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Summary  
 
 
This paper derives nonparametric sufficient (and with rich data, necessary) conditions for 
the existence of reference-dependent preferences that can rationalize some patterns of 
consumer demand behavior that do not allow a neoclassical rationalization. 
 
 
We build on Kőszegi and Rabin’s (2006; “KR”) parametric implementation of Kahneman and 
Tversky’s (1979; “KT”) and Tversky and Kahneman’s (1991) theory of reference-dependent 
preferences. 
 
 
KR’s preferences respond to levels of consumption, as in neoclassical consumer theory, 
and changes in consumption relative to a reference point, as in KT’s theory.  
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We show that unless KT’s and KR’s notion of “sensitivity” is constant (Tversky and 
Kahneman’s “sign-dependence”; KR’s assumption A3′) and reference points are precisely 
modelable or observable (henceforth “modelable”), the hypothesis of reference-dependent 
preferences has virtually no useful nonparametrically refutable implications. 
 
 
That is the grain of truth in the common belief that allowing preferences to be reference-
dependent destroys the parsimony of neoclassical consumer theory.   
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However, we also show that with constant sensitivity and modelable reference points, the 
model does have useful nonparametrically refutable implications, which we characterize. 
 
 
Our characterization relaxes two strong functional-structure assumptions KR maintained: 
 
●         That the preferences that determine consumer demand are additively separable across 

 goods 
 
●             That  those preferences’  marginal rates of substitution satisfy particular knife-edge 

 constraints on how they vary with the reference point 
 

 
Both of the relaxed restrictions are strongly violated in our empirical illustration.  
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We illustrate our characterization by revisiting Farber’s (2005, 2008) and Crawford and 
Meng’s (2011; “CM”) empirical analyses of cabdrivers’ labor supply, using Farber’s data. 
 
We control for neoclassical and reference-dependent models’ different flexibilities using 
Beatty and Crawford’s (2011, pp. 2786-87) proximity-based variant of Selten and 
Krischker’s (1983) and Selten’s (1991) nonparametric measure of predictive success, which 
judges a model’s flexibility by how likely random data are to be consistent with it. 
 
 
 
Relaxing KR’s functional structure assumptions greatly increases predictive success.  
 
 
For a substantial number of Farber’s drivers, a relaxed reference-dependent model has a 
higher measure of predictive success than a comparably relaxed neoclassical model. 
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Empirical Background  
 
Reference-dependent consumer theory has played an important role in empirical analyses 
of workers’, consumers’, and investors’ choice behavior since Camerer et al.’s (1997) 
analysis of the daily labor supply of New York City cabdrivers. 
 
 
A neoclassical model of labor supply is analogous to a model of consumer demand for 
earnings and leisure. 
 
It therefore predicts a positive elasticity of hours worked with respect to the wage unless 
there are very large income effects. 
 
 
But Camerer et al., taking drivers’ earnings per hour as analogous to a wage, estimate a 
strongly negative elasticity. 
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To explain the negative elasticity, Camerer et al. propose a model in which drivers have 
daily earnings targets like KT’s reference points, treated econometrically as latent variables. 
 
 
Experiments and analyses of field data suggest that most people are loss-averse—more 
sensitive to changes below their reference points (“losses”) than above them (“gains”).  
 
This creates kinks in preferences that make a driver’s optimal earnings tend to bunch 
around his earnings target, thus working less on days when earnings per hour are high. 
 
 
Depending on the details, such bunching can yield a negative overall wage elasticity of 
hours, despite the positive incentive effect of anticipated higher wages. 
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Farber (2005, 2008) analyzes a newer dataset on New York City cabdrivers, following 

Camerer et al. in allowing earnings targeting with targets treated as latent variables. 

In his data, as in Camerer et al.’s, a reference-dependent model fits better than a 
neoclassical model, and his estimates of the wage elasticity are again negative. 
 
But his estimates of the earnings targets are unstable, which he argues precludes a useful 
reference-dependent model of drivers’ labor supply.  
 
 
Farber (2015) analyzes a much larger dataset on New York City cabdrivers, again 
concluding that reference-dependence is not useful in explaining labor supply. 
 
 
 
In each case Farber concludes that most of his drivers are irrational. E.g. Farber (2008): 
 
“This [earnings-targeting] is clearly nonoptimal from a neoclassical perspective, since it 
implies quitting early on days when it is easy to make money and working longer on days 
when it is harder to make money. Utility would be higher by allocating time in precisely the 
opposite manner.”  
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Inspired by Camerer et al.’s and Farber’s analyses, KR bring KT’s theory of reference-
dependent preferences closer to economic applications. 
 
KR assume rationality but expand the domain of preferences, allowing preferences to 
respond to changes in consumption, relative to a reference point, as well as levels. 
 
 
Expanding the domain of preferences is a slippery slope, but the slippage here is disciplined 
by the idea of reference-dependence and supported by a large body of evidence.  
 
 
● KR’s utility function has separate, additively separable components of neoclassical utility 
of consumption levels and reference-dependent “gain-loss” utility of consumption changes 
 
● Unlike Camerer et al. and Farber, KR allow reference-dependence for all goods 
 
● KR close their model by setting reference points equal to their rational expectations 
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Crawford and Meng (2011; “CM”) use KR’s model to reconsider Farber’s econometric 
analyses, using Farber’s (2005, 2008) data. 
 
As in KR’s theoretical analysis and all previous empirical work on this topic, CM assume: 
 
●                     The utility function is additively separable across consumption and gain-loss utility 
 
●                  Preferences have constant sensitivity (Tversky and Kahneman’s 1991 “sign- 

 dependence”; KR’s assumption A3'): 

A reference point divides consumption space into gain-loss regimes, such as “earnings 
loss, hours gain” in labor supply. With constant sensitivity preferences over consumption 
bundles must be the same throughout a regime but may vary freely across regimes.  

 
● Utility is continuous, with gain-loss utility determined by the good-by-good differences 

between realized and reference consumption utilities  
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Econometrically, CM model KR’s rational-expectations reference points via natural sample 

proxies, instead of treating them as latent variables as Camerer et al. and Farber did.  

This avoids the instability of Farber’s estimated earnings targets, and appears to yield a 
useful reference-dependent model of drivers’ labor supply. 
 
