Structural vector autoregressions 2

A. Problem statement

Reduced-form (can easily estimate):
\[y_t = \mathbf{c} + \Phi_1 y_{t-1} + \cdots + \Phi_p y_{t-p} + \varepsilon_t \]
\[E(\varepsilon_t \varepsilon_t') = \Omega \]
\[\frac{\partial y_t}{\partial \varepsilon_t} = \mathbf{\Psi} \]

Structural model of interest:
\[\mathbf{B}_0 y_t = \lambda + \mathbf{B}_1 y_{t-1} + \cdots + \mathbf{B}_p y_{t-p} + \mathbf{u}_t \]
\[\varepsilon_t = \mathbf{B}_0^{-1} \mathbf{u}_t \]
\[\frac{\partial y_{ts}}{\partial \mathbf{u}_t} = \frac{\partial y_{ts}}{\partial \varepsilon_t} \frac{\partial \varepsilon_t}{\partial \mathbf{u}_t} = \mathbf{\Psi}_s \mathbf{B}_0^{-1} \]

Problem: How to estimate \(\mathbf{B}_0^{-1} \)
(or at least one column of \(\mathbf{B}_0^{-1} \))
Example: if
\[
B_0 = \begin{bmatrix}
 b^{(1,1)}_0 & b^{(1,2)}_0 & 0 & 0 & 0 \\
 b^{(2,1)}_0 & b^{(2,2)}_0 & 0 & 0 & 0 \\
 b^{(3,1)}_0 & b^{(3,2)}_0 & 1 & 0 & 0 \\
 b^{(4,1)}_0 & b^{(4,2)}_0 & b^{(4,3)}_0 & b^{(4,4)}_0 & b^{(4,5)}_0 \\
 b^{(5,1)}_0 & b^{(5,2)}_0 & b^{(5,3)}_0 & b^{(5,4)}_0 & b^{(5,5)}_0
\end{bmatrix}
\]

Then \(\frac{\partial y_t}{\partial \alpha_0} = \hat{\Psi} \hat{p}^{-1} \hat{p}_3 \)

for \(\hat{p}_3 \) col 3 and \(\hat{p}^{-1} \) row 3 col 3 of

Cholesky factor \(\hat{\Omega} = \hat{P} \hat{P}' \)

Alternatively, with zero or other restrictions solve
\(\hat{\Omega} = \hat{B}_0^{-1} \hat{D} (\hat{B}_0^{-1})' \)

Theme today: what alternative strategies are available for identifying \(\Psi, B_0^{-1} \)?

Structural vector autoregressions 2

A. Problem statement
B. Identification using long-run restrictions
x log of productivity
(log GDP minus log civilian labor force)

n log of civilian labor force

\[y_t = \begin{bmatrix} \Delta x_t \\ \Delta n_t \end{bmatrix} \sim I(0) \]

VAR (reduced-form)
\[y_t = c + \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \cdots + \Phi_p y_{t-p} + \varepsilon_t \]
\[E(\varepsilon_t) = 0 \]
Structural model:
\[B_0 y_t = b_0 + B_1 y_{t-1} + B_2 y_{t-2} + \cdots + B_p y_{t-p} + u_t \]
\[E(u_t u_t') = I_2 \quad \text{(normalization)} \]

Relation between representations:
\[u_t = B_0 e_t \]
\[\Omega = B_0' (B_0')' \]

Premultiply structural model, \[B(L) y_t = b_0 + u_t \]
by \(C(L) = B(L)^{-1} \):
\[y_t = \mu + C_0 u_t + C_1 u_{t-1} + C_2 u_{t-2} + \cdots \]
which gives structural MA representation
$u_t = \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$

