V. Nonlinear state-space models

A. Extended Kalman filter

Linear state-space model:

State equation:
\[
\begin{align*}
\mathbf{\xi}_{t+1} &= \mathbf{F} \mathbf{\xi}_t + \mathbf{v}_{t+1} \\
&\quad \mathbf{v}_{t+1} \sim N(\mathbf{0}, \mathbf{Q}) \\
\mathbf{y}_t &= \mathbf{A}^T \mathbf{x}_t + \mathbf{H}^T \mathbf{\xi}_t + \mathbf{w}_t \\
&\quad \mathbf{w}_t \sim N(\mathbf{0}, \mathbf{R})
\end{align*}
\]

Nonlinear state-space model:

State equation:
\[
\begin{align*}
\mathbf{\xi}_{t+1} &= \mathbf{\phi}(\mathbf{\xi}_t) + \mathbf{v}_{t+1} \\
&\quad \mathbf{v}_{t+1} \sim N(\mathbf{0}, \mathbf{Q})
\end{align*}
\]

Observation equation:
\[
\begin{align*}
\mathbf{y}_t &= \mathbf{a}(\mathbf{x}_t) + \mathbf{h}(\mathbf{\xi}_t) + \mathbf{w}_t \\
&\quad \mathbf{w}_t \sim N(\mathbf{0}, \mathbf{R})
\end{align*}
\]
Suppose at date t we have approximation to distribution of ξ_t, conditional on

$\Omega_t = \{y_t, y_{t-1}, \ldots, y_1, x_t, x_{t-1}, \ldots, x_1\}$

$\xi_t|\Omega_t \sim N(\hat{\xi}_{t|t}, P_{t|t})$

goal: calculate $\hat{\xi}_{t+1|t+1}, P_{t+1|t+1}$

State equation:

$\xi_{t+1} = \phi(\xi_t) + v_{t+1}$

$\phi(\xi_t) \simeq \phi_t + \Phi_t (\xi_t - \hat{\xi}_{t|t})$

$\phi_t = \phi(\hat{\xi}_{t|t})$

$\Phi_t = \frac{\partial \phi(\xi_t)}{\partial \xi_t} \bigg|_{\xi_t = \hat{\xi}_{t|t}}$

Forecast of state vector:

$\xi_{t+1} = \phi_t + \Phi_t (\xi_t - \hat{\xi}_{t|t}) + v_{t+1}$

$\hat{\xi}_{t+1|t} = \phi_t = \phi(\hat{\xi}_{t|t})$

$P_{t+1|t} = \Phi_t P_{t|t} \Phi_t' + Q$
Observation equation:
\[y_t = a(x_t) + h(\xi_t) + w_t \]
\[h(\xi_t) \approx h_r + H'_r(\xi_t - \hat{\xi}_{t|t-1}) \]
\[h_t(\xi_{t|t-1}) \]
\[H'_r = \frac{\partial a(\xi_t)}{\partial \xi_t} \bigg|_{\xi_t = \hat{\xi}_{t|t-1}} \]

Note \(x_t \) is observed so no need to linearize \(a(x_t) \)

Approximating state equation:
\[\xi_{t+1} = \phi_t + \Phi_t(\xi_t - \hat{\xi}_{t|t}) + v_{t+1} \]

Approximating observation equation:
\[y_t = a(x_t) + h_t + H'_r(\xi_t - \hat{\xi}_{t|t}) + w_t \]

A state-space model with time-varying coefficients

Forecast of observation vector:
\[y_{t+1} = a(x_{t+1}) + h_{t+1} + \\
H'_{t+1}(\xi_{t+1} - \hat{\xi}_{t+1|t}) + w_{t+1} \]
\[\hat{y}_{t+1|t} = a(x_{t+1}) + h_{t+1} \]
\[= a(x_{t+1}) + h(\hat{\xi}_{t+1|t}) \]
\[E(y_{t+1} - \hat{y}_{t+1|t})(y_{t+1} - \hat{y}_{t+1|t})' = H'_{t+1}P_{t+1|t}H_{t+1} + R \]
Updated inference:

\[\hat{x}_{t+1|t} = \hat{x}_{t+1|t-1} + K_{t+1}(y_{t+1} - \hat{y}_{t+1|t-1}) \]

\[K_{t+1} = P_{t+1|t}H_{t+1}(H'_{t+1}P_{t+1|t}H_{t+1} + R)^{-1} \]

