Bargaining and equilibrium: The core of a market economy

Set $X^i = \mathbb{R}_+^N$, all i.

Each $i \in H$ has an endowment $r^i \in \mathbb{R}_+^N$ and a preference quasi-ordering \succeq^i defined on \mathbb{R}_+^N.

An allocation is an assignment of $x^i \in \mathbb{R}_+^N$ for each $i \in H$. A typical allocation, $x^i \in \mathbb{R}_+^N$ for each $i \in H$, will be denoted $\{x^i, i \in H\}$. An allocation, $\{x^i, i \in H\}$, is feasible if $\sum_{i \in H} x^i \leq \sum_{i \in H} r^i$, where the inequality holds coordinatewise.

We assume preferences fulfill weak monotonicity (C.IV*), continuity (C.V), and strict convexity (C.VI(SC)).

The core of a pure exchange economy

Definition A coalition is any subset $S \subseteq H$. Note that every individual comprises a (singleton) coalition.

Definition An allocation $\{x^i, h \in H\}$ is blocked by $S \subseteq H$ if there is a coalition $S \subseteq H$ and an assignment $\{y^i, i \in S\}$ so that:

(i) $\sum_{i \in S} y^i \leq \sum_{i \in S} r^i$ (where the inequality holds coordinatewise),
(ii) $y^i \succeq^i x^i$, for all $i \in S$, and
(iii) $y^h \succ^h x^h$, for some $h \in S$

Definition The core of the economy is the set of feasible allocations that are not blocked by any coalition $S \subseteq H$.
• Any allocation in the core must be individually rational. That is, if \(\{x^i, i \in H\} \) is a core allocation then we must have \(x^i \succeq_h r^i \), for all \(i \in H \).

• Any allocation in the core must be Pareto efficient.

(i) The competitive equilibrium is always in the core (Theorem 21.1).

Theorems 22.2 and 22.3 say that

(ii) For a large economy, the set of competitive equilibria and the core are virtually identical. All core allocations are (nearly) competitive equilibria.

The competitive equilibrium allocation is in the core

Definition \(p \in \mathbb{R}^N_+, p \neq 0, x^i \in \mathbb{R}^N_+, \) for each \(i \in H \), constitutes a competitive equilibrium if

(i) \(p \cdot x^i \leq p \cdot r^i \), for each \(i \in H \),

(ii) \(x^i \succeq_i y \), for all \(y \in \mathbb{R}^N_+ \), such that \(p \cdot y \leq p \cdot r^i \), and

(iii) \(\sum_{i \in H} x^i \leq \sum_{i \in H} r^i \) (the inequality holds coordinatewise) with \(p_k = 0 \) for any \(k = 1, 2, \ldots, N \) so that the strict inequality holds.

Theorem 21.1 Let the economy fulfill C.II, C.IV*, C.VI(SC) and let \(X^i = \mathbb{R}^N_+ \). Let \(p, x^i, i \in H \), be a competitive equilibrium. Then \(\{x^i, i \in H\} \) is in the core of the economy.

Proof We will present a proof by contradiction. Suppose the theorem were false. Then there would be a blocking coalition
$S \subseteq H$ and a blocking assignment $y^i, i \in S$. We have
\[\sum_{i \in S} y^i \leq \sum_{i \in S} r^i \] (attainability, the inequality holds coordinatewise)
\[y^i \succeq_i x^i, \quad \text{for all } i \in S, \text{ and} \]
\[y^h \succ_h x^h, \quad \text{some } h \in S. \]

But x^i is a competitive equilibrium allocation. That is, for all $i \in H$, $p \cdot x^i = p \cdot r^i$ (recalling Lemma 17.1), and $x^i \succeq_i y$, for all $y \in \mathbb{R}^N_+$ such that $p \cdot y \leq p \cdot r^i$.

Note that $\sum_{i \in S} p \cdot x^i = \sum_{i \in S} p \cdot r^i$. Then for all $i \in S$, $p \cdot y^i \geq p \cdot r^i$. That is, x^i represents i’s most desirable consumption subject to budget constraint. y^i is at least as good under preferences \succeq_i fulfilling C.II, C.IV*, C.VI(SC), (local non-satiation). Therefore, y^i must be at least as expensive. Furthermore, for h, we must have $p \cdot y^h > p \cdot r^h$. Therefore, we have
\[\sum_{i \in S} p \cdot y^i > \sum_{i \in S} p \cdot r^i. \]

Note that this is a strict inequality. However, for coalitional feasibility we must have
\[\sum_{i \in S} y^i \leq \sum_{i \in S} r^i. \]

But since $p \geq 0, p \neq 0$, we have $\sum_{i \in S} p \cdot y^i \leq \sum_{i \in S} p \cdot r^i$. This is a contradiction. The allocation \{\(y^i, i \in S\)\} cannot simultaneously be smaller or equal to the sum of endowments r^i coordinatewise and be more expensive at prices $p, p \geq 0$. The contradiction proves the theorem. QED

Convergence of the core of a large economy

Replication; a large economy

In replication, the economy keeps cloning itself.
duplicate to triplicate, ..., to Q-tuplicate, and so on, the set of core allocations keeps getting smaller, although it always includes the set of competitive equilibria (per Theorem 21.1).