For anticipated changes in earnings and hours, gain-loss utility drops out of the model, 
which then coincides with a neoclassical model, in which higher wages increase labor 
supply. But for unanticipated changes, loss aversion creates kinks in preferences that allow 
a rationality-based explanation of Camerer et al.’s and Farber’s negative wage elasticities. 
 
CM’s Figure 1: 
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Despite reference-dependent models’ successes in empirical analyses of workers’, 
consumers’, and investors’ choice behavior, several factors have limited their appeal. 
  
 
Because they expand the domain of preferences, some researchers doubt that they yield 
any testable implications—Samuelson’s (1947) “meaningful theorems”.  
 
 
Such doubts are exacerbated when reference points are not modeled or observed. 
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Further, empirical implementations have relied on parametric structural assumptions that 
are not directly supported by theory or evidence, and are not entirely natural: 
 
●                      KR’s assumption that the sum of consumption and gain-loss utility that determines 

 consumer demand is additively separable across goods 
 
● KR’s constant-sensitivity restrictions on how that sum’s marginal rates of substitution 

vary across gain-loss regimes, as in CM’s Table 1 for the two-good case: 
 

 

 

● Strong (though standard) assumptions regarding the forms of utility functions 
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A Nonparametric Model of Reference-dependent Preferences 
 
Our model of reference-dependent preferences follows KR’s and CM’s models and 
encompasses Camerer et al.’s and Farber’s, but without imposing KR’s functional structure 
assumptions or Farber’s and CM’s functional form assumptions. 
 
Like KR we maintain rationality, while expanding the domain of preferences to include an 
additively separable component of gain-loss utility as well as consumption utility. 
 
Our theory applies to a single consumer or (as in most empirical studies) a group assumed 
to have homogeneous preferences, but we’ll speak of a single consumer.  
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The consumer is a price-taker, who chooses among consumption bundles 𝒒 ∈ ℝ+
𝐾, where 

goods are indexed k = 1,…, K. 
 

Preferences are represented by a family of utility functions 𝑢(𝒒, 𝒓), where 𝒓 ∈ ℝ+
𝐾 is an 

exogenous reference point, conformable to a K–good consumption bundle. 
 
𝑢(𝒒, 𝒓) is continuous, increasing in 𝒒, and decreasing in 𝒓. 
 
 

This is as flexible as a general increasing function of levels 𝒒 and changes 𝒒 − 𝒓.  
 
It nests the neoclassical case where preferences respond only to levels of consumption; 
KT’s case where preferences respond only to changes; and Farber’s, KR’s, and CM’s cases 
where preferences respond to both.  
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Index observations t = 1,…,T.  
 
 

When reference points are unmodelable (and unobservable), the data are prices and 
quantities {𝒑𝑡 , 𝒒𝑡}𝑡=1,…,𝑇 and hypothetical reference points are denoted {𝒓𝑡}𝑡=1,...,𝑇.  

 
 

When reference points are modelable (or observable), the data are prices, quantities, and 
reference points {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,...,𝑇.  

 
 
Goods are sometimes denoted as scalars indexed by subscripts: for k = 1,…, K, 𝒒 ≡
(𝑞1, … , 𝑞𝐾); and for t = 1,…, T, 𝒒𝒕 ≡ (𝑞𝑡

1, … , 𝑞𝑡
𝐾), with analogous notation for 𝒑, 𝒑𝒕, 𝒓, 𝒓𝒕. 
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A reference point divides commodity space into gain-loss regimes, such as “earnings-loss 
and hours-gain” in labor supply. 
 
Constant sensitivity (Tversky and Kahneman’s 1991 “sign-dependence”; KR’s A3') requires 
preferences over consumption bundles to be the same for all bundles in a gain-loss regime 
but leaves them free to vary across regimes. (The general case is “variable sensitivity”.) 
 

Figure 1. A set of regime maps with constant sensitivity 
and the associated global map for alternative reference points 

 

 
(a)                                                                                 (b) 

 

Each regime map is defined for the entire space: different r’s “switch on” different maps.  
 
With 𝑢(𝒒, 𝒓) decreasing in 𝒓, its level varies with 𝒓 even though a regime’s map is constant. 
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Neoclassical Rationalization 
 
Our analysis builds on Afriat’s (1967), Diewert’s (1973), and Varian’s (1982) nonparametric 
analyses of the neoclassical case where preferences respond only to consumption levels. 
 
They show that the demand behavior of a price-taking consumer can be rationalized by the 
maximization of a nonsatiated neoclassical utility function over levels if and only if the data 
satisfy the Generalized Axiom of Revealed Preference (“GARP”). 
 
DEFINITION 2: [Generalized Axiom of Revealed Preference (“GARP”).] 𝒒𝒔𝑅𝒒𝒕 implies 𝒑𝑡 ⋅
𝒒𝑡 ≤ 𝒑𝑡 ⋅ 𝒒𝑠, where R indicates that there is some sequence of observations 𝒒ℎ, 𝒒𝑖 , 𝒒𝑗 , … , 𝒒𝑡 

such that 𝒑ℎ ⋅ 𝒒ℎ ≥ 𝒑ℎ ⋅ 𝒒𝑖, 𝒑𝑖 ⋅ 𝒒𝑖 ≥ 𝒑𝑖 ⋅ 𝒒𝑗 , … , 𝒑𝑠 ⋅ 𝒒𝑠 ≥ 𝒑𝑠 ⋅ 𝒒𝑡. 

 
This reduces the theory’s testable implications to a set of inequality restrictions on the 
observable, finite data, rather than shape restrictions on objects that are not directly 
observable like indifference curves, demand curves, or labor supply curves. 
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AFRIAT’S THEOREM: [Afriat 1967, Diewert 1973, Varian 1982.] The following 
statements are equivalent: 

 

[A] There exists a utility function 𝑢(𝒒) that is continuous, non-satiated, and concave, 

and that rationalizes the data  {𝒑𝑡 , 𝒒𝑡}𝑡=1,...,𝑇.  

 
[B] There exist numbers {𝑼𝑡 , 𝜆𝑡 > 0}𝑡=1,…,𝑇 such that 

 
(1)            𝑈𝑠 ≤ 𝑈𝑡 + 𝜆𝑡𝒑𝑡 ⋅ (𝒒𝑠 − 𝒒𝑡) for all 𝑠, 𝑡 ∈ {1, … , 𝑇} 
 

[C] The data  {𝒑𝑡 , 𝒒𝑡}𝑡=1,...,𝑇 satisfy GARP. 