Start from \(\hat{x}_{0|0} \) and \(P_{0|0} \) reflecting prior information

Approximate log likelihood:

\[-\frac{Tn}{2} \log 2\pi - \frac{1}{2} \sum_{t=1}^{T} \log |\Omega_t| \]

\[-\frac{1}{2} \sum_{t=1}^{T} \varepsilon'_t \Omega_t^{-1} \varepsilon_t \]

\[\Omega_t = H'_t P_{t|t-1} H_t + R \]

\[\varepsilon_t = y_t - a(x_t) - h(\hat{x}_{t|t-1}) \]

V. Nonlinear state-space models

A. Extended Kalman filter

B. Particle filter
State equation:
\[\xi_{t+1} = \phi_t(\xi_t, v_{t+1}) \]

Observation equation:
\[y_t = h_t(\xi_t, w_t) \]

\(\phi_t(.) \) and \(h_t(.) \) known functions
(may depend on unknown \(\theta \))
\(\{w_t, v_t\} \) have known distribution (e.g.,
\(t.i.d. \), perhaps depend on \(\theta \))

\[\Omega_t = \{y_t, y_{t-1}, \ldots, y_1\} \]
\[\Lambda_t = \{\xi_t, \xi_{t-1}, \ldots, \xi_0\} \]

output for step \(t \):
\[p(\Lambda_t|\Omega_t) \]
represented by a series of particles:
\[\{\xi_t^{(i)}, \xi_{t-1}^{(i)}, \ldots, \xi_0^{(i)}\}_{i=1}^D \]

Particle \(i \) is associated with weight \(\hat{\omega}_t^{(i)} \)
such that particles can be used to
simulate draw from \(p(\Lambda_t|\Omega_t) \), e.g.
\[E(\hat{\xi}_{t-1}|\Omega_t) = \sum_{i=1}^D \xi_{t-1}^{(i)} \hat{\omega}_t^{(i)} \]
Output of step $t + 1$:

\[p(\Lambda_{t+1}|\Omega_{t+1}) \]

keep particles $\{\xi_{t}^{(i)}, \xi_{t-1}^{(i)}, \ldots, \xi_{0}^{(i)}\}_{i=1}^{D}$

append $\{\xi_{t+1}^{(i)}\}_{i=1}^{D}$ and recalculate

weights $\tilde{\omega}_{t_{i}}$

and as byproduct we get an estimate of

\[p(y_{t+1}|\Omega_{t}) \]

Method: Sequential Importance Sampling

At end of step t have generated

\[\Lambda_{t}^{(i)} = \{\xi_{t}^{(i)}, \xi_{t-1}^{(i)}, \ldots, \xi_{0}^{(i)}\} \]

from some known importance density

\[g_{t}(\Lambda_{t}|\Omega_{t}) = \tilde{g}_{t}(\xi_{t}|\Lambda_{t-1}, \Omega_{t})g_{t-1}(\Lambda_{t-1}|\Omega_{t-1}) \]

We will also have calculated (up to a constant that does not depend on ξ_{t})

the true value of $p_{t}(\Lambda_{t}|\Omega_{t})$

so weight for particle i is proportional to

\[\omega_{t}^{(i)} = \frac{p_{t}(\Lambda_{t}^{(i)}|\Omega_{t})}{g_{t}(\Lambda_{t}^{(i)}|\Omega_{t})} \]
\[\omega_t^{(i)} = \frac{p_t(\Lambda_t^{(i)}|\Omega_t)}{g_t(\Lambda_t^{(i)}|\Omega_t)} \]

Step t + 1:

\[p_{t+1}(\Lambda_{t+1}|\Omega_{t+1}) = \frac{p(y_{t+1}|\xi_{t+1})p(\xi_{t+1}|\xi_t)p_t(\Lambda_t|\Omega_t)}{p(y_{t+1}|\Omega_t)} \]

\[\propto p(y_{t+1}|\xi_{t+1})p(\xi_{t+1}|\xi_t) p_t(\Lambda_t|\Omega_t) \]

known from obs eq known from state eq known at \(t \)

\[\omega_{t+1}^{(i)} = \frac{p_{t+1}(\Lambda_{t+1}^{(i)}|\Omega_{t+1})}{g_{t+1}(\Lambda_{t+1}^{(i)}|\Omega_{t+1})} \]