Q-fold replica economy, denoted Q-H. $Q = 1, 2, \ldots$

$\#H \times Q$ agents.

Q agents with preferences $\succeq 1$ and endowment r^1,

Q agents with preferences $\succeq 2$ and endowment r^2, \ldots, and Q agents with preferences $\succeq \#H$ and endowment $r^{\#H}$. Each household $i \in H$ now corresponds to a household type. There are Q individual households of type i in the replica economy Q-H.

Competitive equilibrium prices in the original H economy will be equilibrium prices of the Q-H economy. Household i's competitive equilibrium allocation x^i in the original H economy will be a competitive equilibrium allocation to all type i households in the Q-H replica economy. Agents in the Q-H replica economy will be denoted by their type and a serial number. Thus, the agent denoted i, q will be the qth agent of type i, for each $i \in H, q = 1, 2, \ldots, Q$.

Equal treatment

Theorem 22.1 (Equal treatment in the core) Assume C.IV, C.V, and C.VI(SC). Let $\{x^{i,q}, i \in H, q = 1, \ldots, Q\}$ be in the core of Q-H, the Q-fold replica of economy H. Then for each $i, x^{i,q}$ is the same for all q. That is, $x^{i,q} = x^{i,q'}$ for each $i \in H, q \neq q'$.

Proof of Theorem 22.1 Recall that the core allocation must be feasible. That is,

$$\sum_{i \in H} \sum_{q=1}^{Q} x^{i,q} \leq \sum_{i \in H} \sum_{q=1}^{Q} r^i.$$
Equivalently,
\[
\frac{1}{Q} \sum_{i \in H} \sum_{q=1}^{Q} x^{i,q} \leq \sum_{i \in H} r^i.
\]
Suppose the theorem to be false. Consider a type \(i \) so that \(x^{i,q} \neq x^{i,q'} \). For each type \(i \), we can rank the consumptions attributed to type \(i \) according to \(\succeq_i \).

For each \(i \), let \(x^{i*} \) denote the least preferred of the core allocations to type \(i \), \(x^{i,q}, q = 1, \ldots, Q \). For some types \(i \), all individuals of the type will have the same consumption and \(x^{i*} \) will be this expression. For those in which the consumption differs, \(x^{i*} \) will be the least desirable of the consumptions of the type. We now form a coalition consisting of one member of each type: the individual from each type carrying the worst core allocation, \(x^{i*} \).

Consider the average core allocation to type \(i \), to be denoted \(\bar{x}^i \).

\[
\bar{x}^i = \frac{1}{Q} \sum_{q=1}^{Q} x^{i,q}.
\]

We have, by strict convexity of preferences (C.VI(SC)),

\[
\bar{x}^i = \frac{1}{Q} \sum_{q=1}^{Q} x^{i,q} \succ_i x^{i*} \text{ for those types } i \text{ so that } x^{i,q} \text{ are not identical,}
\]

and

\[
x^{i,q} = \bar{x}^i = \frac{1}{Q} \sum_{q=1}^{Q} x^{i,q} \sim_i x^{i*} \text{ for those types } i \text{ so that } x^{i,q} \text{ are identical.}
\]

From feasibility, above, we have that

\[
\sum_{i \in H} \bar{x}^i = \sum_{i \in H} \frac{1}{Q} \sum_{q=1}^{Q} x^{i,q} = \frac{1}{Q} \sum_{i \in H} \sum_{q=1}^{Q} x^{i,q} \leq \sum_{i \in H} r^i.
\]

In other words, a coalition composed of one of each type (the worst off of each) can achieve the allocation \(\bar{x}^i \). However, for each agent in the coalition, \(\bar{x}^i \succeq_i x^{i*} \) for all \(i \) and \(\bar{x}^i \succ_i x^{i*} \) for
some i. Therefore, the coalition of the worst off individual of each type blocks the allocation $x^{i,q}$. The contradiction proves the theorem. QED

$$\text{Core}(Q) = \{x^i, i \in H\}$$ where $x^{i,q} = x^i, q = 1, 2, \ldots, Q$, and the allocation $x^{i,q}$ is unblocked.

Core convergence in a large economy

As Q grows there are more blocking coalitions, and they are more varied. Any coalition that blocks an allocation in $Q-H$ still blocks the allocation in $(Q+1)-H$, but there are new blocking coalitions and allocations newly blocked in $(Q+1)-H$.

Recall the Bounding Hyperplane Theorem:

Theorem 8.1, Bounding Hyperplane Theorem (Minkowski) Let K be convex, $K \subseteq \mathbb{R}^N$. There is a hyperplane H through z and bounding for K if z is not interior to K. That is, there is $p \in \mathbb{R}^N, p \neq 0$, so that for each $x \in K, p \cdot x \geq p \cdot z$.

Theorem 22.2 (Debreu-Scarf) Assume C.IV*, C.V, C.VI(SC), and let $X^i = \mathbb{R}^N_+$. Let $\{x^{o_i}, i \in H\} \in \text{core}(Q)$ for all $Q = 1, 2, 3, 4, \ldots$. Then $\{x^{o_i}, i \in H\}$ is a competitive equilibrium allocation for $Q-H$, for all Q.

Proof TBA QED