- u_{1t}: technology shock
- u_{2t}: demand disturbances

Assumption: demand shocks can not have a permanent effect on productivity

$$\lim_{s \to \infty} \frac{\partial X_{t+s}}{\partial u_{2t}} = 0$$

Notice

$$\frac{\partial X_{t+s}}{\partial u_{2t}} = \frac{\partial (x_{t+s} - x_{t+s-1})}{\partial u_{2t}} + \frac{\partial (x_{t+s-1} - x_{t+s-2})}{\partial u_{2t}} + \cdots + \frac{\partial (x_s - x_{s-1})}{\partial u_{2t}}$$
\[
\begin{align*}
y_t &= \begin{bmatrix} x_t - x_{t-1} \\ n_t - n_{t-1} \end{bmatrix} \\
\frac{\partial(x_t - x_{t-1})}{\partial u_{2t}} &= \frac{\partial y_{1t}}{\partial u_{2t}} \\
y_{it} &= \mu + C_0 u_i + C_1 u_{i-1} \\
&\quad + C_2 u_{i-2} + \cdots \\
\frac{\partial y_{1+m}}{\partial u_i} &= C_m \\
\frac{\partial x_{1+s}}{\partial u_{2t}} &= \frac{\partial(x_{1+s} - x_{1+s-1})}{\partial u_{2t}} + \frac{\partial(x_{1+s-1} - x_{1+s-2})}{\partial u_{2t}} \\
&\quad + \cdots + \frac{\partial(x_t - x_{t-1})}{\partial u_{2t}} \\
is given by the row 1 column 2 element of
C_0 + C_1 + C_2 + \cdots + C_t \\
\lim_{s \to \infty} \frac{\partial x_{1+s}}{\partial u_{2t}} &= 0 \\
requires that the following matrix is lower triangular:
C_0 + C_1 + C_2 + \cdots = C(1)
Goal: find structural disturbances u_t that are a linear combination of the VAR innovations, $u_t = H_{6t}$, such that:

(1) $E(u_t, u_t') = I_2$
 $\Rightarrow H\Omega H' = I_2$
 $\Rightarrow \Omega = (H^{-1})(H^{-1})'$

(2) $y_t = \mu + C(L)u_t$

(3) $C(1)$ is lower triangular
\[
\Phi(L)y_t = c + \varepsilon_t \\
\varepsilon_t = H^{-1}u_t \\
\Rightarrow \Phi(L)y_t = c + H^{-1}u_t \\
\Rightarrow y_t = \mu + [\Phi(L)]^{-1}H^{-1}u_t \\
y_t = \mu + C(L)u_t \\
\Rightarrow C(1) = [\Phi(1)]^{-1}H^{-1}
\]

\[
C(1) = [\Phi(1)]^{-1}H^{-1} \\
C(1)[C(1)]' = \\
[\Phi(1)]^{-1}H^{-1}(H^{-1})'[\Phi(1)]^{-1}'
\]

\[
C(1)[C(1)]' = \\
[\Phi(1)]^{-1}\Omega[\Phi(1)]^{-1}'
\]

Can estimate: \(\Phi(1)\) and \(\Omega\) from VAR
Want: Lower triangular matrix $\mathbf{C}(1)$ such that
\[\mathbf{C}(1)[\mathbf{C}(1)]' = [\Phi(1)]^{-1}\Omega[\Phi(1)]^{-1}'. \]

Conclusion: $\mathbf{C}(1)$ is Cholesky factor of $[\Phi(1)]^{-1}\Omega[\Phi(1)]^{-1}'.

To get \mathbf{H} we then use fact that
\[\mathbf{C}(1) = [\Phi(1)]^{-1}\mathbf{H}^{-1}, \]
\[\mathbf{H} = [\mathbf{C}(1)]^{-1}[\Phi(1)]^{-1}. \]
Summary:

(1) Estimate VAR’s by OLS
\[y_t = \begin{bmatrix} \Delta x_t \\ \Delta n_t \end{bmatrix} \]
\[y_t = c + \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \cdots + \Phi_p y_{t-p} + \varepsilon_t \]
\[\hat{\Omega} = T^{-1} \sum_{t=1}^T \varepsilon_t \varepsilon_t' \]

(2) Find Cholesky factor or lower triangular matrix \(\hat{C} \) such that
\[\hat{C} \hat{C}' = \hat{\Omega} \hat{\Omega}' \]
\[\hat{Q} = (I_2 - \hat{\Phi}_1 - \hat{\Phi}_2 - \cdots - \hat{\Phi}_p)^{-1} \]

(3) Technology shock and demand shock for date \(t \) are first and second elements of
\[\hat{u}_t = \hat{B}_0 \hat{\varepsilon}_t \]
where
\[\hat{B}_0 = \hat{C}^{-1} \hat{Q} \]
(4) Effect of tech shock or demand shock at date t on $y_{i,t}$ are given by first and second columns, respectively, of $\frac{\partial y_{i,t}}{\partial u_t} = \Psi_i B_0^{-1}$.