\[\propto \frac{p(y_{t+1}^{(i)}|\xi_{t+1}^{(i)})p(\xi_{t+1}^{(i)}|\xi_t^{(i)})p_t(\Lambda_t^{(i)}|\Omega_t)}{g_{t+1}(\xi_{t+1}^{(i)}|\Lambda_t^{(i)},\Omega_{t+1})g_t(\Lambda_t^{(i)}|\Omega_t)} \]

\[= \frac{p(y_{t+1}^{(i)}|\xi_{t+1}^{(i)})p(\xi_{t+1}^{(i)}|\xi_t^{(i)})}{g_{t+1}(\xi_{t+1}^{(i)}|\Lambda_t^{(i)},\Omega_{t+1})} g_t(\Lambda_t^{(i)}|\Omega_t) \]

\[= \hat{\omega}_{t+1}^{(i)} \omega_t^{(i)} \]

\[\hat{\omega}_t^{(i)} = \frac{\omega_t^{(i)}}{\sum_{i=1}^D \omega_t^{(i)}} \]

\[\hat{E}(\xi_{t-1}|\Omega_t) = \sum_{i=1}^D \hat{\omega}_t^{(i)} \xi_{t-1} \]

\[\hat{P}(\xi_{1,t} > 0|\Omega_t) = \sum_{i=1}^D \hat{\omega}_t^{(i)} \delta_{[\xi_{1,t}>0]} \]
\[\tilde{\omega}_{t+1}^{(i)} = \frac{p(y_{t+1}|s_{t+1}^{(i)})p(s_{t+1}^{(i)}|z_{t+1}^{(i)})}{\tilde{g}_{t+1}(x_{t+1}^{(i)}|\Lambda_{t+1}, \Omega_{t+1})} \]

\[\hat{p}(y_{t+1}|\Omega_t) = \sum_{i=1}^{D} \tilde{\omega}_{t+1}^{(i)} \tilde{\omega}_{t}^{(i)} \]

\[\hat{\mathcal{L}}(\theta) = \sum_{t=1}^{T} \log \hat{p}(y_t|\Omega_{t-1}) \]

Classical: choose \(\theta \) to max \(\hat{\mathcal{L}}(\theta) \)

Bayesian: draw \(\theta \) from posterior which is proportional to

\[p(\theta) \exp[\hat{\mathcal{L}}(\theta)] \]

How start algorithm for \(t = 0? \)

Draw \(\xi_0^{(i)} \) from \(p(\xi_0) \)

(prior distribution or hypothesized unconditional distribution)

How choose importance density \(\tilde{g}_{t+1}(\xi_{t+1}|\Lambda_t, \Omega_{t+1})? \)

(1) Bootstrap filter

\[\tilde{g}_{t+1}(\xi_{t+1}|\Lambda_t, \Omega_{t+1}) = p(\xi_{t+1}^{(i)}|\xi_t) \]

known from state equation

\[\xi_{t+1} = \phi_t(\xi_t, v_{t+1}) \]

But better performance from adaptive filters that also use \(y_{t+1} \)
Note that for bootstrap filter
\[
\tilde{g}_{t+1}(\xi_{t+1}|\Lambda_t, \Omega_{t+1}) = p(\xi_{t+1}|\xi_t)
\]
\[
\tilde{\omega}_{t+1}^{(i)} = \frac{p(y_{t+1}|\xi_{t+1}^{(i)})p(\xi_{t+1}^{(i)}|\xi_t)}{\tilde{g}_{t+1}(\xi_{t+1}^{(i)}|\Lambda_t, \Omega_{t+1})}
\]
\[
= p(y_{t+1}|\xi_{t+1}^{(i)})
\]

Separate problem for particle filter:
one history \(\Lambda_t^{(i)}\) comes to dominate
the others (\(\tilde{\omega}_t^{(i)} \to 1\) for some \(i\))

Partial solution to degeneracy problem:
Sequential Importance Sampling
with Resampling
Before finishing step \(t\), now resample
\(\{\Lambda_t^{(j)}\}_{j=1}^D\) with replacement
by drawing from the distribution
\[
\Lambda_t^{(j)} = \begin{cases}
\Lambda_t^{(1)} & \text{with probability } \tilde{\omega}_t^{(1)} \\
& \vdots \\
\Lambda_t^{(D)} & \text{with probability } \tilde{\omega}_t^{(D)}
\end{cases}
\]
Result: repopulate $\Lambda_t^{(j)}$ by replicating most likely elements (weights for $\Lambda_t^{(j)}$ are now $\hat{\omega}_t^{(j)} = 1/D$).

