Inversion and Implicit Functions: Introduction

Theme:
Whatever you know about linear functions is true locally about differentiable functions.
Inverse Functions: Review

1. One variable, linear case: \(f(x) = ax \). Invertible if and only if \(a \neq 0 \).

2. General:

Definition
We say the function \(f: X \rightarrow Y \) is one-to-one if

\[
f(x) = f(x') \implies x = x'
\]

Recall \(f^{-1}(S) = \{x \in X \mid f(x) \in S\} \) for \(S \subset Y \).

Now let’s consider \(f^{-1}(y) \) for \(y \in Y \). Is \(f^{-1} \) a function?

If \(f \) is one-to-one, then \(f^{-1}: f(X) \rightarrow X \) is a function.

3. \(f \) is generally not invertible as the inverse is not one-to-one. But in the neighborhood (circle around a point \(x_0 \)), it may be strictly increasing so it is one-to-one locally and therefore locally invertible.
Theorem

If \(f : \mathbb{R} \to \mathbb{R} \) *is* \(C^1 \) *and* \(f'(x_0) \neq 0 \), *then* \(\exists \varepsilon > 0 \) *such that* \(f \) *is strictly monotone on the open interval* \((x_0 - \varepsilon, x_0 + \varepsilon)\).
Local invertibility defines:

The function $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally invertible at x_0 if there is a $\delta > 0$ and a function $g : B_\delta(f(x_0)) \to \mathbb{R}^n$ such that $f \circ g(y) \equiv y$ for $y \in B_\delta(f(x_0))$ and $g \circ f(x) \equiv x$ for $x \in B_\delta(x_0)$.

So f is locally invertible at x_0, then we can define g on $(x_0 - \varepsilon, x_0 + \varepsilon)$ such that

$$g(f(x)) = x$$

In the one-variable case, a linear function has (constant) derivative. When derivative is non zero and not equal to zero, the function is invertible (globally).

Differentiable functions with derivative not equal to zero at a point are invertible locally.

For one variable functions, if the derivative is always non zero and continuous, then the inverse can be defined on the entire range of the function.
Higher Dimensions

- When is $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ invertible?
- Linear functions can be represented as multiplication by a square matrix.
- Invertibility of the function is equivalent to inverting the matrix.
- A linear function is invertible (globally) if its matrix representation is invertible.
Theorem

If \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is differentiable at \(x_0 \) and \(Df(x_0) \) is invertible, then \(f \) is locally invertible at \(x_0 \). Moreover, the inverse function, \(g \) is differentiable at \(f(x_0) \) and \(Dg(f(x_0)) = (Df(x_0))^{-1} \).

The theorem asserts that if the linear approximation of a function is invertible, then the function is invertible locally. Unlike the one variable case, the assumption that \(Df \) is globally invertible does not imply the existence of a global inverse.
One Variable Again

\[g'(y_0) = \frac{1}{f'(x_0)} \]

so the formula for the derivative of the inverse generalizes the one-variable formula.
Given $G : \mathbb{R}^{m+n} \rightarrow \mathbb{R}^n$. Let $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$. Can we solve the system of equations: $G(x, z) = 0$?
m equations in $n + m$ variables.
Search for a solution to the equation that gives z as a function of x.
The problem of finding an inverse is really a special case where $n = m$ and $G(x, z) = f(x) - z$.
1. Equations characterize an economic equilibrium (market clearing price; first-order condition)

2. x variables are parameters.

3. “Solve” a model for a fixed value of the parameters.

4. What happens when parameters change?

5. The implicit function theorem says (under a certain condition), if you can solve the system at a given x_0, then you can solve the system in a neighborhood of x_0. Furthermore, it gives you expressions for the derivatives of the solution function.
Why Call it Implicit Function Theorem?