More generally, if y_i is n-dimensional vector of differences, long-run effect of structural shock j on level of y_i is given by row i, col j of $[\Phi(1)]^{-1}B_0^{-1}$.

If this is postulated to be zero for some subset of i and j can use this as set of restrictions on B_0 along with zero or other restrictions to maximize $(T/2) \log |B_0|^2 - (T/2) \log |D| - (T/2) \text{trace} \left\{ B_0' D^{-1} B_0 \hat{\Omega} \right\}$.
Drawbacks:
(1) \(\hat{\Phi} = (I_2 - \hat{\Phi}_1 - \hat{\Phi}_2 - \cdots - \hat{\Phi}_p)^{-1} \)
is estimated poorly, sensitive to \(p \)

(2) technology shock could be temporary (e.g., delay in adoption of discovered technology)
(3) demand shock could be permanent (e.g., lost human capital)

Structural vector autoregressions 2

A. Problem statement
B. Identification using long-run restrictions
C. Identification using high-frequency data
Faust, Swanson, and Wright (JME, 2004)

Observe: some financial variables move dramatically after Fed announces target change

Inference: these changes reflect the effects of policy

Goal: can we somehow use this to identify VAR?

d particular day in sample

t(d) month associated with day *d*

f^h_d h-month fed funds futures rate on day *d*

r_t avg. fed funds rate for month *t*

assumption: *f^h_d* = *E_d(r_{t(d)+h})*

Implications:

\[
\frac{f^0_d - f^0_{d-1}}{f^1_d - f^1_{d-1}} = \frac{\partial E_{t(d)}r_{t+h}}{\partial u_f}
\]

where *u_f* is change in fed policy in month *t*
\[
\frac{f^h_d - f^h_{d-1}}{f^0_d - f^0_{d-1}} = \frac{\partial E_{r,t+h}}{\partial u_t}
\]

Average value for all days \(d\) on which there is a target change gives estimate of

\[\gamma_h = \frac{\partial E_{r,t+h}}{\partial u_t}\]

VAR (reduced-form)

\[
y_t = c + \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \cdots + \Phi_{p} y_{t-p} + \varepsilon_t
\]

Structural model:

\[
B_0 y_t = b_0 + B_1 y_{t-1} + B_2 y_{t-2} + \cdots + B_{p} y_{t-p} + u_t
\]

Relation:

\[u_t = B_0 \varepsilon_t\]

Suppose shock to fed policy is represented by

\[
u_t = e_t^1 u_t = e_t^1 B_0 \varepsilon_t
\]
Reduced-form MA representation:

\[y_t = \mu + \varepsilon_t + \Psi_1 \varepsilon_{t-1} + \Psi_2 \varepsilon_{t-2} + \cdots \]

\[\varepsilon_t = y_t - \hat{y}_{t|t-1} \]

\[y_t = \mu + B_0^{-1} B_0 \varepsilon_t + \Psi_1 B_0^{-1} B_0 \varepsilon_{t-1} + \Psi_2 B_0^{-1} B_0 \varepsilon_{t-2} + \cdots \]

\[y_t = \mu + B_0^{-1} u_t + \Psi_1 B_0^{-1} u_{t-1} + \Psi_2 B_0^{-1} u_{t-2} + \cdots \]

\[\frac{\hat{C}_{r_{1h}}}{\hat{u}_R} = e_4' \Psi_h b^{(4)} = \gamma_h \]

where \(b^{(4)} \) is fourth column of \(B_0^{-1} \)
\[
\frac{\partial r_{12h}}{\partial u_{ht}} = e_4 \Psi_h b^{(4)} = \gamma_h
\]

