Notes on Time Series Modeling

Garey Ramey
University of California, San Diego

January 2017

1 Stationary processes

Definition A stochastic process is any set of random variables \(y_t \) indexed by \(t \in T \):

\[
\{y_t\}_{t \in T}.
\]

These notes will consider discrete stochastic processes, i.e., processes indexed by the set of integers \(T = \{-2, -1, 0, 1, 2, \ldots\} \):

\[
\{y_t\}_{t = -\infty}^{\infty}.
\]

Moreover, each \(y_t \) is a real number. Stochastic processes will be referred to more concisely as "processes."

Definition The joint distribution of the process \(\{y_t\} \) is determined by the joint distributions of all finite subsets of \(y_t \)'s:

\[
F_{t_1, t_2, \ldots, t_n}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \Pr(y_{t_1} \leq \alpha_1, y_{t_2} \leq \alpha_2, \ldots, y_{t_n} \leq \alpha_n),
\]

for all possible collections of distinct integers \(t_1, t_2, \ldots, t_n \).

This distribution can be used to determine moments:

Mean: \(\mu_t = E(y_t) = \int y_t dF_t(y_t) \),

Variance: \(\gamma_{tt} = E((y_t - \mu_t)^2) = \int (y_t - \mu_t)^2 dF_t(y_t) \),
Autocovariance: \[\gamma_{jt} = E(y_t - \mu_t)(y_{t-j} - \mu_{t-j}) \]
\[= \int (y_t - \mu_t)(y_{t-j} - \mu_{t-j})dF_{t,t-j}(y_t, y_{t-j}). \]

Definition \(\{\varepsilon_t\} \) is a **white noise process** if, for all \(t \):

\[\mu_t = E(\varepsilon_t) = 0, \]
\[\gamma_{0t} = E(\varepsilon_t^2) = \sigma^2, \]
\[\gamma_{jt} = E(\varepsilon_t \varepsilon_{t-j}) = 0, \quad j \neq 0. \]

\(\{\varepsilon_t\} \) is a **Gaussian white noise process** if \(\varepsilon_t \sim N(0, \sigma^2) \) for all \(t \), i.e., \(\varepsilon_t \) is normally distributed with mean 0 and variance \(\sigma^2 \).

Definition \(\{y_t\} \) is an **AR(1)** process (first-order autoregressive) if

\[y_t = c + \phi y_{t-1} + \varepsilon_t, \]

where \(\{\varepsilon_t\} \) is white noise and \(c, \phi \) are arbitrary constants.

For an AR(1) process with \(|\phi| < 1 \):

\[\mu_t = \frac{c}{1 - \phi}, \quad \gamma_{0t} = \frac{\sigma^2}{1 - \phi^2}, \quad \gamma_{jt} = \frac{\phi^j \sigma^2}{1 - \phi^2}. \]

Note that the moments in the preceding examples do not depend on \(t \). This property defines an important class of processes.

Definition \(\{y_t\} \) is **covariance-stationary** or **weakly stationary** if \(\mu_t \) and \(\gamma_{jt} \) do not depend on \(t \).

For these notes we will simply say "stationary." Intuitively, for a stationary process the effects of a given realization of \(y_t \) die out as \(t \to \pm \infty \).
Definition} \{y_t\} \text{ is an } MA(\infty) \text{ process (infinite-order moving average)} \text{ if}

\[y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}, \]

where \{\varepsilon_t\} \text{ is white noise and } \mu, \psi_0, \psi_1, \ldots \text{ are arbitrary constants.}

A sufficient condition for stationarity of an \(MA(\infty) \) process is square summability of the coefficients \{\psi_j\}:

\[\sum_{j=0}^{\infty} \psi_j^2 < \infty. \]

2 \text{ Linear forecasting interpretation}

Consider the problem of forecasting \(y_t \) on the basis of past observations \(y_{t-1}, y_{t-2}, \ldots \). A linear forecasting rule predicts \(y_t \) as a linear function of \(n \) past observations \(y_{t-1}, y_{t-2}, \ldots, y_{t-n} \):

\[y_t = \sum_{j=1}^{n} g_j(n)y_{t-j}, \]

where \(g_1(n), \ldots, g_n(n) \) are constants. The forecast error and mean squared error of the forecast rule are given by:

\[FE = y_t - \sum_{j=1}^{n} g_j(n)y_{t-j}, \]
\[MSE = E(y_t - \sum_{j=1}^{n} g_j(n)y_{t-j})^2. \]

Definition} The linear projection of \(y_t \) on \(y_{t-1}, y_{t-2}, \ldots, y_{t-n} \) is the linear forecasting rule that satisfies

\[E(y_t - \sum_{j=1}^{n} g_j(n)y_{t-j})y_{t-s} = 0, \quad s = 1, 2, \ldots, \]

i.e., the forecast error is uncorrelated with \(y_{t-s} \) for all \(s > 0 \).