- If you could write down the system of equations and solve them to get an explicit representation of the solution function, great.
- ... explicit solution and a formula for solution for derivatives.
- Life is not always so easy.
- IFT assumes existence of solution and describes “sensitivity” properties even when explicit formula is not available.
Examples

\[f : \mathbb{R}^2 \rightarrow \mathbb{R} \]

Suppose \(f(x, z) = 0 \) is an identity relating \(x \) and \(z \). How does \(z \) depend on \(x \)?

\[f(x, z) = x^3 - z = 0 \]

Explicit solution possible.

\[x^2 z - z^2 + \sin x \log z + \cos x = 0, \]

then there is no explicit formula for \(z \) in terms of \(x \).
Lower-order case

If solving $f(x, z) = 0$ gives us a function

$$g : (x_0 - \varepsilon, x_0 + \varepsilon) \longrightarrow (z_0 - \varepsilon, z_0 + \varepsilon)$$

such that

$$f(x, g(x)) = 0,$$

$\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon)$
then we can define

$$h : (x_0 - \varepsilon, x_0 + \varepsilon) \longrightarrow \mathbb{R}$$

by

$$h(x) = f(x, g(x))$$

$h(x) = 0$ for an interval, then $h'(x) = 0$ for any x in the interval.
Also . . .

\[h'(x) = D_1 f(x, g(x)) + D_2 f(x, g(x)) Dg(x) \]

Since this expression is zero, it yields a formula for \(Dg(x) \) provided that \(D_2 f(x, g(x)) \neq 0 \).
Explicit Calculation of Implicit Function Theorem Formula

If f and g are differentiable, we calculate

$$y = \begin{pmatrix} x \\ z \end{pmatrix}, \quad G(x) = \begin{pmatrix} x \\ g(x) \end{pmatrix} \quad h(x) = [f \circ G](x)$$

$$h'(x) = Df(x_0, z_0)DG(x_0)$$
$$= \left(\frac{\partial f}{\partial x}(x_0, z_0), \frac{\partial f}{\partial z}(x_0, z_0) \right) \cdot \begin{pmatrix} 1 \\ g'(x_0) \end{pmatrix}$$
$$= \frac{\partial f}{\partial x}(x_0, z_0) + \frac{\partial f}{\partial z}(x_0, z_0)g'(x_0)$$
$$= 0$$

This gives us

$$g'(x_0) = -\frac{\frac{\partial f}{\partial x}(x_0, z_0)}{\frac{\partial f}{\partial z}(x_0, z_0)}$$
More Generally

\[f : \mathbb{R} \times \mathbb{R}^m \rightarrow \mathbb{R}^n \]

\[f(x, z) = \begin{pmatrix}
 f_1(x, z) \\
 f_2(x, z) \\
 \vdots \\
 f_m(x, z)
\end{pmatrix} =
\begin{pmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix} = 0 \]

where \(x \in \mathbb{R} \), and \(z \in \mathbb{R}^m \).

And we have

\[g : \mathbb{R} \rightarrow \mathbb{R}^m \]

\[z = g(x) \]
IFT

Theorem

Suppose

\[f : \mathbb{R} \times \mathbb{R}^m \rightarrow \mathbb{R}^m \]

is \(C^1 \) and write \(f(x, z) \) where \(x \in \mathbb{R} \) and \(z \in \mathbb{R}^m \). Assume

\[
|D_z f(x_0, z_0)| = \begin{vmatrix}
\frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_m} \\
\frac{\partial f_2}{\partial z_1} & \cdots & \frac{\partial f_2}{\partial z_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial z_1} & \cdots & \frac{\partial f_m}{\partial z_m}
\end{vmatrix} \neq 0
\]

and

\[f(x_0, z_0) = 0. \]

There exists a neighborhood of \((x_0, z_0)\) and a function \(g : \mathbb{R} \rightarrow \mathbb{R}^m \) defined on the neighborhood of \(x_0 \), such that \(z = g(x) \) uniquely solves \(f(x, z) = 0 \) on this neighborhood.
Furthermore the derivatives of g are given by

$$Dg(x_0) = -[D_z f(x_0, z_0)]^{-1} D_x f(x_0, z_0)$$
1. This is hard to prove.
2. A standard proof uses a technique (contraction mappings) that you’ll see in macro.
3. Hard part: Existence of the function g that gives z in terms of x.
4. Computing the derivatives of g is a simple application of the chain rule.
The Easy Part

\[f(x, g(x)) = 0 \]

And we define

\[H(x) \equiv f(x, g(x)) \]

And thus

\[
D_x H(x) = D_x f(x_0, z_0) + D_z f(x_0, z_0)D_x g(x_0) = 0
\]

\[\Rightarrow D_z f(x_0, z_0)D_x g(x_0) = -D_x f(x_0, z_0) \]