Can estimate:
- \(\Psi_h \) from estimated monthly VAR
- \(\gamma_h \) from daily target change data

\[
\hat{\gamma}_h = \text{average} \frac{f_{d}^{h} - f_{d-1}^{h}}{f_{d}^{h} - f_{d-1}^{h}}
\]

\[
e_4 \Psi_h b^{(4)} = \gamma_h
\]

Let \(\psi_{4h} = e_4 \Psi_h \)

Then:
- \(\psi_{3h} b^{(4)} = \gamma_0 \)
- \(\psi_{2h} b^{(4)} = \gamma_1 \)
- \(\vdots \)
- \(\psi_{4h,n-1} b^{(4)} = \gamma_{n-1} \)
Let \(H = \begin{bmatrix} \Psi_{40} \\ \Psi_{41} \\ \vdots \\ \Psi_{4,n-1} \end{bmatrix} \) and \(\gamma = \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{n-1} \end{bmatrix} \).

Both \(H \) and \(\gamma \) can be estimated.

If rows of \(\hat{H} \) are linearly independent, then

\[\hat{b}^{(4)} = \hat{H}^{-1} \hat{\gamma} \]
Summary:
We assumed that we can use daily interest rate data to infer effect of policy shock on future interest rates:

\[
\frac{\hat{r}_{t+h}}{\hat{u}_{\beta}}
\]

But now we can calculate effect of policy shock on any variable:

\[
\frac{\hat{Y}_{t+\gamma}}{\hat{u}_{\beta}} = \Psi \, b^{(4)}
\]

Problem: the matrix \(\hat{H} \) does not appear to have full rank.
Solution: Calculate confidence sets under partial identification rather than point estimates.
\[\begin{bmatrix} \hat{\Psi}_{40} \\ \hat{\Psi}_{41} \\ \vdots \\ \hat{\Psi}_{4,n-1} \end{bmatrix} \]

\[T^{1/2} \left[\text{vec}(\hat{H} - H_0) \right] \overset{L}{\rightarrow} N(0, R) \]

* \(R \) can be consistently estimated from VAR distribution
 (e.g., simulate draws from asymptotic distribution of \(\{ \hat{\phi}_t \} \) and calculate \(\{ \hat{\Psi}_t \} \) for each draw)

\[T^{1/2} (\hat{\gamma} - \gamma_0) \overset{L}{\rightarrow} N(0, G) \]

* \(G \) can be consistently estimated from covariance of futures observations
$H_0: \quad \mathbf{H} \mathbf{b}^{(4)}_{(p\times(n+1))} = \mathbf{y}_{(p\times1)}$

If $\mathbf{b}^{(4)}$ is the true value, then

$S(\mathbf{b}^{(4)}) = T(\hat{\mathbf{H}}\mathbf{b}^{(4)} - \hat{\mathbf{y}})' \times$

$\left[(\mathbf{b}^{(4)'} \otimes \mathbf{I}_g) \hat{\mathbf{R}}(\mathbf{b}^{(4)} \otimes \mathbf{I}_g) + \hat{\mathbf{G}} \right]^{-1} \times (\hat{\mathbf{H}}\mathbf{b}^{(4)} - \hat{\mathbf{y}}) \sim \chi^2(g)$

The set \mathcal{A} of all values $\mathbf{b}^{(4)}$ such that

$S(\mathbf{b}^{(4)}) \leq c$

where c is 95% critical value for $\chi^2(g)$ then is a 95% confidence set for $\mathbf{b}^{(4)}$

For statistic such as structural impulse-response coefficients, use Bonferroni to find outer bounds on 90% confidence interval.
e.g., let \(h_{is} = \text{row } i \) element of \(\Psi_s b^{(4)} \)

(1) For any given \(b^{(4)} \) use distribution of \(\Psi_s \) to find 95% upper and lower bounds \(h_{is}^{(u)}(b^{(4)}) \) and \(h_{is}^{(l)}(b^{(4)}) \)

(2) Find the value \(b^{(u)} \in A \) for which \(h_{is}^{(u)}(b^{(4)}) \) is largest and the value \(b^{(l)} \in A \) for which \(h_{is}^{(l)}(b^{(4)}) \) is smallest.

