
Linear Programming Notes IX:

Two-Person Zero-Sum Game Theory

1 Introduction

Economists use the word rational in a narrow way. To an economist, a rational
actor is someone who makes decisions that maximize her (or his) preferences
subject to constraints imposed by the environment. So, this actor knows her
preferences and knows how to go about optimizing. It is a powerful approach,
but it probably is only distantly related to what you mean when you think of
yourself as rational.

Decision theory describes the behavior of a rational actor when her actions
do not inuence the behavior of the people around her. Game theory describes
the behavior of a rational actor in a strategic situation. Here decisions of other
actors determine how well you do. Deciding where to go to dinner can be
thought of as a decision problem if all you care about is what you eat and where
you eat it. It is a strategic problem if you also want to meet a friend at the
restaurant. (In the �rst case, you go to the restaurant that serves the food you
like best. In the second case, the restaurant that you prefer depends not only
on the food served, but also on the where your friend goes.)

2 Zero-Sum Games

These notes describe a simple class of games called two-player zero-sum games.
You can probably �gure out what a two-player game is. Zero-sum games refer
to games of pure conict. The payo� of one player is the negative of the payo�
of the other player. This formulation is probably appropriate for most parlor
games, where the outcomes are either win, lose, or draw (and there is at most
one winner or loser). Maybe it describes war. It is a restrictive assumption
and is not appropriate to most economic applications, where there is a strong
component of common interests mixed with the conict. For example, in a
bargaining situation, the conict is clear: the buyer wants to pay a low price
and the seller wants to receive a high price. The cooperative element arises
because it is frequently the case that making a transaction at an intermediate
price is better for both sides than a failure to reach an agreement. Concretely,
if something is worth $10 to the seller and $15 to the (potential) buyer, then
making a sale at the price $12 (or any price between $10 and $15) is better for
both buyer and seller than making no sale at all. Problems that describe aspects
of �rm competition (models of Cournot duopoly that you may have seen in a
micro class) have non-zero sum aspects.

Why limit attention to zero-sum games? They are simpler. There is a
beautiful theory that is more compelling than the general theory of games.
Predicting outcomes in these games uses linear programming in ways that do
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not generalize to other kinds of game.
The general structure of a game involves a list of players; a set of strategies

for each of the players; a payo� for each vector of strategies. I will assume that
the game has only two players.

3 Strategies

The intuition behind a strategy is that it tells you how you are going to play the
game. In examples, it will be just a choice from one of a �nite list of possible
things you can do.

This story might help you understand the notion of a strategy. You made
an arrangement to talk to a friend about what you were going to do together,
but you unexpectedly cannot be home when the friend is supposed to call. Your
roommate will be home and promises to talk to your friend. You want to give
your roommate instructions about what kind of arrangements to make. You
would like to walk on the beach, but not if it is going to rain. You would like
to go to the Belly Up, but only if you can dance. You would like to see a
movie, but only if Leonardo DiCaprio isn't in it. Most of all, you would like
to do something that your friend also wants to do. What kind of instructions
do you give your roommate? Complete instructions will account for all possible
contingencies. You won't say: \Tell my friend that I'll do whatever he or she
wants to do." Instead, you'll say something like: \If she wants to go to a movie,
�nd out if DiCaprio is in it. If he isn't, tell her OK. If he is, tell her no." And
so on. In game theory, a strategy is a complete set of instructions. It allows
your roommate to \negotiate" for you no matter what your friend on the phone
says.

When you specify a strategy for each player, you determine the outcome

of the game. Payo�s associate to each outcome a number for each player. You
can therefore describe two-player games using a payo� matrix. The rows of
the matrix represent the strategies of one player. The columns of the matrix
represent the strategies of the other player. The cells of the matrix represent
outcomes. In these cells, you place payo� numbers. In general, each cell should
have a payo� for each player in it. In zero-sum games, you need only have one
number in each cell. This number represents the payo� to the player who picks
rows. The negative of this number is the payo� to the player who picks columns.

Take the game of matching pennies. Two players simultaneously place a
penny on the table. If the pennies `match' (both heads up or both heads down),
then the Row player wins the Column player's penny. If the pennies do not
`match' (exactly one head), then the Column player wins the Row player's
penny. The payo� matrix is below.