Multiply both sides by the inverse:

\[
[D_z f(x_0, z_0)]^{-1} \cdot [D_z f(x_0, z_0)] \cdot D_x g(x_0) = -[D_z f(x_0, z_0)]^{-1} D_x F(x_0, z_0)
\]

\[= I_m \]

\[\Rightarrow D_x g(x_0) = -[D_z f(x_0, z_0)]^{-1} D_x F(x_0, z_0) \]
Reminders

1. The implicit function theorem thus gives you a guarantee that you can (locally) solve a system of equations in terms of parameters.
2. Theorem is a local version of a result about linear systems.
3. Above, only one parameter.
4. In general, parameters $x \in \mathbb{R}^n$ rather than $x \in \mathbb{R}$.
IFT - the real thing

Theorem

Suppose

\[f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^m \]

is \(C^1 \) and write \(f(x, z) \) where \(x \in \mathbb{R}^n \) and \(z \in \mathbb{R}^m \).

Assume

\[
|D_z f(x_0, z_0)| = \begin{vmatrix}
\frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial z_1} & \cdots & \frac{\partial f_m}{\partial z_m}
\end{vmatrix}
\neq 0
\]

and

\[f(x_0, z_0) = 0. \]

There exists a neighborhood of \((x_0, z_0)\) and a function \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) defined on the neighborhood of \(x_0 \), such that \(z = g(x) \) uniquely solves \(f(x, z) = 0 \) on this neighborhood.
Furthermore the derivatives of g are given by implicit differentiation (use chain rule)

$$Dg(x_0) = -[D_z f(x_0, z_0)]^{-1} D_x f(x_0, z_0)$$
More Comments

1. Verifying the formula is just the chain rule.
2. Keep track of the dimensions of the various matrices.
3. Keep in mind the intuitive idea that you usually need exactly m variables to solve m equations is helpful.
4. This means that if the domain has n extra dimensions, typically you will have n parameters – the solution function will go from \mathbb{R}^n into \mathbb{R}^m.
5. The implicit function theorem proves that a system of equations has a solution if you already know that a solution exists at a point.
6. Repeat: Theorem says: If you can solve the system once, then you can solve it locally.
7. Theorem does not guarantee existence of a solution.
8. In this respect linear case is special.
9. The theorem provides an explicit formula for the derivatives of the implicit function. Don’t memorize it. Compute the derivatives of the implicit function by “implicitly differentiating” the system of equations.
Example

A monopolist produces a single output to be sold in a single market. The cost to produce q units is $C(q) = q + .5q^2$ dollars and the monopolist can sell q units for the price of $P(q) = 4 - \frac{q^5}{6}$ dollars per unit. The monopolist must pay a tax of one dollar per unit sold.

1. Show that the output $q^* = 1$ that maximizes profit (revenue minus tax payments minus production cost).

2. How does the monopolist’s output change when the tax rate changes by a small amount?
The monopolist picks \(q \) to maximize:

\[
q(4 - \frac{q^5}{6}) - tq - q - .5q^2.
\]

The first-order condition is

\[
q^5 + q - 3 + t = 0
\]

and the second derivative of the objective function is \(-5q^4 - 1 < 0\).

Conclude: at most one solution to this equation; solution must be a (global) maximum.
Plug in \(q = 1 \) to see that this value does satisfy the first-order condition when \(t = 1 \).

How the solution \(q(t) \) to:

\[
q^5 + q - 3 + t = 0
\]

varies as a function of \(t \) when \(t \) is close to one?

We know that \(q(1) = 1 \) satisfies the equation.

LHS of the equation is increasing in \(q \), so IFT holds.

Differentiation yields:

\[
q'(t) = -\frac{1}{5q^4 + 1}.
\] \hspace{1cm} (1)

In particular, \(q'(1) = -\frac{1}{6} \).
To obtain the equation for $q'(t)$ you could use the general formula or differentiate the identity:

$$q(t)^5 + q(t) - 3 + t \equiv 0$$

with respect to one variable (t) to obtain

$$5q(t)q'(t) + q'(t) + 1 = 0,$$

and solve for $q'(t)$.

Equation is linear in q'.
Implicit Differentiation

- This technique of “implicit differentiation” is fully general.
- In the example you have $n = m = 1$ so there is just one equation and one derivative to find.
- In general, you will have an identity in n variables and m equations.
- If you differentiate each of the equations with respect to a fixed parameter, you will get m linear equations for the derivatives of the m implicit functions with respect to that variable.
- The system will have a solution if the invertibility condition in the theorem is true.