected
to perform well when S is large. In our simulation, S = 50 may be regarded as reasonably large.
Not surprisingly, Table 4 shows that both t5 and t6 are quite accurate and that t6 is the most
trustworthy test among tests t1 �t6:

The tests in Columns 7 and 8 (t0LS and t
1
LS) are our proposed t tests with data-driven testing-

optimal K: As in our model-based simulations, we set � to be 1.3. The di¤erence between these
two tests lies in the trend functions used. While test t0LS assumes that no trend is included in
the DD regression, test t1LS assumes that a linear trend is included with possibly di¤erent trend
coe¢ cients for di¤erent individuals. Table 4 shows that test t1LS is as accurate as test t6: This
is encouraging, as t6 takes advantage of cross-sectional independence of the states but t1LS does
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not. Also, it is encouraging to know that t1LS works well when the time series are relatively short
� each time series has only 21 observations.

Table 4 shows that test t0LS is not as accurate as tests t4 � t6; although it is more accurate
than tests t1 � t3: The reason for the inaccuracy of t0LS is the trend misspeci�cation. As we
discussed before, each pseudo-sample retains the time series trends if they are present in the
original empirical sample. Note that the dependent variable is the logarithm of weekly earnings.
It is empirically plausible that the dependent variable contains a linear trend so that the weekly
earnings increase at a constant rate for each individual, even after controlling for some individual-
level covariates. A model that is more compatible with this empirical situation is the model in
(32) where a trending component is included. Test t0LS ignores the linear trend and thus su¤ers
from some size distortion. This explanation is supported by our model-based simulation results
not reported here.

A natural question is why tests t5 and t6 are not a¤ected by trend misspeci�cation. The reason
is that both tests ignore the time series variation and use only time series averages in constructing
the asymptotic variance estimator. Consider test t6 as an example. If a trend function is allowed
so that �st becomes

�st = � (t)0 ~�s + �st;�� ;

where �st;�� contains no trend. Then the cross-sectional regression in (39) becomes

�Y 2s � �Y 1s =
��2 � ��1 + � 0�E ~�s| {z }

intercept

+ Treats � � + � 0� (~�s � E ~�s) + ��2s;�� � ��1s;��| {z }
error

(40)

where

�� =
1

T � t�
TX

t=t�+1

� (t)� 1

t�

t�X
t=1

� (t)

is a constant,

��1s;�� =
1

t�

t�X
t=1

�st;�� ; and ��2s;�� =
1

T � t�
TX

t=t�+1

�st;�� :

The random trend e¤ects4 have been absorbed into the intercept and the error term. If the states
are independent of each other, then it is clear that the OLS estimator of � and the associated
heteroscedasticity-robust variance estimator are consistent. This explains why in our simulation
experiments t5 and t6 have good size properties. The cost of achieving the invariance to the trend
e¤ects is that the point estimator of � is only

p
n consistent when trends are present, even if T

is large. The relative e¢ ciency loss can be huge. Also, it is useful to reiterate that t5 and t6 have
satisfactory size performances only when the trend e¤ects are random, and the groups/states are
independent. Both conditions hold in our simulation experiment. However, these two conditions
are unlikely to hold in empirical applications.

We have also considered the power of the tests. A true 0:0x log point e¤ect is generated by
replacing yist by yist + Ist � 0:0x if state s is chosen to be in the treatment group and t � t� + 1.
The second row of Table 4 reports the results for x = 2, which corresponds to an e¤ect of 2%:
Our proposed test t1LS is more powerful than test t6, even though the null rejection probability
of t1LS is the same as that of t6. As we discussed above, by pushing the random trend e¤ects into
the error term, the point estimator behind t6 is less e¢ cient than the point estimator behind t1LS ;

4 In the pseudo-sample, the trend e¤ects are random, as they are not correlated with the treatment dummy, the
key regressor of interest.
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which includes the random trend as part of the regression and hence reduces the size of the error
term.

8 Conclusion

This paper develops an asymptotically valid t test in the DD regression when T is relatively large.
The t test employs standard t critical values and is thus easy to use. It is more accurate than the
normal test that employs standard normal critical values. The proposed t test has competitive
power properties. The cross-sectional sample size n can be �xed or grow with T: Simulations
show that the proposed t test works well even when n is comparable to T: Given these attractive
properties, we recommend using our proposed t test in place of the normal test in empirical
applications.

