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HOW T O  COUNT T O  ONE THOUSAND* 

Joel Sobel 

People make mistakes. If the mistakes occur in a well understood way, then 
people can organise their activities to reduce the cost of making the mistakes. 
In  this paper I look at  a particular repetitive task that must be performed by 
error-prone agents. The process by which errors are made is known. 
Consequently the activity may be performed in a way that takes into account 
the possibility of mistakes. The task I examine can be viewed as counting to one 
thousand. The introduction describes the task and motivates the results. 

Imagine that you must make a cash transaction and have just received 
change in one dollar bills. You expect a total of $ I ,000. How do you make sure 
that it is all there? You start counting. But what happens if you get confused 
or distracted along the way and forget the count? You must start over in order 
to be certain that you were given correct change. This paper investigates the 
properties of counting schemes that allow you to subdivide the task. First you 
count twenty five bills, say, and put them aside. Then you count another 
twenty five bills, and so on. The procedure has an advantage: If you make a 
mistake you do not need to start the task over from the beginning, you need 
only recount the current stack of no more than twenty five bills. I t  also has a 
disadvantage: After you have divided the bills into stacks of twenty five you 
must go back and confirm that there really are forty stacks. The counting 
scheme that minimizes the expected time it takes to confirm the size of the stack 
involves dividing the counting into substacks and then counting these stacks. If 
the number of dollars to be counted is large enough, then the counting process 
has several layers where stacks are grouped into stacks of stacks, which are 
grouped into stacks of stacks of stacks, and so on until the task is completed. 
A hierarchical structure arises simply because there is a positive probability of 
making mistakes. 

I assume that people know when they have made a mistake and that 
everything that has not been saved (or put aside as a separate stack) is lost. 
Under these assumptions I deduce properties of the counting scheme that 
minimises the expected time needed to complete a task. If there is a constant 
probability of making a mistake at  each step of the counting process, then 
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(ignoring integer problems, which are negligible for large tasks) tasks are 
subdivided into units that depend only on the probability of making mistakes 
and not on the size of the entire job. So if it is efficient to count to one thousand 
in units of twenty five, then it is also efficient to count to one million by twenty 
fives. As a consequence the efficient number of levels needed to perform a task 
increases with the logarithm of the size of the task. The average time to 
complete a step in a task increases linearly with the size of the task. 

The paper gives a formal treatment of an  observation of Herbert Simon 
(1962). Simon suggests that all types of organisational structures evolve into 
forms that nest integrated units within integrated units. This hierarchical 
organisation is able to isolate the impact of disturbances and lessen the effect 
of shocks and mistakes. Simon (1962) tells a parable of two watchmakers, one 
first assembles subunits and then puts these subunits together to complete the 
watch, and the other who does not subdivide the construction. Many pieces 
must be assembled to make a watch and there is a chance that a watchmaker 
will be disturbed during the process. Simon argues that if a disturbance causes 
a watchmaker to reassemble any partially completed unit, then the watchmaker 
who first builds subunits will be able to complete more watches than his 
competitor. This paper provides a mathematical description of the parable. 

In  a series of papers Sah and Stiglitz ( I 985) and ( I 986) study the properties 
of different ways of making decisions in an environment in which people make 
mistakes. They compare organisations where a series of individuals must 
approve a project to ones where any single individual may approve a project. 
They find that the first form of organisation leads to a lower approval rate than 
the second. They identify other properties characteristic of different ways to 
organise decision making. 

The simple framework of this paper lets me say things about the optimal size 
of a task. By deriving the task size that has the minimum average cost per step, 
I identify an efficient scale of operation. Other studies on hierarchical 
structures in firms try to deduce the optimal size of the firm. Calvo and Wellisz 
( I  978) and ( I  979) and Williamson ( I  975) develop a hierarchical theory of the 
firm based on incentives. Only workers at  the lowest level of a pyramid 
contribute directly to output. Workers only work if there is a large enough 
probability that their boss will catch them if they try to shirk. Higher level 
workers are needed only to supervise their immediate underlings. Assumptions 
about the supervision technology determine the efficient number of layers 
between the productive workers and the manager. Geanakoplos and Milgrom 
(1984) derive properties of an organisation assuming that individuals inside the 
organisation differ in their access to and ability to process information. They 
ignore incentive problems. I also ignore incentive problems. The advantages of 
a particular form of organisation stem only from the possibility of making 
mistakes. The optimal task size is not determined in the counting model. In 
Section I1 I show that expected time needed to count to n is (approximately) 
a linear function of n ;  there are essentially constant returns to scale in the size 
of the task. I describe a different model in Section 111. Here the counting is 
done by an assembly line. Individual counters have the special job of 
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performing a fixed step of the task (for example, counting the tenth bill). While 
these specialised workers are unlikely to get confused, each worker must be 
present in order to have a successful count. If there is a positive probability of 
absenteeism and workers can be trained to perform only a single step of the 
task, then this type of assembly line exhibits decreasing returns to scale, but if 
there are workers who can fill several positions, then average costs first decrease 
and then increase. 

