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ONLINE APPENDIX A. Generalizing Tversky and Kahneman’s notion of loss aversion with 

constant sensitivity and simplifying Proposition 4’s sufficient conditions for a rationalization. 

 
 There is strong experimental and empirical support for loss aversion, whereby reference-

dependent preferences are more sensitive to changes below a reference point than to equal changes 

above it (Kahneman and Tversky 1979, “KT”; Tversky and Kahneman 1991). We give a 

nonparametric generalization of Tversky and Kahneman’s (1991, pp. 1047-1048) definition of loss 

aversion for the two-good case to the multi-good case. (KT considered only the one-good case, 

which is of limited interest in consumer theory.) Like Tversky and Kahneman we assume constant 

sensitivity, but we relax their assumption of additive separability across goods. The idea of loss 

aversion is still well defined with variable sensitivity, but formalizing it then is more complex, and 

Propositions 1 and 2 show that it would then be nonparametrically irrefutable anyway. 

 

DEFINITION A1: [Preferences with constant sensitivity and loss aversion.] Assume that reference-

dependent preferences and an associated utility function 𝑢(𝒒, 𝒓) have constant sensitivity. A 

collection of gain-loss regime preferences over consumption bundles satisfies loss aversion if and 

only if, for any observation {𝒑𝑡, 𝒒𝑡 , 𝒓𝑡}, given 𝒓𝑡, the preference ordering’s global better-than-𝒒𝑡  set 

is weakly contained in each regime preference ordering’s local better-than-𝒒𝑡 set. 

 

 Figure A1 illustrates loss aversion with one active reference point and two gain-loss regimes. Loss 

aversion is a property of the relationship between regimes’ preferences over consumption bundles 

given a reference point, thus independent of reference points themselves. 

 

Figure A1. Loss aversion with one active reference point 

(solid curves for active parts of indifference maps, dashed for inactive parts; 

blue for gain map, red for loss map) 
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  Because Definition A1’s nesting of local and global better-than sets holds globally, loss aversion 

is equivalent to requiring the gain-loss regimes’ indifference maps to satisfy a global single-crossing 

property: For any observation, across regimes that differ only in the gain-loss status of good i, the 

loss-side marginal rate of substitution between good i and any other good (generalized as needed for 

non-differentiable preferences) must be weakly more favorable to good i than the gain-side marginal 

rate of substitution. (Neoclassical preferences are thus weakly loss averse.) It is this single-crossing 

property, not the kinks in global indifference maps that it creates, that shapes loss aversion’s 

nonparametric implications, which are testable with finite data. Loss aversion precludes nonconvex 

kinks, so if the regime maps all have convex better-than sets, then so do the associated global maps. 

 Corollary A1 shows that GARP for each regime’s observations plus a condition weaker than loss 

aversion are sufficient for a rationalization. Recall that the gain-loss indicators 𝐺+
𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡

𝑘 ≥

𝑟𝑡
𝑘 and 0 otherwise and 𝐺−

𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡
𝑘 < 𝑟𝑡

𝑘and 0 otherwise; and that 𝛩({𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡

{𝑡 ∊ {1, … , 𝑇}│𝒒𝑡 ∊ 𝛤(𝑔; 𝒓𝑡)} is the set of observations 𝑡 with 𝒒𝑡 in regime g for 𝒓𝑡. 

 

COROLLARY A1: [Rationalization with modelable reference points via preferences and utility 

functions with constant sensitivity that satisfy a condition weaker than loss aversion.] Suppose that 

reference-dependent preferences and an associated utility function are defined over K ≥ 2 goods, 

that reference-dependence is active for all K goods, that the preferences satisfy constant sensitivity 

and are continuous, and that the utility function therefore satisfies Proposition 3’s (6). Consider data 

{𝒑𝑡, 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 with modelable reference points. If each gain-loss regime’s data satisfy GARP 

within the regime; and there is some combination of preferences over consumption bundles, with 

continuous, strictly increasing consumption utility function 𝑈(∙) and gain-loss component utility 

functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), such that, for any regime 𝑔 and any pair of observations 𝜎, 𝜏 ∊