 
[D] There exists a non-satiated utility function 𝑢(𝒒) that rationalizes the data 

{𝒑𝑡 , 𝒒𝑡}𝑡=1,...,𝑇.  
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In the proof of Afriat’s Theorem, [B]’s inequalities (1) hold with equality for at least one 𝑠 ≠ 𝑡. 
This yields canonical “Afriat” rationalizing preferences and utility function.  

DEFINITION 3: [Afriat preferences and utility function.] For data {𝒑𝑡 , 𝒒𝑡}𝑡=1,…,𝑇 that satisfy 

GARP, or equivalently condition [B] of Afriat’s Theorem, the Afriat preferences are those 
represented by the Afriat utility function 𝑢(𝒒) = 𝑚𝑖𝑛𝑡∊{1,…,𝑇}{𝑈𝑡 + 𝜆𝑡𝒑𝑡 ⋅ (𝒒 − 𝒒𝑡)}, where the 

𝑈𝑡 and 𝜆𝑡 are those that satisfy the binding condition [B] inequalities (1) in Afriat’s Theorem. 
 
Figure 2 illustrates Afriat preferences for a three-observation dataset that satisfies GARP. 
Figure 2a shows observations’ budget sets and consumption bundles. Figure 2b shows the 
Afriat indifference map, whose marginal rates of substitution are determined by the budget 
lines. The Afriat utility function is piecewise linear, continuous, non-satiated, and concave. 

Figure 2. Afriat preferences for data that satisfy GARP 

 

(a)                               (b) 
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With finite data the Afriat preferences are only one of many possibilities for a rationalization 
(Varian 1982, Figure 3, Fact 4). 
 

 
 
However, their reference-dependent generalization plays a central role in our analysis. 
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Reference-dependent Rationalization 
 
A neoclassical nonparametric analysis makes essential use of rationality. 
 
 
We can adapt its methods because KR’s theory of reference-dependent preferences 
maintains rationality in a larger domain. 
 
 
Even so, our analysis raises new issues because the consumer chooses levels and 
changes bundled and priced together, and his choices can influence reference-dependent 
preferences by changing how consumption relates to the reference point. 
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The existence of a reference-dependent rationalization depends on two factors: 
 

● Whether reference points are unmodelable (as assumed in Camerer et al. and Farber) or 
modelable (as assumed in KR and CM) 

 
●                   Whether sensitivity is constant (as assumed in Farber, sometimes KR, and CM) or 

 variable  
 
 
We now consider these cases in turn. 
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DEFINITION 4: [Rationalization with unmodelable reference points.] Reference-dependent 
preferences, an associated utility function 𝑢(𝒒, 𝒓), and hypothetical reference points 
{𝒓𝑡}𝑡=1,…,𝑇, rationalize the data {𝒑𝑡 , 𝒒𝑡}𝑡=1,…,𝑇 if and only if 𝑢(𝒒𝑡 , 𝒓𝑡) ≥ 𝑢(𝒒, 𝒓𝑡) for all 𝒒 and 𝒕 

such that 𝒑𝑡 ∙ 𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡. 
 

PROPOSITION 1: [Rationalization with unmodelable reference points via preferences with 

variable or constant sensitivity.] For any data {𝒑𝑡 , 𝒒𝑡}𝑡=1,…,𝑇 with unmodelable reference 

points, there exist reference-dependent preferences and an associated utility function 
𝑢(𝒒, 𝒓) that are continuous, increasing in 𝒒, and decreasing in 𝒓, and a sequence of 

hypothetical reference points {𝒓𝑡}𝑡=1,...,𝑇, that rationalize the data. 

 
The proof hypothesizes a reference point for each observation that coincides with its 
consumption bundle, and preferences that with those reference points put each 
observation’s bundle at the kink of an approximately Leontief indifference curve.  
 
That the rationalization works entirely by varying reference points across observations 
shows that the parsimony of reference-dependent consumer theory depends on modeling 
(or observing) reference points. 
 
Analyses that treat reference points as latent variables may be as heavily influenced by the 
constraints they impose in estimating reference points as by reference-dependence per se. 
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DEFINITION 5: [Rationalization with modelable reference points.] Reference-dependent 
preferences and an associated utility function 𝑢(𝒒, 𝒓) rationalize the data {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 

with modelable reference points if and only if 𝑢(𝒒𝑡 , 𝒓𝑡) ≥ 𝑢(𝒒, 𝒓𝑡) for all 𝒒 and 𝒕 such that 𝒑𝑡 ∙
𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡 . 
 
PROPOSITION 2: [Rationalization with modelable reference points via preferences with 

variable sensitivity.] For any data {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 with modelable reference points, there 

exist reference-dependent preferences and an associated utility function 𝑢(𝒒, 𝒓) that for 
each observation t and reference point 𝒓𝑡, are continuous and strictly increasing in 𝒒 and 
that rationalize the data, if and only if every subset of the data whose observations share 
the same reference point satisfies GARP. 
 
Proposition 2 shows that with modelable reference points and variable sensitivity, the 
hypothesis of reference-dependent preferences is nonparametrically refutable only via 
violations of GARP within subsets of observations that share the same reference point. 

The proof adapts the standard proof of Afriat’s Theorem, showing that variable sensitivity 
allows preferences that rationalize choices in any subsets of the data whose observations 
share the same reference point can be extended to rationalize the entire dataset. 

Thus, reference-dependence with variable sensitivity adds nothing to the neoclassical 
model in the way of refutable implications. 
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Characterizing Reference-dependent Preferences That Satisfy Constant 
Sensitivity and Continuity 

 
Assuming modelable reference points and constant sensitivity, we now characterize 
preferences and utility functions that are continuous even across gain-loss regimes.  
 

Let G(𝒒, 𝒓) be a vector of binary numbers of length K with kth component 1 if 𝑞𝑘 ≥ 𝑟𝑘 and 0 
otherwise.  
 