Heads Tails

Heads 1 -1

Tails -1 1
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In matching pennies, each player has two strategies. The player can either
play heads or play tails. Now consider a variant of matching pennies that I play
with my son. First, I decide whether to play heads or tails. Next, he looks at
what I did. Finally, he decides whether to play heads or tails. I win if the coins
match. He wins if they do not. In this game, both players must decide whether
to play heads or tails. So you might think that we both have two strategies.
This is not correct. I have two strategies, but my son can make his decision
based on what I did. He therefore has four strategies:

HH : Play heads no matter what I do.
TT : Play tails no matter what I do.
HT : Play heads if I play heads and tails if I play tails (match).
TH : Play tails if I play heads and heads if I play tails (mismatch).
Therefore the payo� matrix for this version of matching pennies is:

HH TT HT TH

Heads 1 -1 1 -1

Tails -1 1 1 -1

Naturally, my son plays TH and I always lose. The point is that even though
my son ends up either playing heads or playing tails, in order to describe how
he makes his decision, you need four strategies. Using the four strategies he
could give instructions to my wife on how to play the game, go to his room and
listen to music, and still always win the game.

Strategies are complicated objects in general. Examples simplify and obscure
the complexity of the idea of a strategy. For example, chess is a zero-sum, two-
player game. A strategy for chess (to a game theorist) is a complete plan for
playing that game. If you are white (and move �rst), your strategy should
include an opening move, a response to all possible �rst moves of you opponent;
a response to all possible positions after two moves by your opponent; and so
on. There are an enormous number of such strategies (no, not on the order
of the number of pennies in Bill Gates's bank account; more like the number
of water molecules in the universe). The idea is that if you could specify a
strategy, then you can tell the strategy to an agent and the agent will be able
to play the game for you without ever consulting you again. Once you have
a strategy for both white and black, you can actually play out a game. From
the play of the game, you can decide who won (or whether it was a draw) and
assign payo�s. Conceptually, this process is easy (at least for someone who is
comfortable with game theory). In practice, it does not tell you how to play a
game. Tic-tac-toe is a simpler example of a two-player zero-sum game. To a
game theorist, a strategy for the �rst player describes the �rst move and where
to move on future opportunities under all possible circumstance. This leads
to an enormous number of strategies. You have been able to play tic-tac-toe
optimally for more than �fteen years. You can probably even describe it (move
in the center �rst; after that block your opponent when necessary; move to an
open corner if you can). Here the point is that describing all of the strategies
even for tic-tac-toe is an enormous task and it is not directly related to what
you think about when you actually play the game.
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Game theory does provide advice about how to play simple zero-sum games.
The �rst advice is about which strategies to avoid. In the payo� matrix below,
Row picker always does better picking UP than DOWN. That is, the entries
in each column of row one are bigger than the corresponding numbers in the
second row. No matter what Column player two selects, player one is better o�
picking Row 1 than Row 2. If Row wants to maximize his return, he will avoid
the DOWN row. We say that DOWN is a dominated strategy.

A B C D

UP 1 2 3 4

DOWN -1 -2 -3 -4

4 Examples

In this section I will describe some fairly simple games. The goal is to use the
notion of a strategy to describe the games. After I have presented the theory,
we will return to the games.

4.1 Colonel Blotto

Several standard examples of games have charming names like \The No-Left
Turn Missle" and \Search and Destroy." These names suggest that hot and cold
warriors used game theory to think about military strategy. They did. This
is a simple example of a class of games that describe some aspect of military
strategy.

Colonel Blotto has three divisions to defend two mountain passes. He will
defend successfully against equal or smaller strength, but lose against superior
forces. The enemy has two divisions. The battle is lost if either pass is cap-
tured. Neither side has advance information on the disposition of the opponent's
divisions. What are the optimal dispositions?

Colonel Blotto has to decide how many divisions to allocate to the �rst
mountain pass (he'll allocate the remaining ones to the other pass). You can
describe a strategy with a pair of numbers like (x; 3 � x), where x = 0; 1; 2; or
3. x represents the troops allocated to the �rst pass; 3� x the troops allocated
to the second path. Similarly, the enemy's strategy is a pair, but since it has
only two divisions, it has only three strategies. Hence I obtain the payo� matrix
below.

(2,0) (1,1) (0,2)

(3,0) 1 -1 -1

(2,1) 1 1 -1

(1,2) -1 1 1

(0,3) -1 -1 1

Consider the �rst row. Colonel Blotto allocates three divisions to the �rst
pass. Therefore he always defeats the enemy there, but he only defeats the
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enemy on the second pass when the enemy also allocates all of its troops to the
left pass. Since Blotto loses the war unless he can defend both passes, his payo�
is negative one when the enemy uses either (1; 1) and (0; 2). If Blotto allocates
two units to the �rst pass (the second row), then he successfully defends the �rst
pass and win also defend the second pass if the enemy allocates fewer than two
divisions to the second pass. Hence Blotto wins unless his enemy plays (0; 2).
Similar reasoning explains the rest of the table.