𝛩({𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) for which 𝒑𝜏 ⋅ 𝒒𝜎 ≤  𝒑𝜏 ⋅ 𝒒𝜏 (with the indicator functions 𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) 

doing the work of a regime indicator function  𝐼𝒈(∙,∙)), 

 

(A.1)    𝑈(𝒒𝜎) + ∑ [𝐺+
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣+

𝑘(𝑞𝜎
𝑘) + 𝐺−

𝑘(𝒒𝜎, 𝒓𝜏)𝑣−
𝑘(𝑞𝜎

𝑘)𝑘 ] 

 ≤ U(𝒒𝜏) + ∑ [𝐺+
𝑘(𝒒𝜏, 𝒓𝜏)𝑣+

𝑘(𝑞𝜏
𝑘) + 𝐺−

𝑘(𝒒𝜏, 𝒓𝜏)𝑣−
𝑘(𝑞𝜏

𝑘)]𝑘  + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏), 

 

and there are no observations for which 𝒒𝑡 is not on the boundary of the convex hull of 𝒒𝑡’s upper 

contour set for the associated candidate global preference ordering for 𝒓𝑡, then the consumption 

utility function 𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) rationalize the data. 
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Proof: As in Proposition 4, by Afriat’s Theorem, the hypothesized combination of preferences over 

bundles with consumption utility function 𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 

𝑣−
𝑘(∙) prevent defections from any observation’s consumption bundle to any affordable bundle in the 

same own gain-loss regime. If the hypothesized preferences are such that there are no observations t 

for which 𝒒𝑡 is not on the boundary of the convex hull of the better-than-𝒒𝑡 set for the candidate 

global preference ordering given 𝒓𝑡, then we can assume that they satisfy loss aversion without loss 

of generality. For, the candidate global ordering can then be replaced by a convexified ordering 

whose better-than-𝒒𝑡 sets are the convex hulls of the candidate global ordering, without changing 

any observation’s optimal bundle. Definition A1 then implies that 𝑈(∙) and the 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) also 

prevent defections from any observation’s bundle to any affordable bundle in a different regime. 

Alternatively, consider a defection from 𝒒𝜏 ∊  𝛤(𝑔; 𝒓𝜏) to some 𝒒 ∊  𝛤(𝑔′; 𝒓𝜏) with 𝑔′ ≠ 𝑔 and 𝒑𝜏 ⋅

𝒒 ≤ 𝒑𝜏 ⋅ 𝒒𝜏. If 𝒒 were in regime 𝑔, we would have, by Afriat’s Theorem,  

 

(A.2) 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝜏

𝑘)} + 𝐺−
𝑘(𝒒, 𝒓𝜏){𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}] 

 ≤ 𝑈(𝒒𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑞𝜏
𝑘) − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉){𝑣−
𝑘(𝑞𝜏

𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}]𝑘 . 

 

Given that 𝒒 is actually in regime 𝑔′, the interpretation of loss aversion in terms of marginal rates of 

substitution implies that the left-hand side of (A.2) is lower or at least no higher than if 𝒒 were in 

regime 𝑔. (A.2) thus prevents defections from 𝒒𝜏 to affordable bundles in different regimes. ■ 

 

 Corollary A1’s final “no observations for which 𝒒𝑡 is not on the boundary” condition rules out 

bunching of consumption bundles in regions of commodity space where the rationalizing regime 

preferences violate loss aversion, and is vacuously satisfied for preferences that satisfy loss aversion. 

Such restrictions on bunching are unusual in a nonparametric analysis. And although loss aversion is 

usually viewed as an empirically well-supported assumption with important implications, to our 

knowledge it has not previously been linked to the existence of a reference-dependent rationalization.  

 In Figure A2 the entire dataset violates GARP, the Afriat gain-loss regime preferences violate loss 

aversion, but the data satisfy Corollary A1’s final conditions, thus allowing a rationalization. Only 

reference point 𝒓1 is shown and observation 1 is in the good-2 loss regime. Assume that 𝒓2 = [0, 0], 

so that observation 2’s budget set is entirely in the good-2 gain regime; and that 𝒓3 = [0, 𝑚], where 

m is large enough that observation 3’s budget set is entirely in the good-2 loss regime. The Afriat 

regime preferences yield a candidate for global preferences that make all three observations’ 

consumption bundles optimal: Observations 2’s and 3’s budget sets are entirely in their regimes 

(good-2 gain and good-2 loss, respectively), so their bundles’ optimality in their regimes suffices for 
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global optimality. Observation 1’s bundle is optimal for its good-2 loss regime preferences and 

Corollary 1 ensures that its bundle’s optimality extends to its entire budget set. 