(1) Resampling does not completely solve degeneracy because early-sample elements of $\Lambda_t^{(j)} = \{\xi_t^{(j)}, \xi_{t-1}^{(j)}, \ldots, \xi_0^{(j)}\}$ will tend to be the same for all j as t gets large.
(2) Does help in the sense that have full set of particles to grow from t forward.

(3) Have good inference about $p(\xi_{t-k}\mid\Omega_t)$ for small k.
(4) Have poor inference about $p(\xi_{t-k}\mid\Omega_t)$ for large k.
 (separate smoothing algorithm can be used if goal is $p(\xi_t\mid\Omega_T)$)
Summary of bootstrap particle filter with resampling:
(1) Get initial set of D particles for date $t = 0$
 (a) Set $\xi^{(0)}_{-100} = 0$ for $j = 1$
 (b) Generate $\xi^{(0)}_j = \phi_0(\xi^{(0)}_{j-1}, y^{(0)})$ for $t = -99, -98, \ldots, 0$
 (c) Value of $\xi^{(0)}_j$ is one value for particle $j = 1$ for date 0
 (d) repeat (a)-(c) for $j = 1, \ldots, D$ to populate $\{\xi^{(1)}_0, \xi^{(2)}_0, \ldots, \xi^{(D)}_0\}$

For any given θ set $\ell_0(\theta) = 0$ and for each $t = 1, 2, \ldots, T$ we then do the following:
(2) Compute $\tilde{\omega}_t^{(i)} = p(y_t|\xi_t^{(i)})$ and update estimate of log likelihood:
 $\ell_t(\theta) = \ell_{t-1}(\theta) + \log \{D^{-1} \sum_{j=1}^{D} \tilde{\omega}_t^{(j)}\}$

(3) Resample particles:
 (a) Calculate $\tilde{\omega}_{t+1}^{(i)} = \tilde{\omega}_t^{(i)}/\left\{ \sum_{j=1}^{D} \tilde{\omega}_t^{(j)} \right\}$
 (b) Draw $u \sim U(0, 1)$ and define $u^{(j)} = (u/D) + (j-1)/D$ for $j = 1, \ldots, D$.
 (c) Find the indexes i^1, \ldots, i^D such that $\sum_{k=1}^{i^j-1} \tilde{\omega}_{t+1}^{(k)} < u^{(j)} \leq \sum_{k=1}^{i^j} \tilde{\omega}_{t+1}^{(k)}$
(4) Generate new particles:
Draw $\xi_{t+1}^{(j)}$ from $\phi_{t+1}(\xi_{t}^{(j)}, \mathbf{v}_{t+1}^{(j)})$.
Repeat (2)-(4) for $t = 1, \ldots, T$.

What do we do with estimate of log likelihood $\ell_T(\theta)$?

Best approach: embed within random-walk Metropolis-Hastings to generate draws of θ from posterior $p(\theta|Y)$ using prior $p(\theta)$.

(1) Generate initial draw $\theta^{(m)}$ for $m = 1$ and calculate $\ell_T(\theta^{(m)})$ and $p(\theta^{(m)})$.
(2) Generate $\tilde{\theta}^{(m+1)} \sim N(\theta^{(m)}, c\Lambda)$ and calculate $\ell_T(\tilde{\theta}^{(m+1)})$ and $p(\tilde{\theta}^{(m+1)})$.
(3) Set

\[\theta^{(m+1)} = \begin{cases}
\bar{\theta}^{(m+1)} & \text{with prob } \alpha \\
\theta^{(m)} & \text{with prob } 1 - \alpha
\end{cases} \]

\[\alpha = \min \left\{ \frac{\ell_{\bar{\theta}}(\theta^{(m+1)})p(\bar{\theta}^{(m+1)})}{\ell_{\bar{\theta}}(\theta^{(m)})p(\theta^{(m)})}, 1 \right\}. \]

Also possible to improve a lot on particle bootstrap by using better proposal density. Example: use extended Kalman filter for proposal density in place of generating \(\xi_{t+1}^{(i)} \) from \(\phi_{\theta}(\xi_{t}^{(i)}, y_{t+1}) \).