(3) 90% confidence interval for \(h_{is} \) is \([h_{is}^{(l)}(b^{(4)}), h_{is}^{(u)}(b^{(4)})]\)

Structural vector autoregressions 2

A. Problem statement
B. Identification using long-run restrictions
C. Identification using high-frequency data
D. Identification using external instruments
Stock and Watson (BPEA, 2012)

Suppose:
(1) structural shocks \(u_{it}, \ldots, u_{nt} \) are mutually uncorrelated
(2) have instrument \(z_{it} \) that is relevant
\[
E(z_{it}u_{it}) = \alpha_i \neq 0 \text{ and valid}\]
\[
E(z_{it}u_{jt}) = 0 \quad \text{for } i \neq j
\]

Under the above assumptions,
\[
E(\varepsilon_i z_{it}) = B_0^{-1} E(u_i z_{it}) = B_0^{-1} \alpha e_i
\]
so can estimate \(i \)th column of \(B_0 \) (up to unknown constant) by
\[
\tilde{b}^{(i)} = T^{-1} \sum_{t=1}^{T} \hat{\varepsilon}_i z_{it}
\]

Can normalize by defining shock \(u_{it} \) to be something that increases \(y_{it} \) by one unit:
\[
\hat{b}^{(i)} = \check{b}^{(i)} \hat{B}_i
\]

\[
\frac{\partial y_{it}}{\partial u_a} = \hat{\Psi}_i \check{b}^{(i)}
\]
Can also estimate \hat{u}_{it} as follows.
Suppose we observed u_t and regressed z_{it} on u_t:

$$z_{it} = \pi' u_t + v_{it}$$
$$\text{plim} \, \hat{\pi}_i = (a/d_{ii})e_i$$

If instead we regressed z_{it} on ε_t,

$$z_{it} = \lambda' \varepsilon_t + v_{it}$$
this would just be rotation of above regression since $\varepsilon_t = B_0^{-1} u_t$.

Hence fitted values from regression
of z_{it} on $\hat{\varepsilon}$, give consistent estimate
of $(a/d_{ii})u_{it}$.
Illustration:
Using high-frequency market response to Fed announcements to identify effects of unconventional monetary policy (Gertler and Karadi, 2013)

Event study methodology

- Nov 25, 2008: LSAP announced
- Dec 1, 2008: Bernanke: “could purchase longer-term Treasury… in substantial quantities”
- Dec 16, 2008: FOMC “stands ready to expand its purchases of agency debt and mortgage-backed securities”
- Mar 18, 2009: Announced new purchases of MBS and agency debt

10-year yield fell 170 bp Nov 3 - Dec 31

• fell 61 bp on 3 indicated dates
Oil price declined 30% Nov 3 - Dec 31

- fell 19% on 3 indicated dates
$$z_{it} = \text{change in 1-year yield within 30-minute window of key Fed announcement in month } i (= 0 \text{ if no event in month } i)$$

Source: Gertler and Karadi (2013)

Structural vector autoregressions 2

A. Problem statement
B. Identification using long-run restrictions
C. Identification using high-frequency data
D. Identification using external instruments
E. Identification using heteroskedasticity
Suppose y_t consists of high-frequency observations (e.g., daily changes in interest rates, exchange rates, stock prices, commodity prices)

$$y_t = c + \Phi_1 y_{t-1} + \cdots + \Phi_p y_{t-p} + \varepsilon_t$$

$\varepsilon_t = B_0^{-1} u_t$

$u_{1t} = \text{monetary policy shock}$

want to estimate $b^{(1)}$ (first column of B_0^{-1})

Suppose we believed that:

1. monetary policy shocks have higher variance on particular days

$$E(u_{1t}^2) = \begin{cases} d^{(0)}_{11} + \lambda & \text{if } t \in S \\ d^{(0)}_{11} & \text{if } t \notin S \end{cases}$$

Set S is known (e.g., FOMC dates)
(2) A monetary policy shock of given size would have the same effects on these dates as others.