 

Figure A2. Rationalizing data that violate GARP when preferences violate loss aversion 

but satisfy Corollary A1’s sufficient conditions for a reationalization  

(solid curves for active parts of indifference maps, dashed for inactive parts; 

blue for gain map, red for loss map) 
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ONLINE APPENDIX B. Farber’s (2005, 2008) dataset 

Figure B.1: Hours and earnings choices, driver by driver 
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Table B.1: Descriptive statistics, driver by driver 

 T Working 

Hours 

Driving 

Hours 

Waiting 

Hours 

Break 

Hours 

Earnings 

($/CPI) 

Wage 

($/hr) 

Afriat 

Efficiency 

Driver 1 39 6.85 4.32 2.53 0.90 153.01 36.41 0.9952 
Driver 2 14 3.89 2.78 1.11 2.41 95.98 34.68 1 
Driver 3 6 6.66 4.61 2.05 0.74 160.07 36.19 1 
Driver 4 40 6.28 4.52 1.76 0.39 145.89 33.02 0.9978 
Driver 5 23 6.46 3.98 2.48 2.11 144.00 38.12 0.9971 
Driver 6 6 8.62 6.48 2.14 2.42 202.71 33.49 1 
Driver 7 24 6.47 4.42 2.05 0.74 159.50 36.69 0.9991 
Driver 8 37 7.78 5.13 2.64 0.86 170.33 34.23 0.9897 
Driver 9 19 7.17 5.47 1.70 0.54 158.82 30.61 1 
Driver 10 45 6.35 3.90 2.45 1.65 129.68 33.83 0.9954 
Driver 11 6 7.15 5.22 1.93 0.71 182.40 35.50 1 
Driver 12 13 6.15 4.03 2.13 0.55 155.57 39.44 0.9972 
Driver 13 10 7.03 4.72 2.31 0.53 153.99 33.26 1 
Driver 14 17 7.06 4.49 2.57 0.64 157.15 37.37 0.9930 
Driver 15 8 10.82 7.64 3.17 0.19 217.29 29.92 1 
Driver 16 70 6.84 4.56 2.28 0.93 163.56 37.72 0.9936 
Driver 17 10 5.88 3.71 2.17 0.54 137.28 39.10 0.9946 
Driver 18 72 8.53 5.84 2.69 0.60 194.88 35.07 0.9849 
Driver 19 33 6.91 4.63 2.29 0.97 155.65 36.01 0.9870 
Driver 20 46 7.10 4.80 2.30 0.67 148.76 32.73 0.9842 
Driver 21 46 5.32 3.66 1.66 0.24 123.57 35.62 0.9915 
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ONLINE APPENDIX C. Pass Rates and Selten Measures for Reference-Dependent Models 

that Relax Additive Separability Across Goods 

 

 Figures C.1 and C.2 compare the empirical CDFs for different kinds of reference-point model 

(expectations- or experience-based, with various conditionings). 

Figure C.1: Empirical CDFs of Proximities 

for Different Kinds of Reference-dependent Model 

 
 

Figure C.2: Empirical CDFs of Selten Measures 

for Different Kinds of Reference-dependent Model  
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 Figures C.3 and C.4 compare the empirical CDFs for different forms of reference-dependence 

(hours only, earnings only, or both hours and earnings). 

 

Figure C.3: Empirical CDFs of Proximities 

for Different Forms of Reference-dependence 

 

Figure C.4: Empirical CDFs of Selten Measures 

for Different Forms of Reference-dependence  
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ONLINE APPENDIX D. Proximities and Selten Measures for Neoclassical and Unconditional 

Expectations- or Experience-based Reference-dependent Models that Relax Additive Separability 

Across Goods 

 

Table D.1: Proximities for neoclassical and unconditional expectations-based 

reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 1 
Driver 2 14 1 1 1 1 
Driver 3 6 1 1 1 1 
Driver 4 40 0 0 0 0 
Driver 5 23 0.048492 