4.2 Morra

Each player shows either one or two �ngers and announces a number between
2 and 4. If a player's number is equal to the sum of the number of �ngers
shown, then his opponent must pay him that many dollars. The payo� is the
net transfer (so that both players earn zero if both or neither guess the correct
number of �ngers shown).

In this game each player has 6 strategies: he may show one �nger and guess
2; he may show one �nger and guess 3; he may show one �nger and guess 4;
or he may show two �ngers and guess one of the three numbers. Of these 6
strategies, two are stupid and I will ignore them. It never pays to put out one
�nger and guess that the total number of �ngers will be 4 (because the other
player can put out more than two �ngers). It never pays to put out two �ngers
and guess that the sum will be 2 (because the other player must put down at
least one �nger). Therefore, a four by four matrix describes the payo�s.

12 13 23 24

12 0 2 -3 0

13 -2 0 0 3

23 3 0 0 -4

24 0 -3 4 0

In the payo� matrix, \12" describes the strategy of putting out one �nger
and guessing the sum is two. In general, the �rst number in the strategy is the
number of �ngers and the second number is the (guessed) sum. The payo�s
come from playing out the game. Suppose that both players use 12. Then both
put out one �nger. The sum is equal to two. So each player pays $2 to his
opponent. They break even. This explains why the payo� associated with both
players playing 12 is equal to zero. Moving to the second entry in the �rst row
(Row plays 12; Column plays 13): here both players put out one �nger; the row
player correctly guesses the sum is 2; Column must pay Row the this amount.
When Row plays 12 and Column 23, the sum is 3; Column guesses it correctly
(but Row's guess is incorrect); so Column receives $3 from Row.

4.3 Goofspiel

Each player begins with an n�card \hand," with cards numbered 1; 2; : : : ; n.
On the �rst move of the game, each player picks a card from his hand. The
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cards are compared. The player with the higher card earns a1 dollars. The
player with the lower card earns 0. If the cards are equal, then each player wins
a1
2
. On the next move, each player picks one of the cards remaining in his hand.

As before, the cards are compared. The player who put out the higher card
earns a2 dollars; the player with the lower card earns 0. If the cards are equal,
then each player wins a1

2
. The play continues until all n cards have been played.

The possible winnings in the ith round is ai. The total payo� is equal to the
sum of the winnings in the individual moves.

While it did not take long to describe this game, the strategy space is enor-
mous. A player does not just select an order to play his cards (and there are
n! possible orders). Instead a strategy allows the player to decide which card
to play on the basis of what his opponent has done. Only when n = 2 is the
strategy set small. Here the player really need only decide what to play on his
�rst move. On the second move he must play his remaining card. When there
are three cards, there are 24 strategies. You can describe them as a list. The
list contains which card you play �rst (3 possible choices); what card you play
second if your opponent plays 1 in the �rst round (2 possible choices because
you have already played a card); what card you play second if your opponent
plays 2 in the �rst round (2 possible choices); and what card you play second if
your opponent plays 3 in the �rst round (2 possible choices). Hence each player
has 3� 2� 2� 2 = 24 possible strategies. Observe the complexity of the notion
of strategy. Your opponent is going to play one card on his �rst move. Nev-
ertheless, your strategy describes how you respond to all potential �rst moves.
The reason for this complexity is that you pick you strategy in advance. That
is, a strategy will typically specify how you would behave in contingencies that
do not actually take place. A tiny aspect of the strategy is simple. Once the
strategy describes how the �rst two cards are played, it does not need to say
anything about the third card. On the third move (when n = 3) a player must
play his one remaining card.

5 Security Level

Imagine now that your opponent can read your mind and guess how you play
before she makes her move. What should you do? Since your opponent gains
when you lose, you should expect your opponent to pick the strategy that makes
you worse o�. Take a look at the next example.

Left Center Right

Top 1 2 -1
Middle -5 0 20

Bottom 1 1 1

You are Row. Consider playing the �rst strategy (top). If your opponent
could read your mind, then she would play her third strategy (right). She would
win 1 and you would lose 1. What about playing your second strategy (middle)?
If your opponent knew, then your payo� would be �5 since she would pick her
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�rst strategy (left) as the response. Finally, the third strategy (bottom) pays
you 1 no matter what your opponent does. Therefore, if you are conservative
(or paranoid) or really playing against an omniscient opponent, then you would
play the third strategy. The third strategy establishes your pure-strategy

security level. Informally, the pure-strategy security level is the amount that
you can guarantee for yourself no matter what your opponent does. The reason
for the modi�er \pure strategy" will become clear soon. Formally, your security
level is maximinj u(i; j).