The gain-loss regime indicator 𝐼𝒈(𝒒, 𝒓) = 1 if 𝒈 = 𝐺(𝒒, 𝒓) and 0 otherwise; and the gain-loss 

indicators 𝐺+
𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡

𝑘 ≥ 𝑟𝑡
𝑘 and 0 otherwise and 𝐺−

𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡
𝑘 < 𝑟𝑡

𝑘and 0 
otherwise. 
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PROPOSITION 3: [Preferences and utility functions with continuity and constant sensitivity.] 
Suppose there are K ≥ 2 goods, with reference-dependence active for all K goods, and that 
a reference-dependent preference ordering and an associated utility function have additively 
separable consumption utility and gain-loss utility components. Then the ordering satisfies 

constant sensitivity if and only if an associated utility function 𝑢(𝒒, 𝒓) can be written, for 

some consumption utility function 𝑈(∙) and gain-loss regime utility functions 𝑉𝒈(∙,∙) and 𝑣𝒈(∙), 

as 
 
(5)               𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ 𝐼𝒈(𝒒, 𝒓)𝑉𝒈(𝑣𝒈(𝒒),𝒈 𝒓). 

 

Suppose further that the induced preferences over 𝒒 are differentiable in the interior of each 
regime, with marginal rates of substitution that differ across regimes throughout some open 
neighborhood of commodity space. Then the ordering satisfies constant sensitivity and 

continuity if and only if it is representable by a utility function 𝑢(𝒒, 𝒓) that can be written, for 

some consumption utility function 𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 

𝑣−
𝑘(∙) (with the indicator functions 𝐺+

𝑘(∙,∙) and 𝐺−
𝑘(∙,∙) doing the work of 𝐼𝒈(∙,∙)), as 

 

(6)  𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}]. 

Conversely, any combination of induced regime preferences over 𝒒 is consistent with 
continuity and constant sensitivity for some gain-loss utility functions. 
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Proposition 3 derives, from continuity, KR’s and others’ functional-structure assumption that 
gain-loss utility is determined, additively separably across goods, by the good-by-good 
differences between realized and reference consumption utilities. Informally, 
 

(5)                                                                                                           𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ 𝐼𝒈(𝒒, 𝒓)𝑉𝒈(𝑣𝒈(𝒒),𝒈 𝒓). 

 

is continuous if and only if for any 𝒒, 𝒓, and i with 𝑞𝑖 = 𝑟𝑖 and any gain-loss regimes 𝒈 and 

𝒈′ that differ in the gain-loss status of good 𝑖 
 

(7)                                                                                                                                                                                                                                         𝑉𝒈(𝑣𝒈(𝒒), 𝒓) = 𝑉𝒈′(𝑣𝒈′(𝒒), 𝒓). 

 
A change in one good’s consumption can change the gain-loss regime, which unless each 

regime’s 𝑉𝒈(𝑣𝒈(𝒒), 𝒓) is additively separable in the components of 𝒒, can violate (7). 

 
Unless gain-loss utility is determined by the good-by-good differences between realized and 
reference consumption utilities as in 
 

(6)                                                             𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}] 

 

changing 𝑞𝑘 and 𝑟𝑘 with 𝑟𝑘 = 𝑞𝑘 can violate (7). 
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Proposition 3 allows consumption utility, and thus the sum of consumption and gain-loss 
utility that determines consumer demand, not to be additively separable across goods. 
 
Proposition 3 also allows the preferences over consumption bundles induced by 
consumption plus gain-loss utility to vary as freely as possible across gain-loss regimes 
while preserving continuity, thereby relaxing the knife-edge cross-regime links between 
marginal rates of substitution implied by KR’s assumption that consumption and gain-loss 
utility have the same additively-separable-across-goods functional form. CM’s Table 1: 
 

 

 
Thus Proposition 3 unbundles KR’s functional-structure assumptions from their strong 
assumptions of additive separability and on marginal rates of substitution.  
 
Proposition 3’s unbundling could be used in a structural or nonparametric analysis.     
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Recall that with 𝑢(𝒒, 𝒓) decreasing in 𝒓, its level varies with 𝒓 even within a gain-loss regime. 
 
Proposition 3’s equation (6) 
 

(6)                            𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}]. 

 
assigns each gain-loss regime g a “loss cost” (the parts depending on 𝒓), incurred whenever 

any bundle 𝒒 in regime g is chosen but otherwise independent of 𝒒 within the regime. 
 
A full rationalization with observable reference points and constant sensitivity depends on 

specifying loss costs as a function of 𝒒 and 𝒓, because they determine a consumer’s 
incentive to “defect” from an observation’s consumption bundle to some bundle in its budget 
set in another gain-loss regime, with possibly different preferences. 
 
Although a consumer’s choices do not reveal loss costs directly, Propositions 4 and 5 use 
Proposition 3’s characterization to show that they can be inferred from the sum of 
consumption and gain-loss utility that rationalize his choices within each gain-loss regime.  
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Rationalization with Modelable Reference Points and Constant Sensitivity 
 
Proposition 4 translates the requirements for a rationalization with modelable reference 
points and constant sensitivity into the language of Proposition 3, showing that necessary 
and sufficient conditions for a rationalization are the existence of continuous, strictly 
increasing consumption utility function and gain-loss good-by-good component utility 
functions that preclude, for any observation and consumption bundle: 
 
●  defections from its bundle to any bundle in the same gain-loss regime in its budget set 

These conditions parallel the inequalities in Afriat’s Theorem, while imposing the restriction 
that the good-by-good component utility functions are constant across gain-loss regimes. 
  
(Thus, GARP for each regime’s observations is necessary for a rationalization, but not 
sufficient even if the next group of conditions are satisfied.)  
 
and  
 
● defections from its bundle to any bundle in another regime in its budget set 
 
 



32 

 

 
 

Let 𝛤(𝑔; 𝒓)} be the set of 𝒒 in regime g for 𝒓. Let 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡ {𝑡 ∊ {1, … , 𝑇}│𝒒𝑡 ∊

𝛤(𝑔; 𝒓𝑡)} be the set of 𝑡 with 𝒒𝑡 in regime g for 𝒓𝑡. 
 
