Instructions. Try to answer all 3 problems. (Read all of the questions now and start on the ones that seem easiest). Make your answers as complete and rigorous as possible. When you compute a derivative say “This step follows from the chain rule” or “Because the derivative of a sum is the sum of the derivatives . . .”. When you take a limit, invoke the necessary results (or give a direct proof with εs).

Informal and intuitive arguments are better than nothing.

1. Let f be a differentiable function. Calculate the derivative of the function h defined in each of the problems below. If you need additional assumptions, make them explicit:

(a) $h(x) = \log f(x^2)$
(b) $h(x) = f(\log x)$
(c) $h(x) = e^{\log x}$

2. Calculate the limits indicated below.

(a) $\lim_{n \to \infty} \frac{n^2 - 1}{3n^3 + 6}$
(b) $\lim_{x \to 5} \frac{x^2 - 2}{x + 5}$
(c) $\lim_{x \to 0^+} x \log x$.

3. Let $f : [0,1] \to \mathbb{R}$.

(a) Prove that if

$$|a - b|^{1/2} \geq |f(a) - f(b)| \text{ for all } a, b \in [0,1],$$

then f is continuous on $(0,1)$.

(b) Give an example of a non-constant function f that satisfies (??).

[Prove that your example satisfies the condition.]