(3) Variance and effects of other shocks same on these dates as others.

Then

\[
E(u_t, u'_t) = \begin{cases}
D + \lambda e_1 e_1' & \text{if } t \in S \\
D & \text{if } t \notin S
\end{cases}
\]

\[e_1 = \text{col } 1 \text{ of } I_n\]

\[
e_t = B_0^{-1} u_t = \sum_{i=1}^{n} b^{(i)} u_{it}
\]

\[
E(\varepsilon_t, \varepsilon'_t) = \begin{cases}
B_0'^{-1} D(B_0^{-1})' + \lambda b^{(1)}(b^{(1)})' & \text{if } t \in S \\
B_0'^{-1} D(B_0^{-1})' & \text{if } t \notin S
\end{cases}
\]
\[\hat{\Omega}_1 = T_1^{-1} \sum_{t=1}^{T} \hat{\delta}_t \hat{\varepsilon}_t \delta(t \in S) \]
\[T_1 = \sum_{t=1}^{T} \delta(t \in S) \]
\[\hat{\Omega}_0 = T_0^{-1} \sum_{t=1}^{T} \hat{\delta}_t \hat{\varepsilon}_t \delta(t \notin S) \]
\[T_0 = \sum_{t=1}^{T} \delta(t \notin S) \]
\[\hat{\Omega}_1 - \hat{\Omega}_0 \xrightarrow{L} \lambda \text{b}^{(1)}(\text{b}^{(1)})' \]
so we can estimate \text{b}^{(1)} up to an unknown scale, e.g.: normalize \(\lambda = 1 \)

\[\sqrt{T_1} [\text{vech}(\hat{\Omega}_1) - \text{vech}(\Omega_1)] \]
\[\xrightarrow{L} \mathcal{N}(0, \text{V}_1) \]
element of \text{V}_1 corresponding to covariance between \(\hat{\sigma}_{ij} \) and \(\hat{\sigma}_{im} \)
given by \((\sigma_{ij} \sigma_{jm} + \sigma_{im} \sigma_{jm}) \)
(Hamilton, TSA, p. 301).

(1) Test null hypothesis that \(\Omega_0 = \Omega_1 \)
\[\hat{q}^* [\hat{\text{V}}_1/T_1 + \hat{\text{V}}_0/T_0]^{-1} \hat{q} \xrightarrow{L} \chi^2(n(n+1)/2) \]
\[\hat{q} = \text{vech}(\hat{\Omega}_1) - \text{vech}(\hat{\Omega}_0) \]
or bootstrap critical value
(should reject \(H_0 \) if assumptions correct)
(2) Estimate $\mathbf{b}^{(1)}$ by minimum chi square:

$$
\hat{\mathbf{b}}^{(1)} = \arg \min_{\mathbf{b}^{(1)}} \tilde{q} \left[\tilde{V}_1/T_1 + \tilde{V}_0/T_0 \right]^{-1} \tilde{q}
$$

$$
\tilde{q} = \tilde{q} - \text{vech}[\mathbf{b}^{(1)}(\mathbf{b}^{(1)})']
$$

$$
\frac{\partial \tilde{q} \tilde{\nu}^T}{\partial \tilde{\nu}} = \tilde{\Psi} \hat{\mathbf{b}}^{(1)}
$$

(3) Test null hypothesis restriction valid:

value of objective function asymptotically

$$
\chi^2(n(n - 1)/2) \text{ or bootstrap critical value}
$$

(should not reject H_0 if assumptions correct)

Structural vector autoregressions 2

A. Problem statement
B. Identification using long-run restrictions
C. Identification using high-frequency data
D. Identification using external instruments
E. Identification using heteroskedasticity
F. Identification using sign restrictions
Rubio-Ramirez, Waggoner, and Zha, Rev Econ Studies, 2010. We can achieve partial identification with sign restrictions such as: monetary policy shock raises short-term rate and lowers output and inflation.

Even if true Ω is known, we could only infer that $B_0^{-1} \in S(\Omega)$. $\Rightarrow B_0$ is set-identified, not point-identified.