 
PROPOSITION 4: [Rationalization with modelable reference points via preferences and 
utility functions with constant sensitivity.] Suppose that reference-dependent preferences 
and an associated utility function are defined over K ≥ 2 goods, that reference-dependence 
is active for all K goods, that the preferences satisfy constant sensitivity and are continuous, 
and that the utility function satisfies Proposition 3’s (6). Consider data {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 with 

modelable reference points. Then the statements [A] and [B] are equivalent: 
 
[A] There exists a continuous reference-dependent utility function 𝑢(𝒒, 𝒓) that satisfies 

constant sensitivity; is strictly increasing in 𝒒 and strictly decreasing in 𝒓; and that 

rationalizes the data {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 .  
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[B] Each gain-loss regime’s data satisfy GARP within the regime; and there is some 
combination of preferences over consumption bundles, with continuous, strictly increasing 

consumption utility function 𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), 

such that, for any regime 𝑔 and any pair of observations 𝜎, 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) (with the 

indicator functions 𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) again doing the work of 𝐼𝒈(∙,∙)), 

 

(10)                𝑈(𝒒𝜎) + ∑ [𝐺+
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣+

𝑘(𝑞𝜎
𝑘) + 𝐺−

𝑘(𝒒𝜎 , 𝒓𝜏)𝑣−
𝑘(𝑞𝜎

𝑘)𝑘 ] 
          ≤ U(𝒒𝜏) + ∑ [𝐺+

𝑘(𝒒𝜏, 𝒓𝜏)𝑣+
𝑘(𝑞𝜏

𝑘) + 𝐺−
𝑘(𝒒𝜏, 𝒓𝜏)𝑣−

𝑘(𝑞𝜏
𝑘)]𝑘  + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏) 

 

and for each observation {𝒑𝜏, 𝒒𝜏, 𝒓𝜏}𝑡=1,…,𝑇 with 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) and each 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) 

with 𝑔′ ≠ 𝑔 for which 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏, 
 

(11)             𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝜏

𝑘)} + 𝐺−
𝑘(𝒒, 𝒓𝜏){𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}] 

 ≤ 𝑈(𝒒𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑞𝜏
𝑘) − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉){𝑣−
𝑘(𝑞𝜏

𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}]𝑘 . 
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The proof operationalizes conditions (11) by taking the rationalizing regime preferences 

represented by 𝑈(∙) and the 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), which satisfy (10), and using them to write the 

condition preventing defections from the bundle of observation 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) in 

regime 𝑔 to a bundle 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) in regime 𝑔′ ≠ 𝑔 for 𝒓𝜏 with 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏: 
 
      𝑢(𝒒, 𝒓𝜏) − 𝑈(𝒓𝜏) ≡ 𝑈(𝒒) + ∑ [𝐺+

𝑘(𝒒, 𝒓𝜏){𝑣+
𝑘(𝑞𝑘)𝑘 − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒, 𝒓𝜏𝜏
){𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}] − 𝑈(𝒓𝜏) 

(12) ≡ {𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝝉)𝑣+

𝑘(𝑞𝑘)𝑘 + 𝐺−
𝑘(𝒒, 𝒓𝝉)𝑣−

𝑘(𝑞𝑘)]} − {𝑈(𝒓𝜏) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝝉){𝑣+

𝑘(𝑟𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒, 𝒓𝝉)𝑣−
𝑘(𝑟𝜏

𝑘)]} 

      ≤ {𝑈(𝒒𝜏) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉)𝑣+

𝑘(𝑞𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉)𝑣−
𝑘(𝑞𝜏

𝑘)]} − {𝑈(𝒓𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑟𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉)𝑣−
𝑘(𝑟𝜏

𝑘)]} 

 
(12)’s central inequality can then be rearranged to yield (11). 
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Figures 3 and 4 illustrate Proposition 4. 

 
In each case the entire dataset violates GARP, with observation 1’s consumption bundle 
chosen in 1’s budget set over observation 2’s bundle, and vice versa. 
 
In each case each regime’s single observation trivially satisfies GARP within its regime. 
 
And in each case the observations’ reference points put their bundles in different gain-loss 
regimes, so constant sensitivity allows different preferences for each observation. 
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Figure 3a depicts Afriat rationalizing regime preferences and Figure 3b depicts non-Afriat 
rationalizing regime preferences. With condition (11) satisfied, a rationalization is possible. 

 
 

Figure 3. Rationalizing data that violate GARP via reference-dependent preferences with 
constant sensitivity (solid lines for loss maps, dashed lines for gains maps) 

 
(a)                                                            (b) 
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In Figure 4a Afriat rationalizing regime preferences do not satisfy condition (11). Figure 4b 
shows more generally that there can be no choice of rationalizing regime preferences for 
which (11) is satisfied, so a rationalization, Afriat or not, is not possible. 

Figure 4. Failing to rationalize data that violate GARP via reference-dependent preferences 
with constant sensitivity (solid lines for loss maps, dashed lines for gains maps) 

 

(a)                                  (b) 
 
The difference between Figure 3’s and Figure 4’s examples can be understood in terms of 
loss aversion. The change in Afriat preferences across regimes in Figure 3a is consistent 
with loss aversion, but not the change in Figure 4a. 
 
Online Appendix A shows that if the rationalizing regime preferences (Afriat or not) satisfy 
loss aversion, Proposition 4’s conditions (11) are automatically satisfied; but that loss 
aversion is not quite necessary for a rationalization.  
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As already noted, Proposition 4’s necessary and sufficient conditions for a rationalization 
are not directly applicable because with finite data there is a normally range of preferences 
that rationalize a gain-loss regime’s data (Varian 1982, Fact 4) and Proposition 4’s condition 
[B] rests on an unspecified choice among those rationalizing regime preferences. 
 
Finding a choice that precludes beneficial cross-regime defections involves complex trade-
offs, because preferences that reduce the gain from defecting from bundles in a regime 
increase the gain from defecting to bundles in the regime. 
 
 
Proposition 5 uses Proposition 4’s conditions to derive directly applicable sufficient 
conditions by specializing the choice of rationalizing gain-loss regime utilities to a reference-
dependent generalization of Definition 3’s Afriat regime utilities. 
 
  



39 

 

Recall that 𝛤(𝑔; 𝒓)} is the set of 𝒒 in regime g for 𝒓. And 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡ {𝑡 ∊

{1, … , 𝑇}│𝒒𝑡 ∊ 𝛤(𝑔; 𝒓𝑡)} is the set of 𝑡 with 𝒒𝑡 in regime g for 𝒓𝑡. 
 