Take a moment to analyze this expression. De�ne an intermediate function:
f(i) = minj u(i; j). f(i) is what you would get if you played your ith strategy
and your opponent made the response that was the worst for you (and the best
for her). Your security level is maxi f(i). That is, it is the maximum payo� you
get assuming that your opponent will observe your strategy choice and take full
advantage of this information.

A security level gives a lower bound to your payo� in the game. Surely you
should expect to do no worse than this when you play the game. Can you expect
to do better?

One way to check is to put yourself in the position of the column player. She
too can try to guarantee her security level. In the example, when she plays left,
the worst that can happen is that she gets �1 (if Row plays top or bottom);
when she plays center, the worst that can happen is that she gets �2; when she
plays her right, the worst that can happen is that she gets �20. (Remember
that the payo� that Column gets is the negative of the payo� that Row gets.)
So, Column's pure-strategy security level is �1, which she'll get if she plays
her �rst strategy. In this game, at least, it appears that the security level is a
good prediction of the value of the game. Row player can play in such a way
that guarantees that he will win 1. Column player can play in such a way that
guarantees that she will lose no more than �1. Since it is a zero-sum game,
everything that Row wins must come from Column. Hence if Column plays to
guarantee her security level, then Row cannot win more than 1. If Row plays
to guarantee her security level, then Column must lose at least 1. There is no
room for either player to do better than their security level.

If the result of the example were general, then we would have a good theory
of how to play zero-sum games. Row player should play to insure that he
obtains his security level because if his opponent plays sensibly the Row can do
no better than obtaining his security level. The same statement holds for the
Column player. So, for the second time, is this general? The answer is yes and
no.

First, here is the reason why the answer is no. Take matching pennies. The
pure strategy security level for both players is �1 (and the players can attain
this payo� by using either strategy). I hope that the reason for this is easy to
understand. If your opponent could �gure out how you were going to play this
game, then she would always win. So it is too conservative to play as if your
opponent can out guess you.

Now imagine you were going to play the matching pennies repeatedly with
the same person. If you were to play the same strategy each time you played
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the game, what would you do? You probably would not want to be predictable.
That is, you probably would not want to play heads every time. If you did, then
there is a chance that your opponent could �gure that out and take advantage
of you. The notion of a mixed strategy, is a way to describe the idea of being
unpredictable. For example, suppose that instead of deciding whether to play
heads or tails, you simply ip the coin and play whatever side lands face up. In
this way, you end up playing heads half of the time and tails half of the time
(I am assuming that your penny is a fair coin that lands heads half the time).
You would like to know what your payo� would be if you followed this strategy.
In order to �gure this out, you need to know two things. First, you need to
understand that you must be content to compute your expected payo� (if half
of the time you play heads and the other half you play tails, then you won't
always win or always lose). Second, you need to make some assumption about
your opponent's play in order to �gure out your payo�.

You answer the �rst question by computing expected payo�s. Doing so
requires that you interpret the numbers in the payo� matrix as utilities and
that these utilities satisfy the expected utility property. You either learned all
about this in Econ 171, will learn all about this in Econ 171, or will live an
empty, unhappy existence. Here I will say that there is a well-developed theory
of decision making under uncertainty that gives conditions under which using
expected utilities is justi�ed. This theory is a bit controversial, but is still the
standard way of treating payo�s in games.

Once you interpret the numbers in the payo� matrix as expected utility, you
must remind yourself that they need not be monetary payo�s. A player need not
be indi�erent between winning nothing or a 50� 50 gamble than pays 1 when
it wins and costs 1 when it loses. In fact, someone who is risk averse, strictly
prefers to avoid the gamble. However, a player must be indi�erent between a
gamble that either gives zero utility or a 50� 50 gamble that pays utility of 1
or utility of �1.

The second issue is to decide how to evaluate the payo� associated with
playing the random (or mixed) strategy of playing head and tails with equal
probability. The answer is to do what we did with pure strategies. Suppose
Column knows that Row is going to play heads and tails with equal probability.
What is the worst think that she can do (from Row's point of view)? The answer
is that it does not matter what Column does. Row's expected payo� is always
zero. Of course, a symmetric argument establishes that by playing heads and
tails with equal probability that Column could also guarantee herself a payo�
of zero.