I. E X P E C T E D  C O M P L E T I O N  T I M E S  O F  A T O M I C  T A S K S  

In  this section I discuss the expected time it takes to successfully complete a task 
with n steps without making subdivisions. A task is atomic ifit is not subdivided. 
I t  is efficient to subdivide large tasks into smaller units. The next section studies 
the optimal way to subdivide large tasks. 

I assume that the probability of succeeding in the (k+ I ) th  step of the process 
is pn-, G (0, I )  and the time it takes to perform the (k+ 1)th step of the process 
is an-,. When p, and a, are independent of k, the expected time of completion 
is just the expected time to achieve n consecutive successes from independent 
Bernoulli trials. The time needed to complete n tasks is 

which reduces to ( I  -pn)/[( l  -p) pn] in the case where pi is independent of i 
and a, = I for all i. ( I  omit the derivation of this and other formulas from the 
paper; details are contained in an appendix, which I will supply to the 
interested reader upon request.) 

Imagine that there are n workers described by their speed a, and their 
accuracy pi. I t  is possible to make strong statements about what types of 
workers will be asked to do which jobs. If the workers differ only in their speed, 
then it is optimal to assign the jobs to workers in order of their speed, with the 
fastest workers doing the first steps in the task. The intuition is clear: The first 
step must be repeated whenever there is an mistake. If one step can be done 
more quickly with no sacrifice of accuracy, then it is efficient for it to be the first 
task. Similarly, if the workers differ only in their accuracy, then it is efficient 
to assign the workers in increasing order of accuracy, with the more accurate 
workers doing the later steps. Since the later in the task a mistake is made, the 
more time is lost, expected completion time is reduced by placing the most 
accurate workers at the end of the counting process. 

When different workers perform different steps in the counting process, the 
form of the expected time of completion has implications about how workers 
will be trained. Assume that workers begin with equal speed and accuracy, but 
that through training their skills can be improved. Further assume that there 
is a continuously differentiable function that determines the effectiveness of 
money spent on training. Under these conditions it follows from ( I )  that it is 
never efficient to improve the skills of workers uniformly. Instead, if training 

1-2 
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improves accuracy, then workers who perform the later steps should be trained 
more than the other workers. If training improves speed, then the workers who 
perform the first steps should be given the most training. A small probability 
of making mistakes leads to asymmetric development and use of workers' skills. 

Now suppose that the workers have identical skill levels and that I wish to 
hire and allocate workers so that in a steady state all of the workers are 
occupied. If Nk denotes the number of different projects that are k steps from 
completion, then in a steady state equilibrium, N,-, =pNk for k = I ,  2,. . . ,n. 
Hence the number of workers assigned to one step should be proportionally 
greater than the number of workers at  the next step of the task. The assignment 
of labour inside a given n-step task leads to a hierarchical structure with more 
(or faster) workers assigned to the lower tasks. This characteristic arises only 
because the lower tasks must be performed more frequently than the higher 
ones. The ratio of the number of workers at  one step to the number of workers 
in the next higher step depends only on the accuracy of workers at  the step 
closer to completion. In  this model the relative accuracy of a worker determines 
her span of control. 

Finally, since the expected time of completion is equal to ( I -pn) / [( I -p) pn] 
when each step succeeds with probability p, the average time per step to 
complete an n-step task, ( I -pn) / [n(I -p) pn], is increasing in n. The production 
process exhibits decreasing returns to scale. In the next section I show that if 
subdivision is possible then the production process exhibits constant returns to 
scale. 

11. E F F I C I E N T  S U B D I V I S I O N  O F  T A S K S  

I have computed the expected length of time needed to complete a task of fixed 
length. In order to finish a large task in the least time it will generally be 
optimal to subdivide. This section uses the result of the Section I to 
characterise the optimal number of subdivisions under the assumption that all 
steps succeed with probability p (pi =p for all i) and one unit of time is needed 
to perform a step (ai = I for all i). 