 

0.384315 0.406994 0.43469

9 
Driver 6 6 1 1 1 1 
Driver 7 24 0 0.162525 0.203046 0.15848

1 
Driver 8 37 0 0.146842 0 0.17589

1 
Driver 9 19 1 1 1 1 
Driver 10 45 0 0 0 0 
Driver 11 6 1 1 1 1 
Driver 12 13 0.256557 

 

1 0.15315 0.13958

5 
Driver 13 10 1 1 1 1 
Driver 14 17 0.265625 

 

0.172794 0.280798 0.27437

5 
Driver 15 8 1 1 1 1 
Driver 16 70 0 0 0 0 
Driver 17 10 0.207382 

 

1 1 1 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.185454 0.057727 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 

Table D.2: Selten measures for neoclassical and unconditional expectations-

based reference-dependent models1 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 1 
Driver 2 14 0.942 0.788 0.803 0.82 
Driver 3 6 0.505 0.343 0.344 0.361 
Driver 4 40 0 0 0 0 
Driver 5 23 0.047492 0.328315 0.367994 0.416699 
Driver 6 6 0.665 0.466 0.499 0.497 
Driver 7 24 0 0.148525 0.193046 0.145481 
Driver 8 37 0 0.144842 0 0.174891 
Driver 9 19 0.987 0.912 0.913 0.941 
Driver 10 45 0 0 0 0 
Driver 11 6 0.421 0.303 0.287 0.279 
Driver 12 13 0.187557 0.714 -0.09685 -0.09742 
Driver 13 10 0.832 0.659 0.632 0.669 
Driver 14 17 0.261625 0.084794 0.217798 0.222375 
Driver 15 8 0.8 0.504 0.604 0.594 
Driver 16 70 0 0 0 0 
Driver 17 10 -0.01062 0.677 0.604 0.685 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.178454 0.056727 -0.002 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 

                                                      

1 The Selten measures are Section III.D’s lower bounds, the estimates imposing Proposition 5's full conditions [A]-[C].  
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Table D.3: Proximities for neoclassical and unconditional  

experience-based reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 0 
Driver 2 14 1 1 1 1 
Driver 3 6 1 1 1 1 
Driver 4 40 0 0.078039 0 0 
Driver 5 23 0.048492 

 

0.016492 0.212637 0.187298 
Driver 6 6 1 1 1 1 
Driver 7 24 0 1 0.278643 0.157611 
Driver 8 37 0 1 0 0 
Driver 9 19 1 1 1 1 
Driver 10 45 0 0 0 0 
Driver 11 6 1 1 1 1 
Driver 12 13 0.256557 

 

0.13873 0.265933 0.226169 
Driver 13 10 1 1 1 1 
Driver 14 17 0.265625 

 

0.313394 0.416434 0.251828 
Driver 15 8 1 1 1 1 
Driver 16 70 0 0 0 0 
Driver 17 10 0.207382 

 

0.500883 0.326962 0.304039 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.322158 0 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 

 

Table D.4: Selten measures for neoclassical and unconditional experience-

based reference-dependent models2 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 0 
Driver 2 14 0.942 0.804 0.856 0.814 
Driver 3 6 0.505 0.373 0.401 0.381 
Driver 4 40 0 0.077039 0 0 
Driver 5 23 0.047492 -0.00751 0.197637 0.175298 
Driver 6 6 0.665 0.267 0.274 0.285 
Driver 7 24 0 0.994 0.276643 0.153611 
Driver 8 37 0 1 0 0 
Driver 9 19 0.987 0.924 0.935 0.938 
Driver 10 45 0 0 0 0 
Driver 11 6 0.421 0.271 0.261 0.261 
Driver 12 13 0.187557 -0.08827 0.081933 0.036169 
Driver 13 10 0.832 0.575 0.616 0.577 
Driver 14 17 0.261625 0.270394 0.381434 0.219828 
Driver 15 8 0.8 0.527 0.505 0.49 
Driver 16 70 0 0 0 0 
Driver 17 10 -0.01062 0.124883 -0.02104 -0.03996 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.321158 0 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 

 

                                                      

2 The Selten measures are Section III.D’s lower bounds, the estimates imposing Proposition 5's full conditions [A]-[C]. 