The example illustrates the idea of the mixed-strategy security level. A
mixed strategy is a probability distribution over pure strategies. In games
with two pure strategies, like matching pennies, a probability distribution can
be described by a number p between zero and one (interpret p as the probability
that the player plays his �rst strategy, so that 1 � p is the probability that he
plays his remaining strategy). In general, if the player has n pure strategies, the
mixed strategy is a vector p = (p1; : : : ; pn) such that p � 0 and

Pn

i=1 pi = 1,
where you interpret pi as the probability that the player picks his ith pure
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strategy. The mixed strategy security level of the Row player is de�ned as

max
p

min
q

nX

i=1

mX

j=1

piqju(i; j):

In this expression, I assume that Row has n pure strategies, Column has m

pure strategies, and that p and q are mixed strategies for Row and Column
respectively. It is convenient to let U be a matrix with n rows and m columns
(typical entry uij). In that case the security level is

max
p

min
q

pUq

The mixed-strategy security level of the Column player has a similar de�nition:

max
q

min
p

mX

j=1

nX

i=1

�piqju(i; j):

We can write this as

max
q

min
p
�pUq = �min

q
max
p

pUq:

This de�nition reverses the order of p and q and puts a minus sign in front of
u(i; j) (because the payo� of Column is equal to �1 times the payo� of Row).

You should be able to convince yourself that the mixed-strategy security level
is at least as great as the pure-strategy security level. (In matching pennies,
Row's pure-strategy security level is �1 while his mixed-strategy security level
is zero.) The intuition for this is that in �guring out what to do, the Row player
has the choice of using a \degenerate" mixed strategy that places probability
one on a pure strategy. Having the extra option of randomizing couldn't make
him worse o�.

Warning: From now on, when I say security level I will mean mixed-strategy
security level.

Only slightly less obvious is the assertion that if you add Row's security level
to Column's security level you get something that is less than or equal to zero.
In symbols:

max
p

min
q

pUq �min
q

max
p

pUq � 0:

This inequality merely expresses the idea that it is possible for both Row
and Column to attain their security levels (since the payo� sums must be equal
to zero, if the sum of the security levels were negative it would be impossible
for both players to get their security level). U is the payo� matrix.

The fundamental theorem of two-player zero-sum games is that the inequal-
ity above must actually hold as an equation. In symbols, the fact is that

max
p

min
q

pUq = min
q

max
p

pUq:
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This fact is called the Minimax Theorem. In words it says that if Row
plays in such a way that guarantees his security level, then Column cannot
get more than her security level. Also, if Column plays in such a way that
guarantees her security level, then Row cannot get more than his security level.
Hence the Minimax Theorem tells you how you should play zero-sum games (at
least against a \sensible" opponent): Each player should play to maximize his
or her security level. Why? One answer is that it maximizes your minimum
expected payo�. That is, there is a sense in which it is safe. This answer is
not compelling on its own. It becomes compelling in zero-sum games because
the Minimax Theorem says that you can only expect more than your security
level if your opponent gets less than her security level. One should not expect
a sensible player to settle for less than what she could guarantee for herself. If
you do assume that your opponent is sensible in this way, then you cannot hope
to do better than your security level. Hence playing a strategy that guarantees
your security level is the right way to play the game.

Remember: Mixed-strategy security levels are expected utilities. In match-
ing pennies you never get a payo� of exactly zero. Each time you play the
game you either win or you lose. However, if you play heads and tails with
equal probability, then your expected payo� is zero. Once again, it is essential
to remember that the payo�s are utilities. Although you are unhappy when
you lose, before you play you are indi�erent between actually playing matching
pennies or not playing at all.

The recommendation that you play a strategy that guarantees your security
level is appropriate if your opponent is sensible. If your opponent does not
play a sensible strategy, then it might be appropriate to play something besides
your minimax strategy to exploit his stupidity. Speci�cally, if your opponent
(Row) always plays heads in matching pennies, then it would be silly for you to
randomize. You should play tails and win for sure.

6 Linear Programming and Zero-Sum Game The-

ory

I haven't forgotten that this is a course in Linear Programming. You �gured
that there was just some extra time to kill and so I threw in an unrelated topic.
But no.

The Minimax Theorem is a simple consequence of the Duality Theorem of
Linear Programming. Seeing the relationship allows you to use Linear Program-
ming techniques to solve zero-sum games.