Suppose that the task has n steps. The counter first handles a subtask of size 
r; then finishes the rest of the task. Ignoring integer restrictions on the size and 
number of bundles, which can be shown to be negligible when n is large, a 
dynamic programming argument demonstrates that the counting problem 
reduces to finding a pile size r to solve: 

when n > I ,  the corresponding optimal choice of k satisfies k = (n- ~ ) / ( r -  I ) ,  

and the minimum expected time to complete the project is 

[(n- 1 )  ( 1  -Pr)l/i?r(r- 1 )  ( 1  -PI]. ( 2 )  

The objective function in (P)is independent of n, therefore the optimal pile 
size is also independent of n. Hence, ignoring the integer problem, it is efficient 
to create bundles of the same size r regardless of the size of the entire task. An 
intuition for the result comes from the logic of dynamic programming and the 
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observation that the expected completion time of an atomic task is convex in 
the number of items in the task. When the counter creates the first stack, she 
reduces the size of the task. The efficient stack size in the new, smaller problem 
is equal to the size of the first stack. Otherwise, by convexity, the counter could 
reduce the expected completion time of the original problem by averaging the 
stack sizes. 

Expression ( 2 )  shows that the counting process exhibits (approximately) 
constant returns to scale. The average time to complete a step in an n-step 
process is (n  - I )  /n times the constant ( I  -pr) /[pr(r- I )  ( I  -p)]. When I 
examined atomic processes in Section I ,  the counting process exhibited 
decreasing returns to scale because larger tasks carried the risk of more costly 
mistakes. If it is feasible to subdivide the task, then the costs of mistakes are 
bounded. Indeed, if the size of the task is doubled, then one feasible way to 
perform the task is to divide it into two parts, perform each half separately, and 
then combine the two completed halves. Provided that it is not costly to 
combine the two halves, and my assumptions guarantee that it is not, doubling 
the size of the task can (essentially) no more than double the expected 
completion time. 

The solution to (P) is characterised by a first-order condition since 
( I  -pr)/[pr(r- I ) ]  is convex. Hence the optimal size of a pile is determined as 
the solution to 

The optimal choice of r characterised by (3) is increasing in p. 
I can also compute the number of layers there are in the process. If each stack 

consists of r items, then n/r stacks are needed to count the n items, n/r2 stacks 
are needed to count the first set of stacks, and so on. Therefore if there are 1 
levels, then total number of stacks k is equal to Xi-,n/rz = k. Since 
k = (n- ~ ) / ( r -  I ) ,  it follows that 1 = (log n)/(log r). That  is, the number of 
levels increases with the logarithm of the size of the task. As expected, increases 
in the probability of making a mistake lead to smaller subdivisions and as a 
result more layers in the counting pyramid. 

111. A S S E M B L Y  L I N E S  

I t  is natural to assume that people who must perform the task of counting make 
mistakes. Specialisation might solve the problem. If a sequence of individuals 
could be hired with each one assigned a particular step in the process, then 
there is little reason to think that anyone would make a mistake. I have in mind 
a situation where one thousand people are hired (when n = 1,000). For each 
i = I ,  2 , .  . . , I ,000, person i is assigned the job of counting the ith element in the 
sequence. Imagine that the employees are ordered in an assembly line, with 
worker number I counting the first bill, and passing the task to worker number 
2, who counts and passes to the third worker, and so on. Provided that workers 
can remember their index i and the identities of the workers with adjacent 
indices, there should be no danger of getting confused. Assigning specific tasks 
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to specific workers could eliminate failures due to human fallibility. The job of 
remembering is divided into manageable pieces and divided among different 
workers. The assembly line technology is extremely sensitive to absenteeism. if 
one of the workers fails to do his job, then the job may go undone. In this section 
I investigate the assembly line technology. 

n steps must be performed in order to accomplish the task. A pool of workers 
are available to perform individual steps in the task. Workers are identical 
and each worker is able to perform any step. However, there is a probability 
that a worker will not show up. Assume that the probability a particular 
worker shows up is ; r r ~(0, I ) ,  and that these probabilities are independent 
across workers. If one worker is hired for each step, then the probability that 
the task is done is ;rrn, and the expected completion time is 7 ~ - ~ .Assume that the 
wage per worker per unit of time is equal to one and that all workers hired 
must be paid (whether they show up or not). The second assumption makes 
sense if it is not possible to write a labour contract where payment is contingent 
upon showing up, which is a plausible restriction if 'not showing up'  is 
interpreted as a failure to supply an unobservable minimum effort level. I t  
follows that the expected cost of completing the task if one worker is assigned 
to each step is equal to Assembly lines do not work well if workers can 
perform only one step and all workers are essential to the production process. 
I want to investigate the implications of relaxing each of these assumptions. 