There are a few possible extensions. First, when the underlying process is persistent, we
can use prewhitening to reduce the size distortion of the proposed t test. This extension is
straightforward. Second, while the paper considers only panel data, it is easy to see that the
proposed t test would work for repeated cross-section data as well. In that case, the only change
needed would be to switch the order of detrending and averaging. Instead of �rst detrending each
time series and then taking an average within each group, as we do in this paper, for repeated
cross-section data we would �rst take an average within each group and then detrend the averaged
data for each group. Finally, we consider the case where there is only one policy change. We
do not imagine that there would be much di¢ culty in allowing for multiple policy changes, with
possibly heterogeneous e¤ects, but we leave the details to future research.
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Table 1: Empirical size of di¤erent 5% tests in DD regression with sample size n = 9; T = 10;
and data-driven choice of K.

Orthonormal series test Kernel �xed-b test
Transformed Bases Fourier Bases b-value
t N T1 N 0.02 0.5 1

� = 1; � = 0
� = �0:6 0.015 0.075 0.060 0.141 0.015 0.014 0.013
� = �0:3 0.023 0.094 0.066 0.144 0.043 0.031 0.029
� = 0 0.034 0.122 0.080 0.169 0.102 0.063 0.060
� = 0:3 0.054 0.176 0.119 0.222 0.204 0.118 0.112
� = 0:6 0.099 0.263 0.185 0.307 0.348 0.201 0.191
� = 0:9 0.174 0.387 0.279 0.424 0.490 0.290 0.282

�(t) = 1; � = 0:5
� = �0:6 0.018 0.077 0.062 0.141 0.016 0.016 0.013
� = �0:3 0.024 0.098 0.067 0.149 0.045 0.034 0.033
� = 0 0.031 0.123 0.082 0.173 0.104 0.065 0.064
� = 0:3 0.048 0.170 0.117 0.218 0.202 0.120 0.114
� = 0:6 0.083 0.243 0.173 0.291 0.323 0.191 0.176
� = 0:9 0.166 0.378 0.268 0.413 0.484 0.277 0.268

�(t) = (1; t)0 ; � = 0
� = �0:6 0.018 0.088 0.083 0.228 0.080 0.040 0.038
� = �0:3 0.029 0.108 0.088 0.223 0.127 0.060 0.057
� = 0 0.036 0.127 0.095 0.220 0.168 0.079 0.075
� = 0:3 0.039 0.134 0.099 0.223 0.193 0.089 0.087
� = 0:6 0.036 0.136 0.100 0.227 0.216 0.091 0.090
� = 0:9 0.030 0.122 0.088 0.207 0.207 0.078 0.078

� = (1; t)0 ; � = 0:5
� = �0:6 0.021 0.097 0.089 0.249 0.083 0.042 0.039
� = �0:3 0.031 0.116 0.095 0.232 0.129 0.065 0.065
� = 0 0.036 0.128 0.096 0.226 0.170 0.080 0.077
� = 0:3 0.037 0.132 0.097 0.226 0.199 0.088 0.087
� = 0:6 0.035 0.130 0.094 0.222 0.213 0.086 0.085
� = 0:9 0.028 0.119 0.085 0.203 0.205 0.075 0.077

Note: The t test, denoted by �t�, is based on t critical values. The normal tests, denoted by
�N�, are based on standard normal critical values. The nonstandard �xed-K test, denoted by
�T1�, is based on simulated nonstandard critical values. K is chosen to be 4 for orthonormal
series tests.
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Table 2: Empirical size of di¤erent 5% tests in DD regression with sample size n = 64; T = 10;
and data-driven choice of K.