You should not be surprised to �nd that there is a relationship. Aside from
the cynical reasons (you �gured that I wouldn't stray too far from the main topic
of the course), there is obviously something linear going on in the problems that
de�ne security level. Furthermore, the maxmin objective (pUq looks a lot like
the yAx object that appeared in our discussions of duality and complementary
slackness).
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Consider the following pair of LPs:

maxw subject to pU � we � 0; p � e = 1; p � 0:

min v subject to pU � ve � 0; q � e = 1; q � 0:

In these problems, e is a vector of ones (be careful, sometimes e has n ones,
sometimesm ones, depending on context. To test your understanding, �gure out
which is which). In the �rst problem, the variables are w (a real number) and p

(an n-dimensional vector). The �rst constraint says that each component of pU
(there are m of them) should be greater than or equal to w. The second and
third constraints state that p should be a probability distribution for the Row
player (a mixed strategy). Suppose that the Row player uses the mixed strategy
p. If the column player could observe this choice, then she could compute her
payo� for any strategy. pU is anm vector, the jth component of which gives the
expected payo� to Row if Row plays p and Column picks her jth pure strategy
(Column gets �1 times this). Hence if pU�we � 0, then Row gets at least w (no
matter what Column does) when he uses p. It follows that the solution (p�; w�)
to the �rst LP above gives Row's security level (w�) and a strategy that attains
the security level (p�). Similarly, the second problem gives Column's security
level. Careful: The second problem does describe how to �nd Column's security
level, but the value of the problem actually gives the payo� to the Row player.
That is, if (q�; v�) is the solution to the second problem, then the security level
of the column player is �v�.

Verifying that the problems are dual and con�rming that the relationship
they have to security level is a bit confusing. It is a worthwhile exercise to verify
the relationship carefully.

A bit of careful accounting (no thinking, just remembering the de�nition
of dual linear programming problems) con�rms that the second problem is the
dual of the �rst problem. Since both problems are feasible (for example, in the
�rst problem let p be anything that satis�es the second and third constraints
and let w be the smallest element in U), the Duality Theorem states that both
problems have solutions. and the values are the same.

7 Examples Revisited

7.1 Colonel Blotto

The �rst thing to notice about Colonel Blotto is that the Colonel has two dom-
inated strategies: It is never in his interest to allocate all of his troops to one
mountain pass. He can successfully defend the pass with only two troops. This
intuitive conclusion also follows from an examination of the payo� matrix. The
payo�s in the �rst row are all lower (or equal) to the numbers in the same
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column in the second row. Hence we can reduce the game to:

(2,0) (1,1) (0,2)

(2,1) 1 1 -1

(1,2) -1 1 1

If you study this game, you will see that the enemy's middle strategy (1; 1)
is now dominated. The enemy will never win by sending only 1 division to a
location because Colonel Blotto has at least one division at both passes. Deleting
this strategy simpli�es the game even further:

(2,0) (0,2)

(2,1) 1 -1

(1,2) -1 1

This game looks like matching pennies, so we know that the best strategy is
for both players to randomize 50� 50 over their (remaining) strategies.

It should not surprise you that there are many variations of the game (de-
pending on the number of divisions the two sides have; what it takes to win a
battle; and what it takes to win the war).

7.2 Morra

To compute the pure-strategy security level in Morra, note that if your opponent
knew you were playing 12, she'd play 23; if she knew that you were playing 13,
then she'd play 12; if she knew you were playing 23, then she'd play 24; and if she
knew that you were playing 24, then she'd play 13. In each case, she'd win. Her
winnings would be at least $2 (if you played 13), so your pure-strategy security
level is �$2. The game is symmetric, so the column player can guarantee that
she loses no more than $2 as well, but cannot do better. Hence there is a gap
between the pure-strategy security levels. The equilibrium strategy must be
mixed. This conclusion is not surprising. Mixed-strategies appear in situations
where you do not want your opponent to be able to predict your behavior. There
are in�nitely many mixed strategies that lead to an expected payo� of at least
zero. One possibility is to play 13 with probability :6 and 23 with probability :4
(and the other strategies with probability 0). If the other player plays 12, then
you lose 2 with probability :6 and you win three with probability :4. You're
expected payo� is zero. If the other player plays 13, then you always break even
(you both guess right when you play 23 and you both guess wrong when you play
13). Similarly, if your opponent plays 23, then you always break even. Finally, if
your opponent plays 24, you have an expected gain of $3(:6)� $4(:4) = $:20. It
follows that if you play the indicated mixture, then you guarantee a non-negative
expected payo�. Your expected payo� will be positive if your opponent plays
24. Game theoretic analysis recommends that you mix between your �rst three
strategies (there are mixed strategies that guarantee an expected payo� of zero
that use 12 with positive probability). It is not surprising that your expected
payo� is zero. It is not surprising that you play randomly. It may be surprising
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to learn that you should avoid using the strategy 24 (even though this is the
only strategy that gives you a chance of winning $4). Of course, if you think
that your opponent is likely to play 23 with high probability, then you should
not reject 24. The analysis implicitly demonstrates that it is not prudent to
play 23 with high probability, however.