PROPOSITION 5: [Sufficient conditions for rationalization with modelable reference points, 
via reference-dependent preferences and utility function with constant sensitivity and 
continuity.] The following conditions are sufficient for the existence of continuous reference-
dependent preferences and utility function with constant sensitivity 𝑢(𝒒, 𝒓) that rationalize 

data with modelable reference points {𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇: There exist numbers 𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , 

and 𝜆𝑡 > 0 for each 𝑘 = 1, … , 𝐾 and 𝑡 = 1, … , 𝑇 such that: 
 

[A] For any gain-loss regime 𝑔 and any pair of observations 𝜎, 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) (with 

the indicator functions 𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) again doing the work of 𝐼𝒈(∙,∙)), 

 

(13)                                                                                                     𝑈𝜎 + ∑ [𝐺+
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣𝜎+

𝑘 + 𝐺−
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣𝜎−

𝑘
𝑘 ] 

                                                           ≤ 𝑈𝜏 + ∑ [𝐺+
𝑘(𝒒𝜏, 𝒓𝜏)𝑣𝜏+

𝑘 + 𝐺−
𝑘(𝒒𝜏, 𝒓𝜏)𝑣𝜏−

𝑘 ]𝑘  + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏). 
 

[B] For observations 𝜎, 𝜏, 𝑞𝜎
𝑘 ≥ 𝑞𝜏

𝑘 for k = 1,…, K, 𝑈𝜎 ≥ 𝑈𝜏; and for observations 𝜎, 𝜏 and any 

k = 1,…, K, 𝑞𝜎
𝑘 ≥ 𝑞𝜏

𝑘, 𝑣𝜎+
𝑘 ≥ 𝑣𝜏+

𝑘 , and 𝑣𝜎−
𝑘 ≥ 𝑣𝜏−

𝑘 .  
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[C] For any pair of regimes 𝑔 and 𝑔′ ≠ 𝑔, observation 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔), and bundle 

𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) for which 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏, 
 
                𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+

𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+
𝑘 + 𝐺−

𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−
𝑘

𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} 

(14)         −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)} 

              ≤ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒𝜏 − 𝒒𝜌)} 

               −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)}. 

 
Proposition 5’s conditions (14) precluding beneficial defections across gain-loss regimes 
again requires linking Proposition 3’s loss costs to things that can be estimated from the 
data, not only at particular points but as functions of 𝒓. This is done just as in Proposition 4, 
but now using the Afriat rationalizing regime utilities. 
 
Although continuity requires gain-loss utility to be additively separable across goods by 
Proposition 3, Proposition 5 does not require consumption utility, or therefore the sum that 
determines consumer demand, to be additively separable across goods as KR assumed. 
 
Neither does Proposition 5 require KR’s constant-sensitivity cross-regime links between 
marginal rates of substitution (CM’s Table 1). 

Both generalizations appear to be empirically important.   
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 Proposition 5 does rely on the choice of Afriat rationalizing regime utility functions. As other 
choices might also suffice, its sufficient conditions are not necessary. 
 
For example, the Afriat regime preferences in Figure 5a do not yield a rationalization but the 
non-Afriat regime preferences in Figure 5b do. 
 

Figure 5. A rationalization may require non-Afriat rationalizing regime preferences (solid 
lines for the loss map, dashed for the gain map) 

 

 

                                                    (a)                                  (b) 
 

Although Proposition 5’s sufficient conditions are not necessary, Mas-Colell’s (1978) and 
Forges and Minelli’s (2009) analyses of the neoclassical case suggest that in the limit as the 
data become rich, so each regime’s range of convexified rationalizing regime preferences 
collapses on its Afriat preferences, those conditions are asymptotically necessary. 
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EMPIRICAL ILLUSTRATION: FARBER’S AND CM’S CABDRIVERS REVISITED 
 

 
We now illustrate the empirical potential of our characterization of continuous reference-
dependent preferences with modelable reference points and constant sensitivity. 
 
We use Proposition 5’s conditions to revisit Farber’s (2005, 2008) and CM’s (2011) 
analyses of cabdrivers’ labor supply nonparametrically. 
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DATA 
 
Like CM (2011) we use Farber’s (2005, 2008) original dataset, with two changes. 
 
●  We use the NY/NJ urban CPI to control for price level changes in the sample period.  
 
●  We replace Farber’s hourly wage variable, income per hour spent working, where 

working time is defined as the sum of time spent driving with a fare-paying passenger 
plus time spent waiting for the next passenger, with earnings per hour spent driving. 

With Farber’s wage variable, shift-to-shift wage variation makes each observation’s 
budget line pivot around its zero-earnings end; thus a driver’s budget lines never cross, 
he satisfies GARP trivially, and a nonparametric analysis gives only a meaningless 
recapitulation of his data. 

With our wage variable, waiting time is a fixed cost, varying exogenously from shift to 
shift, with weather, the frequency of customers, etc.; thus a driver’s budget lines cross 
frequently (Appendix B, Figure B.1), which is essential for a meaningful analysis. 
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We use static sample proxies like CM’s for KR’s rational-expectations reference points. 
 
We follow CM’s econometric analysis closely, with these exceptions: 
 

●   We estimate preferences for each driver separately, allowing full preference 
heterogeneity (our theoretical analysis also covers the case of homogeneity) 

 
●   We compare alternatives to CM’s rational-expectations reference points: three 

expectations-based and three recent experience-based, crossed with reference-           
dependence in hours alone, earnings alone, or both earnings and hours, both 
unconditional and conditioned on weather (rain, snow, or dry) or time of day (day or 
night) (18 alternative reference-point models per driver) 
 

●   We compare the neoclassical model with models in which reference-dependence is 
with respect to hours only, earnings only, or both hours and earnings; and models that 
do or do not impose additive separability across goods 
 

● We include 6 drivers Farber and CM excluded due to small (≤ 10) sample sizes  
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Proposition 5’s sufficient conditions for a reference-dependent rationalization in this case 
suggest a simple nonparametric estimation procedure, which we apply driver by driver and 
model by model (with modifications when GARP is not always satisfied): 

 
(i) Use the observations’ modelled reference points to sort their consumption bundles 

into gain-loss regimes. 
(ii) Pooling the data from all regimes, use linear programming to find Afriat numbers 

𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , and 𝜆𝑡 > 0 for each 𝑘 = 1, … , 𝐾 and 𝑡 = 1, … , 𝑇 that satisfy [A]’s Afriat 
inequalities (13). 