Orthonormal series test Kernel �xed-b test
Transformed Bases Fourier Bases b-value
t N T1 N 0.02 0.5 1

� = 1; � = 0
� = �0:6 0.018 0.075 0.063 0.139 0.016 0.017 0.016
� = �0:3 0.026 0.096 0.069 0.143 0.043 0.034 0.033
� = 0 0.034 0.120 0.081 0.165 0.100 0.063 0.064
� = 0:3 0.052 0.172 0.116 0.221 0.199 0.115 0.111
� = 0:6 0.094 0.261 0.184 0.309 0.345 0.201 0.193
� = 0:9 0.170 0.376 0.272 0.411 0.486 0.279 0.275

�(t) = 1; � = 0:5
� = �0:6 0.017 0.079 0.065 0.148 0.017 0.014 0.012
� = �0:3 0.025 0.100 0.070 0.152 0.044 0.034 0.032
� = 0 0.035 0.126 0.085 0.171 0.105 0.065 0.063
� = 0:3 0.051 0.174 0.117 0.219 0.200 0.117 0.115
� = 0:6 0.086 0.246 0.171 0.300 0.330 0.189 0.178
� = 0:9 0.159 0.373 0.264 0.411 0.485 0.277 0.269

�(t) = (1; t)0 ; � = 0
� = �0:6 0.020 0.089 0.085 0.232 0.077 0.042 0.040
� = �0:3 0.031 0.111 0.093 0.222 0.124 0.059 0.060
� = 0 0.036 0.125 0.096 0.222 0.166 0.078 0.077
� = 0:3 0.037 0.129 0.096 0.221 0.193 0.086 0.084
� = 0:6 0.032 0.127 0.087 0.219 0.204 0.080 0.079
� = 0:9 0.026 0.119 0.082 0.199 0.200 0.074 0.074

� = (1; t)0 ; � = 0:5
� = �0:6 0.023 0.094 0.093 0.247 0.079 0.040 0.041
� = �0:3 0.031 0.117 0.099 0.230 0.127 0.060 0.061
� = 0 0.038 0.127 0.101 0.229 0.163 0.081 0.082
� = 0:3 0.040 0.136 0.100 0.230 0.199 0.091 0.091
� = 0:6 0.036 0.136 0.097 0.222 0.211 0.090 0.090
� = 0:9 0.030 0.120 0.086 0.199 0.198 0.074 0.072

Note: The t test, denoted by �t�, is based on t critical values. The normal tests, denoted by
�N�, are based on standard normal critical values. The nonstandard �xed-K test, denoted by
�T1�, is based on simulated nonstandard critical values. K is chosen to be 4 for orthonormal
series tests.
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Table 3: Empirical size of di¤erent 5% tests in DD regression with sample size n = 64; T = 100;
and data-driven choice of K.

Orthonormal series test Kernel �xed-b test
Transformed Bases Fourier Bases b-value �Kmse

�Ktest

t1 N1 T11 N1 0.02 0.5 1
� = 1; � = 0

� = �0:6 0.036 0.053 0.042 0.053 0.014 0.032 0.032 37.85 26.02
� = �0:3 0.038 0.055 0.042 0.051 0.027 0.042 0.041 42.54 28.59
� = 0 0.049 0.061 0.052 0.062 0.050 0.048 0.048 48.60 43.88
� = 0:3 0.062 0.081 0.067 0.083 0.102 0.054 0.056 28.74 29.73
� = 0:6 0.055 0.101 0.074 0.109 0.207 0.070 0.070 13.45 12.22
� = 0:9 0.068 0.192 0.120 0.232 0.538 0.161 0.150 5.04 4.52

�(t) = 1; � = 0:5
� = �0:6 0.033 0.052 0.038 0.049 0.012 0.030 0.030 37.84 26.02
� = �0:3 0.035 0.054 0.038 0.048 0.022 0.038 0.038 42.45 28.55
� = 0 0.044 0.059 0.049 0.058 0.048 0.045 0.045 48.565 43.59
� = 0:3 0.057 0.079 0.063 0.082 0.098 0.055 0.054 29.01 30.07
� = 0:6 0.052 0.104 0.072 0.112 0.218 0.070 0.068 13.57 12.35
� = 0:6 0.063 0.204 0.120 0.239 0.544 0.164 0.157 5.07 4.54

�(t) = (1; t)0 ; � = 0
� = �0:6 0.035 0.055 0.049 0.063 0.013 0.035 0.033 37.82 26.02
� = �0:3 0.035 0.054 0.042 0.053 0.028 0.044 0.043 42.33 28.43
� = 0 0.043 0.056 0.048 0.057 0.052 0.050 0.049 48.71 43.37
� = 0:3 0.055 0.074 0.061 0.079 0.098 0.057 0.056 29.83 30.96
� = 0:6 0.045 0.088 0.060 0.102 0.205 0.067 0.068 14.12 12.93
� = 0:9 0.029 0.119 0.069 0.173 0.438 0.091 0.094 5.59 4.88