7.3 Goofspiel

I do not have the energy to write down a 24�24 payo� matrix for goofspiel with
n = 3. We can con�rm that a particular strategy is optimal for the n = 3 game
assuming ai = i for i = 1; 2; 3. I claim that in this game an equilibrium strategy
is to play card i at move i. Suppose you play this strategy. If your opponent
plays 3 on the last move, then you are guaranteed a payo� of 0 (you break even
in the last round and you either tie in the �rst two rounds or lose the �rst and
win the more valuable second round). If your opponent does not play 3 on the
�nal round, then you win 3 on the �nal round and even if you lose the �rst two
rounds you still break even for the entire game. Hence your security level is at
least zero. Your opponent can play in the same way, however. Therefore, her
security level is also zero. It must be that the value of the game is zero and
(against a rational opponent) you can do no better than to play the strategy
that I described. The strategy of playing card i at round i would continue to
be optimal if you increased a3 while keeping a1 and a2 constant. On the other
hand, if you decreased the relative importance of the third round, say by having
ai = i + 3 for i = 1; 2; 3, then it would not be rational to always play 3 on the
third move.

8 More Examples

1. Calculate the optimal strategy.

1 2 3

1 16 -8 4

2 -24 -16 3

3 1 1 2

Here by playing the third strategy, Row can guarantee a payo� of one.
On the other hand, column can hold player one to this payo� by playing
Column 2. Hence the game has a pure strategy equilibrium point. The
value of the game (to the Row Player) is 1.

2. Each of two players has a Ace, King, Queen, and Jack. They each si-
multaneously show a card. Player 1 wins if they both show an Ace, or if
neither shows an Ace and the cards do not match. Player 2 wins if exactly
one shows an Ace or if neither shows an Ace and the cards match. (The
winner receives a payment of $1 from the loser.)
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I will treat Player 1 as the row player and Player 2 as the column player.
The payo� matrix looks like this:

ACE KING QUEEN JACK

ACE 1 -1 -1 -1

KING -1 -1 1 1

QUEEN -1 1 -1 1

JACK -1 1 1 -1

Using pure strategies, neither player can guarantee a win. The pure strat-
egy security level for each player is therefore �1. Figuring out the mixed
strategy security level \by hand" for a game with four strategies for each
player is tedious and hard. In this example, three of the strategies are
symmetric. This suggests a simpli�cation.

Assume that Player 1 always plays Jack, Queen, and King with the same
probability (this probability can be any number between 0 and 1

3
; if the

probability is 0, then Player 1 always plays ACE; if the probability is 1

3
,

then Player 1 never plays ACE, and plays each of the remaining cards
with the same probability. You can view the game as having two pure
strategies for Player 1 (either he plays ACE or he doesn't) and the payo�
matrix becomes:

ACE KING QUEEN JACK
ACE 1 -1 -1 -1

NOT ACE -1 1

3

1

3

1

3

:

If you impose the same symmetry condition on Player 2, the game reduces
to:

ACE NOT ACE

ACE 1 -1

NOT ACE -1 1

3

:

It is now possible to �nd the mixed-strategy equilibrium for this 2�2 (that
is, two strategies for each player) game. Player 1's strategy will equalize
the payo� he gets from either strategy choice of Player 2. That is, the
probability of ACE, call it a will satisfy:

a+ (1� a)(�1) = a(�1) + (1� a)
1

3
:

The solution to this equation is a = 2

5
. When Player 1 mixes between

ACE and NOT ACE with probabilities 2

5
and 3

5
he gets a payo� of � 1

5

whatever Player 2 does. Similarly, you can solve for Player 2's strategy
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by equalizing Player 1's payo�. If b is the probability that Player 2 plays
ACE, then b should satisfy:

b+ (1� b)(�1) = b(�1) + (1� b)
1

3

or b = 2

5
.