First assume that it is possible to hire many workers for each step in the 
process. Assume that a worker must be assigned to a particular step, but only 
one worker capable of performing each step need be present in order to 
complete the task. Consequently, if k workers are hired to perform step i, then 
the probability that the step will actually be done is equal to I - ( I  -;rr)k. The 
manager's objective is to hire ki workers for step i (i = I ,  2 , . .. ,n)  to minimise 
the expected total wage bill. I t  is cost minimising to hire the same number of 
workers for each step. If k workers are hired for each step, then the probability 
that the task will succeed is [ I  - ( I  -;rr)k]n, the expected time to completion is 
[ I- and the expected cost is n k [ ~  ( I  -;rr)k]~n. The average cost ( I  - 7 ~ ) ~ ] - ~ ,  -

per step in an n-step task, k [ ~  - is increasing in n for all k: The ( I  - ~ T ) ~ ] I - ~ ,  
technology exhibits decreasing returns to scale. 

I t  is wasteful to hire several workers for each step to minimise the costs 
associated with absentees. If two workers arrive for the same task, then one of 
them contributes nothing to output. Suppose that some workers can be hired 
to perform any one of a large number of tasks should the need arise. Hiring 
'jack-of-all-trades' as substitutes is likely to be a way to lower the average cost 
of completing the task. A complete analysis of this possibility requires a careful 
consideration of the relative wage that must be paid to a versatile substitute 
and how the wage varies with the range of steps that the worker is able to 
perform (and her accuracy). Rather than carry out that extended exercise, all 
I will do is point out that if versatile substitutes are available, then the average 
cost of production is likely to first decrease and then increase in the size of the 
task. Therefore efficient size of a 'firm' operating with an assembly line 
technology with substitutes is positive and finite. T o  illustrate this assume that 
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one specialised worker is hired for each step, and that as above each of these 
workers shows up with probability n. Further assume that an additional worker 
is hired who is able to perform any of the steps in the task. This worker is 
effective with probability p and must be paid A. The probability that the task 
will be completed is equal to nn +nnn(r-n)  p, and the expected wage bill is 
(n  +A )  / [nn+nnn-I ( I -n)  p] . In  this case the average cost per step is increasing 
in n for large n, but decreasing in n for small tasks. 

V. E X T E N S I O N S  

My purpose has been to show the effect of the possibility of errors on 
organisational form. I carried out the computations in a setting too simple to 
describe any real phenomena. In  this section I discuss several extensions of 
main ideas. 

There are several ways to generalise the error structure in the model. I 
have assumed that the objective was to perform the counting task accurately 
in the minimum expected time. In  many circumstances complete accuracy may 
be too much to hope for. Assume that the counter begins with a probability 
distribution on the number of items and is allowed to decide how long to count 
and what number to guess when the counting is over. I t  is natural to assume 
that utility decreases with the time spent counting and increases with the 
accuracy of the guess. This problem is more difficult than the one I have 
discussed. Subdivisior? is a good idea, but there is no reason to think that the 
divisions will have a regular pattern. One special case is easy. If there is a 
constant probability that the next item counted is the last one, then the counter 
learns nothing about the size of the task from any step. I t  is best either to spend 
no time counting (and make the best guess regarding the size of the task), or 
to follow the counting procedure characterised in Section 11. 

I assume that people know when they make a mistake. Alternatively I could 
assume that there is a fixed probability of making a mistake of any magnitude 
and that the counter does not know when a mistake is made. There need not 
be a gain from subdividing a task in this situation. However it is not difficult 
to think of situations where subdividing tasks is valuable even with this type of 
error structure. Rubinstein (1988) describes a game where two prisoners must 
coordinate the date of an escape months in advance. They cannot communicate 
but are able to watch the sun rise and set. If it is difficult to keep track of the 
days, then neither prisoner will be sure whether his count agrees with the other 
prisoner's. Coordination may be difficult to achieve. When the prisoners wish 
to coordinate on an escape date several months in the future, their chances 
would improve a great deal if they could see the moon as well as the sun. While 
the prisoners still lack common knowledge of the date, both could be more 
confident that they have correctly counted three full moons and five days, for 
example, than eighty nine days. 

Rubinstein's coordination problem is a strategic one. Whether or not the 
escape succeeds depends on both the prisoners making their break at  the same 
time. Bendor and Mookherjee (1987) have investigated another game-



theoretic setting where a hierarchical structure can be used to improve 
outcomes. They study an n-player variant of the repeated prisoners' dilemma 
with imperfect monitoring and show that there are parameter values (group 
size, the level of idiosyncratic uncertainty, the amount of monitoring, and rate 
of discounting) for which it is possible to sustain cooperation by dividing the 
players into subgroups, randomly monitoring the effort of subgroups, and 
punishing subgroups that are found to be playing noncooperatively, even 
though it is not possible to sustain cooperation without subdivisions. 
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