� = (1; t)0 ; � = 0:5
� = �0:6 0.037 0.058 0.051 0.065 0.017 0.037 0.036 37.81 26.02
� = �0:3 0.039 0.058 0.046 0.058 0.030 0.047 0.046 42.25 28.40
� = 0 0.047 0.062 0.053 0.065 0.057 0.055 0.053 48.69 43.10
� = 0:3 0.062 0.081 0.066 0.087 0.111 0.062 0.061 30.09 31.31
� = 0:6 0.047 0.095 0.066 0.110 0.208 0.073 0.071 14.25 13.06
� = 0:9 0.032 0.126 0.073 0.186 0.439 0.099 0.096 5.62 4.92

Note: The t test, denoted by �t�, is based on t critical values. The normal tests, denoted by
�N�, are based on standard normal critical values. The nonstandard �xed-K test, denoted by
�T1�, is based on simulated nonstandard critical values. �Kmse and �Kopt are the averages of the
MSE-optimal K and the test-optimal K developed in this paper.
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Figure 2: Size-adjusted power of the tests with di¤erent variance estimators and basis functions
for n = 9, T = 10 in the presence of linear trends but no cross sectional dependence.
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Figure 3: Size-adjusted power of the tests with di¤erent variance estimators and basis functions
for n = 64, T = 100 in the presence of linear trends but no cross sectional dependence.
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Table 4: Rejection rates of di¤erent 5% tests based on CPS data for years 1979-1999.

t1 t2 t3 t4 t5 t6 t0LS t1LS
No e¤ect 0.665 0.400 0.455 0.215 0.070 0.055 0.290 0.055
2% e¤ect 0.830 0.730 0.660 0.510 0.350 0.285 0.535 0.455

Note: Tests t1 and t2 are based on the individual-level data. The other tests are based on the
aggregate data with 50 pseudo-states and 21 years. Tests t0LS and t

1
LS are our proposed t tests

when the DD regression contains no trend and a linear trend, respectively.
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9 Appendix of Proofs

Proof of Lemma 3.1. Part (a). We have
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Combining the above results yields Lemma 3.1(a).
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35 ;
where the last line follows from some simple calculations.
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In the above expression for S21; the time e¤ect ��zt has been cancelled out.
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we have
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Proof of Lemma 3.2. Using Lemma 3.1 and Assumption 3.4(b), we have
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as desired.

Proof of Theorem 3.1. (a) We have
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Then the �rst term in (43) satis�es
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The second term in (43) satis�es
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Under the piecewise monotonicity condition in Assumption 3.5, we have, for some �nite �; we
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where the op (1) term in the �rst inequality re�ects the case when t and t+ 1 belong to di¤erent
partitions and �(�)j�takes �+�or ���depending on whether �k (t=T ) is increasing or decreasing
on the interval [IjL; IjU ]: Therefore, we have
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Combining this with (44) yields
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Part (a) follows immediately.
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�
t :

To prove Theorem 5.1, we need to �rst prove the following lemma, which establishes the asymp-
totic bias and variance of �̂2:
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9 in Hannan (1970, p. 280). By de�nition, we have

�̂k =
1p
T

TX
t=1

�k;H;tê
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where CH is de�ned in (29);
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where the third equality follows from the Cauchy inequality. Similarly, we can show that
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The above representation is in the same format as what we would obtain in the case of kernel
LRV estimation.
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2 �2e;p <1 under Assumption 5.1(a), we have
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= �
T+1X

p=�T+1

�
1� !KT

� p
S

���
jpj
S

�q �
jpj
S

�q
�2e;p +O

�
1

T

�

= �
T+1X

p=�T+1

h
1� 1

K

PK
k=1 !k;T

�
1
K
p
S

�i�
jpj
S

�q �
jpj
S

�q
�2e;p +O

�
1

T

�

= lim
(K;S)!1

h
1� 1

K

PK
k=1 !k;T

�
1
KS

�i�
1
S

�q 1

Sq
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;

where !(q)(0) is de�ned according to

!(q)(0) = lim
(K;S)!1

1

K1+q

KX
k=1

�
1� !k

�
1
KS

���
1
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�q .