Now you can go back and check that the symmetry assumption that I
imposed is really appropriate. Both players are playing ACE with prob-
ability 2

5
and the other strategies with total probability 3

5
. That means

that they play each of the non-ACE cards with probability 1

3
. Under

this condition Player 1 expects to earn � 1

5
from each of his original pure

strategies, and Player 2 can hold Player 1 to this amount by playing ACE
with probability 2

5
and the other three cards with probability 1

5
each.

3. Player I's payo� matrix in a zero-sum game is:

TOP 1 2 3 4 5

BOTTOM 9 7 5 3 1

Find the pure and mixed strategy security levels of each player and the
equilibrium.

Using pure strategies, player I can guarantee a payo� of 1 (using either
strategy). Player 2 can guarantee a loss of no more than 4 (by playing
the fourth column). This means that the game must have only a mixed-
strategy equilibrium. You have seen formulas that determine the best
mixed strategy (and you could �nd it using Excel), but when one of the
players has only two strategies there is a graphical way of �nding the
solution. I will describe the process (come to lecture to see the picture).
On the x axis you denote the probability that the row player plays up.
This number goes from zero to one. Next graph the payo� associated
with each of the column player's pure strategies. Column one will be a
line segment that starts at (0; 9) (the row player gets 9 if row plays up
with probability zero) and goes to (1; 1) (the row player gets 1 if row plays
up with probability one). Do this for all of the strategies of the Column
player. So you get �ve line segments. For each x, the worst that Row
can do is the lowest of the �ve segments. Form a curve determined by
the minimum of the segments. The highest point on this curve is Row's
security level. For this example, all �ve segments intersect at the same
point, x1 =

2

3
. This is the point that leads to the highest value for Row.

Hence Row's security level is 11

3
. There are many ways in which Column

can hold Row to this level. One way is for Column to play column 3 with
probability 1

3
and column 4 with probability 2

3
. In this example, it is an

accident that all payo�s are equal at the same mixed strategy.

Algebraically, you can solve the problem like this. Notice that the higher
the probability that Row player UP, the more attractive it is for Column
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to play \left" columns. If Column was sure that Row would play UP, then
Column would play Column 1. As the probability of playing up drops, the
second column becomes a more attractive strategy. At some point, call it
x1 Columns 1 and 2 yield the same payo�. The de�ning condition is

1x1 + 9(1� x1) = 2x1 + 7(1� x1);

which implies that x1 = 2

3
. You can check that this mixture guarantees

Row a payo� of 11

3
. (Explicitly check Column's other strategies.) Since

Row does worse with any other mixture, this must be his optimal strat-
egy. It is an accident that all �ve of columns strategies work equally well
against Row's optimal strategy. It is not an accident that the mixture that
attains Row's security level makes Column indi�erent between at least two
strategies.

4. Consider the following game.

LEFT CENTER RIGHT

TOP 1 2 4

BOTTOM 9 5 1

This game also has no equilibrium in pure strategies. Row's (pure-strategy)
security level is 1, while Column can hold Row to 4 by playing the right
column. Figure out the probability x1 of playing UP that equalizes the
payo�s of the �rst two columns in the table:

x1 + 9(1� x1) = 2x1 + 5(1� x1);

or x1 =
4

5
. When Row uses this mixture, the third column is strictly better

for Row (payo� 17

5
) than either of the �rst two columns. Hence Row can

get at 13

5
if he plays UP with probability 4

5
. Row would not be guaranteed

to do better if he played UP with higher probability. If Column knows
that Row will play UP with higher probability, then Column would play
LEFT, leading to a payo� for Row of less than 13

5
. So we have ruled out

mixed strategies with probability greater than 4

5
on UP. What about other

mixtures? For these, Column is likely to respond with either the Center or
Right column. Figure out the probability x2 of playing UP that equalizes
the payo�s of the last two columns:

2x2 + 5(1� x2) = 4x2 + (1� x2);

or x2 =
2

3
. If Row uses this mixture, then he is guaranteed a payo� of 3,

which he will get if Column plays either his second or third strategy. (Row
will do even better if Column plays the left column.) Furthermore, if Row
places less weight on UP, Column will be able to reduce Row's payo� by
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playing RIGHT, and if Row plays up with a probability between x1 and
x2, then Column will hold Row's payo� below 3 by playing CENTER.
Since 3 > 13

5
, Row's security level must be 3; his equilibrium strategy is

to play up with probability 2

3
. Column can hold player one to this payo�

by mixing between CENTER and RIGHT, playing each with probability
1

2
.
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