(iii) Use the fact that for each observation in a regime, (13) can hold with equality for at 
least one other observation in the regime, to choose numbers so that for 
observation t in regime g, the rationalizing Afriat utilities are given by 

𝑈𝑡 = 𝑢𝑔(𝒒𝑡 , 𝒓𝑡) ≡ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔) {𝑈𝜌 + ∑[𝐺+
𝑘(𝒒𝜌, 𝒓𝑡)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝑡)𝑣𝜌−

𝑘

𝑘

] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒𝑡 − 𝒒𝜌)}  

as in (15) in the proof of Proposition 5. 

(iv) Use (ii)’s Afriat numbers 𝑈𝑡, 𝑣𝑡+
𝑘 , and 𝑣𝑡−

𝑘  to check that [B]’s  monotonicity 
restrictions are satisfied. 

(v) Use (iii)’s rationalizing Afriat utilities to check, regime by regime and observation by 
observation, that [C]’s conditions (14) are satisfied by scanning along the budget 
surface.  
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This procedure inherits most of the simplicity and computational tractability of Diewert’s 
and Varian’s linear-programming methods for the neoclassical case. 
 
Although Proposition 5’s no-defection conditions (14) involve the entire Afriat regime utility 

functions, those functions are finitely parameterized by the 𝑈𝑡
𝑔
and 𝜆𝑡

𝑔
 from step (ii) and the 

{𝒑𝑡 , 𝒒𝑡 , 𝒓𝑡}. Thus the procedure involves a finite number of inequalities in a finite number of 
variables, and should be computationally feasible even in large datasets. 
 
  
In our two-good illustration, GARP (Definition 3) reduces to the Weak Axiom of Revealed 
Preference, which is then necessary and sufficient for a neoclassical rationalization: 
 
DEFINITION 6: [Weak Axiom of Revealed Preference (“WARP”).] 𝒒𝒔𝑅𝒒𝒕 and 𝒒𝑠 ≠ 𝒒𝑡 

implies not 𝒒𝒕𝑅𝒒𝒔, where R indicates that there is some sequence of observations 
𝒒ℎ, 𝒒𝑖 , 𝒒𝑗 , … , 𝒒𝑡 such that 𝒑ℎ ⋅ 𝒒ℎ ≥ 𝒑ℎ ⋅ 𝒒𝑖, 𝒑𝑖 ⋅ 𝒒𝑖 ≥ 𝒑𝑖 ⋅ 𝒒𝑗 , … , 𝒑𝑠 ⋅ 𝒒𝑠 ≥ 𝒑𝑠 ⋅ 𝒒𝑡. 
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MODEL COMPARISONS: PASS RATES AND SELTEN MEASURES 
 
We compare models using Beatty and Crawford’s (2011, pp. 2786-87) proximity-based 
variant of Selten and Krischker’s (1983) and Selten’s (1991) measure of predictive 
success, which levels the playing field across models of varying flexibility and sample size. 
 

For a given model, Selten and Krischker’s original measure is 𝑚(𝜋𝑖 , 𝑎𝑖) ≡ 𝜋𝑖– 𝑎𝑖 , the 

difference between driver i’s pass rate 𝜋𝑖, the proportion of observations that fit the model 

exactly, and the “area” 𝑎𝑖, the probability that random data would fit the model exactly. 
 

As 𝑚 → 1, a model’s restrictions become tighter and yet behavior satisfies them: a highly 
successful model.  
 
As 𝑚→ -1, the restrictions become vacuous and yet behavior fails to satisfy them: a 
pathologically bad model. 
 
As 𝑚 → 0, the restrictions approach random compliance: a harmless but useless model. 
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Beatty and Crawford’s proximity-based variant of the pass rate replaces Selten and 

Krischker’s pass rate 𝜋𝑖 with a proximity: one minus the Euclidean distance, rescaled as a 
proportion of the maximum possible distance, between the data and a model’s target area. 
 

This measure, like 𝜋𝑖, lies in [0, 1], with higher values for more successful models. 
 
 
 
Beatty and Crawford’s variant of the Selten measure is the difference between their 

rescaled proximity and Selten and Krischker’s original area 𝑎𝑖. 
 
Like Selten’s measure, this lies in [-1, 1], with higher values for more successful models. 
 
 
 
From now on we use “Selten measure” for Beatty and Crawford’s proximity-based variant. 
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Given Propositions 5’s gap between the sufficient and necessary conditions for a 
reference-dependent rationalization, we bound reference-dependent models’ (proximity-
based) pass rates and Selten measures as follows. 

No bounds are needed for a neoclassical model because Afriat’s Theorem shows that 
GARP is necessary and sufficient for a rationalization without regard to Varian’s Fact 4. 
 
 
Imposing Proposition 5’s within-regime conditions [A] ((13)) and monotonicity conditions 
[B], but not its cross-regime no-defection conditions [C] ((14)), yields an approximate 
upper bound on the pass rate.  

“Approximate” because Proposition 5’s within-regime conditions [A] assume the Afriat 
regime utilities and are sufficient but not necessary, so the pass rate could be higher. 
 
 
Imposing all of Proposition 5’s conditions yields an approximate lower bound on the pass 
rate, which could again be higher for the same reason as above.  
 
 
The approximate lower and upper bounds on the Selten measures follow similarly.   
 
In each case the one-sided approximation suffices for our purposes. 
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ADDITIVE SEPARABILITY ACROSS GOODS 
 
In the literature on reference-dependent models, additive separability across goods has 
almost always been assumed.  
 
It has also been assumed in neoclassical models of cabdrivers’ labor supply, but not for all 
other applications of neoclassical demand theory.    
 
Figures 6-9 give the empirical cumulative distribution functions, aggregated across 
reference point models and drivers, of proximity-based pass rates and Selten measures 
for neoclassical and reference-dependent models, with or without additive separability. 
 
For neoclassical (Figure 6) or reference-dependent (Figure 8) models, the pass rate 
increases a great deal when additive separability across goods is relaxed. 
 
In each case (Figures 7 and 9) the Selten measures show that the increase justifies the 
extra flexibility.   
 