In addition, q = 1 if !(1)(0) 6= 0; and q = 2 otherwise.
We now show that !(1)(0) = 0. It is easy to see that

!(1)(0) = lim
K!1

1

K2

KX
k=1

!
(1)
k (0) ;

where

!
(1)
k (0) = lim

&!0+

1� !k (&)
&

.

Denote _�k (s) = d�k (s) =ds: Noting that

��k (s� &) = �k (s� &)� ck1 (s� & � �)

= �k (s)� _�k (s) & � ck1 (s � �) + ck1 f� � s < � + &g+ o (&)
= ��k (s)� [ _�k (s) & � ck1 fs 2 [�; � + &)g] + o (&) ;
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as & ! 0+, we have

!
(1)
k (0) = lim
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1� 1
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&
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�
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&
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&
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where
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Therefore,
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2 +
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0
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h
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So,
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Using ��k (r) =
PK
j=1�

H
j (r)R

(j;k)
1 ; we have
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KX
k=1

KX
j=1

�Hj (0)R
(j;k)
1

KX
i=1

�Hi (0)R
(i;k)
1

=
KX
i=1

KX
j=1

�Hi (0)�
H
j (0)

KX
k=1

R(i;k)1 R(j;k)1
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H
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Similarly,
KX
k=1

��k (1)
2 = �HF (1)

0
�Z 1

0
�HF (r) �

H
F (r)

0 dr

��1
�HF (1) :

Using (49) and Assumption 5.1 (d), we have
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Similarly,
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��HF (1)2� = O (K) :

Therefore,
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We proceed to evaluate !(2)(0): Letting & = 1= (KS) ; we have
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:

Using the assumption that �k (�) is twice continuously di¤erentiable, as & ! 0+ we have
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In the proof of !(1)(0) = 0, we have e¤ectively shown that
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and so
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where the last equality follows from the rate condition in the lemma. As a consequence, we have
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Using (47), (48), and Assumption 5.1(d), we have�����
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and by the same argument as in (47) we have
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where we have used (49). The above bounds imply that
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Hence
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It now su¢ ces to compute the above limit. We haveZ 1

0
�k (s) ��k (s) ds =
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Combining the above results, we can conclude that
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as desired.

Proposition 9.1 Suppose we use the Fourier basis functions �2j�1(s) =
p
2 cos (2�js) and

�2j(s) =
p
2 sin (2�js) for j = 1; : : : ;K=2 and � (r) is a vector of polynomial trend functions.

Then !(2)(0) = �2=6.

Proof of Proposition 9.1. Letting m (r) :=
�
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�0
, we have
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Next, we evaluate
R 1
0 m (r) �k (r) dr: The absolute value of the �rst element is of the form����Z 1
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:

In the above, the absolute value and inequality should be understood elementwise. Therefore,�����Z 1
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k
(51)

for some constant C:
Let ~# = (~#1; : : : ; ~#K)0 2 RK�(d�+1): Then�Z 1
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Proof of Theorem 5.1 . Part (a). We �rst establish a moment bound for �̂2=�2GLS: Under
Assumption 5.1(a), we have

p
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Using Lemma 9.1, we have
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Then, by applying (52) and (50), we have
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Using this, we have
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�=2
K

!

= 1�G((t�=2K )2)� K2 �B
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�=2
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K )2
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�=2
K )2)(t

�=2
K )4 + o

�
1

K

�
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�
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T 2

�
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�
1

T

�
: (53)

On the other hand, we have

(t
�=2
K )2 = ��1 �

1

K

G00(��1 )

G0(��1 )
(��1 )

2 + o

�
1

K

�
: (54)
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See equation (14) in Sun (2011). Combining (53) and (54) yields
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�
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�
+O
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T

�
:

Part (b). Under H1(�2); we have
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p
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Therefore, we have
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p
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where we have used the result that

G00�2
�
��p
�
� G00 (��1 )

G0 (��1 )
G0�2

�
��p
�
=

�2

2��1
G03;�2 (�

�
1 ) ;

which follows from simple calculations. For details of the calculation, see the proof of Theorem
5 in Sun (2011).
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