Accordingly, from now on we relax additive separability across goods. 
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Figure 6: Empirical CDFs of Pass Rates for Neoclassical Models 

 
Figure 7: Empirical CDFs of Selten Measures for Neoclassical Models
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Figure 8: Empirical CDFs of Pass Rates for Reference-dependent Models 

 
Figure 9: Empirical CDFs of Selten Measures for Reference-dependent Models
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REFERENCE-POINT MODELS 

 Figures C.1 and C.2 compare the empirical CDFs for different kinds of reference-point 
model (expectations- or experience-based, with various conditionings). 
 

Figure C.1: Empirical CDFs of Proximities for Different Kinds of Reference-dependence 

 



54 

 

 

 
 
 
Figure C.2: Empirical CDFs of Selten Measures for Different Kinds of Reference-dependence 
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 Figures C.3 and C.4 compare the empirical CDFs for different forms of reference-
dependent model (hours only, earnings only, or both hours and earnings). 

 
Figure C.3: Empirical CDFs of Proximities 

for Different Forms of Reference-dependence 
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Figure C.4: Empirical CDFs of Selten Measures 
for Different Forms of Reference-dependence  
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Figures C.2’s and C.4’s Selten measures show that in these data there are comparatively 

small differences among models’ kinds and forms of reference-dependence. 

 

Expectations-based models usually have higher Selten measures than experience-based 

models, and unconditioned expectations-based models have measures almost as high as 

conditioned ones, though expectations-based models that are conditioned on day/night 

usually have even higher Selten measures.  

 

Expectations-based models with hours- and earnings-targeting have measures 

approximately as high as such models with only hours-targeting and somewhat higher 

measures than such models with only earnings-targeting 
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NEOCLASSICAL VERSUS REFERENCE-DEPENDENT MODELS 
 
We close by comparing neoclassical and reference-dependent models.  
 
 
As the previous comparisons suggest, we focus on models that relax additive separability 
across goods and on models that do not condition on weather or day/night. 
 
 
We report driver-by-driver results for expectations- and experience-based models with 
reference-dependence in both hours and earnings, earnings only, and hours only. 
 
 
We focus on expectations-based models with reference-dependence in both hours and 
earnings, but the results differ comparatively little for other models. 
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First, Figures 10 and 11 compare empirical cumulative distribution functions for all drivers 
together, of pass rates and Selten measures for neoclassical and reference-dependent 
models. In the aggregate, neither kind of model is clearly superior.  
 

Figure 10: Empirical CDFs of Proximities for Neoclassical and Reference-dependent Models 

 
Figure 11: Empirical CDFs of Selten Measures for Neoclassical and Reference-dependent Models 
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Figures 12-15 give driver by driver plots for neoclassical and expectations-based and 
experience-based reference-dependent models’ proximities and Selten measures. 
 
Each figure has separate plots for different forms of reference-dependence, with a 
separate “spoke” for each driver.  
 
 
 
Figures 12’s and 14’s proximity plots are centered at -0.25, for clarity a tick below the 
lowest possible value of 0; with outer rims at the highest possible value of 1.  
 
The solid lines trace proximities for the neoclassical model. 
 
The shaded areas depict Section III.C’s approximate bounds on the proximities for the 
reference-dependent models.  
 
 
Figures 13’s and 15’s Selten measure plots are centered at the lowest possible value of 
-1, with outer rims at the highest possible value of 1. 
 
The solid lines trace measures for the neoclassical model.  
 



61 

 

Figure 12. Proximities for Alternative Forms of Expectations-based Models

Figure 13. Selten Measures for Alternative Forms of Expectations-based Models 
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Figure 14. Proximities for Alternative Forms of Experience-based Models

Figure 15. Selten Measures for Alternative Forms of Experience-based Models
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Focus on (left-most) models with reference-dependence in both hours and earnings.  
 
 
In Figure 13, among the full 21 drivers, the expectations-based reference-dependent 
model has the same bounded Selten measure as the neoclassical model (thus possibly 
higher, Section III.C) for seven drivers: 1, 4, 10, 16, 18, 20, and 21; an unambiguously 
higher measure for six drivers: 5, 7, 8, 12, 17, and 19; and an unambiguously lower 
measure for eight drivers: 2, 3, 6, 9, 11, 13, 14, and 15. 
 
 
Similarly, in Figure 15, the experience-based reference-dependent model has the same 
(possibly higher) bounded Selten measure as the neoclassical model for six drivers: 1, 10, 
16, 18, 20, and 21; a higher measure for four: 4, 8, 17, and 19; a lower measure for nine: 
2, 3, 6, 9, 11, 12, 13, 14, and 15; and ambiguous bounds for two: 5 and 7. 
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However, not all drivers’ comparisons are equally informative. 
 
Consider the expectations-based model with reference-dependence in both hours and 
earnings.  
 
With our CPI adjustment, all but one of the six drivers Farber and CM excluded due to 
small (≤ 10) sample sizes (3, 6, 11, 13, 15, and 17) has an exact neoclassical fit, and the 
neoclassical model has a higher Selten measure than its more flexible reference-
dependent counterpart. 
 
This is good news for the neoclassical model, but might only reflect overfitting. 
 
For seven other drivers (1, 4, 10, 16, 18, 20, and 21) the sample sizes were too large for 
us to estimate the set of sets of observations that fit exactly. So for them the proximities 
are set to 0 for both models and the neoclassical model again has a higher measure; but 
that does not truly favor the neoclassical over the reference-dependent model. 
 
For the eight remaining drivers (2, 5, 7, 8, 9, 12, 14, and 19), the expectations-based 
model with reference-dependence in hours and earnings has a higher measure for five (5, 
7, 8, 12, and 19) and the neoclassical model has a higher measure for three (2, 9, 14). 
 
 Similarly, the experience-based model with reference-dependence in hours and earnings 
has a higher Selten measure for four drivers (7, 8, 14, and 19) and the neoclassical model 
has a higher measure for four (2, 5, 9, and 12). 



65 

 

  
 
 
 
 
 
 
 
Thus, for many of Farber’s drivers who violate rationality for a neoclassical model, a 
reference-dependent model gives a coherent rationality-based account of their choices.  
 
Judging by Selten measures, for many of those drivers the reference-dependent model is 
more parsimonious, despite its greater flexibility. 