Let the linear projection be denoted by \(y_t^P(n) \):

\[y_t^P(n) = \sum_{j=1}^{n} g_j^P(n)y_{t-j}. \]

The associated forecast error is denoted by \(\varepsilon_t^P(n) \):

\[\varepsilon_t^P(n) = y_t - \sum_{j=1}^{n} g_j^P(n)y_{t-j}. \]
The linear projection has the following key property.

Proposition The linear projection minimizes MSE among all linear forecasting rules.

Proof For any linear forecasting rule, we may write

\[
\text{MSE} = E(y_t - \sum_{j=1}^{n} g_j(n)y_{t-j})^2
\]

\[
= E(y_t - y_t^P(n) + y_t^P(n) - \sum_{j=1}^{n} g_j(n)y_{t-j})^2
\]

\[
= E(y_t - y_t^P(n))^2 + E(y_t^P(n) - \sum_{j=1}^{n} g_j(n)y_{t-j})^2
\]

\[
+ 2E(y_t - y_t^P(n))(y_t^P(n) - \sum_{j=1}^{n} g_j(n)y_{t-j})
\]

\[
= E(y_t - y_t^P(n))^2 + E(\sum_{j=1}^{n} (g_j^P(n) - g_j(n))(y_{t-j})^2
\]

\[
+ 2\sum_{j=1}^{n} (g_j^P(n) - g_j(n))E(y_t - y_t^P(n))y_{t-j}.
\]

The third term is zero by the definition of linear projection. Thus, MSE is minimized by setting \(g_j(n) = g_j^P(n) \) for all \(j \), i.e., the linear projection gives the lowest MSE among all linear forecasting rules. ■

It can be shown that the linear projections \(y_t^P(n) \) converge in mean square to a random variable \(y_t^P \) as \(n \to \infty \):

\[
\lim_{n \to \infty} E(y_t^P(n) - y_t^P)^2 = 0.
\]

\(y_t^P \) is the linear projection of \(y_t \) on \(y_{t-1}, y_{t-2}, \ldots \).

Definition The fundamental innovation is the forecast error associated with the linear projection of \(y_t \) on \(y_{t-1}, y_{t-2}, \ldots \):

\[
\varepsilon_t = y_t - y_t^P.
\]

Note that the fundamental innovation is a least squares residual that obeys the orthogonality condition \(E(\varepsilon_t y_{t-s}) = 0 \) for \(s = 1, 2, \ldots \).

Wold Decomposition Theorem Any stationary process \(\{y_t\} \) with \(Ey_t = 0 \) can be represented as:

\[
y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} + \nu_t,
\]
where:

(i) \(\psi_0 = 1 \) and \(\sum_{j=0}^{\infty} \psi_j^2 < \infty \) (square summability);
(ii) \(\{\varepsilon_t\} \) is white noise;
(iii) \(\varepsilon_t = y_t - y_t^P \) (fundamental innovation);
(iv) \(\nu_t \) is the linear projection of \(\nu_t \) on \(y_{t-1}, y_{t-2}, \ldots \); and
(v) \(E(\varepsilon_s \nu_t) = 0 \) for all \(s \) and \(t \).

\(\varepsilon_t \) is called the linearly indeterministic component, and \(\nu_t \) is called the linearly deterministic component.

The Wold Decomposition Theorem represents the stationary process \(\{y_t\} \) in terms of processes \(\{\varepsilon_t\} \) and \(\{\nu_t\} \) that are orthogonal at all leads and lags. The component \(\{\nu_t\} \) can be predicted arbitrarily well from a linear function of \(y_{t-1}, y_{t-2}, \ldots \), while the component \(\{\varepsilon_t\} \) is the forecast error when \(y_t^P \) is used to forecast \(y_t \).

Definition A stationary process \(\{y_t\} \) is purely linearly indeterministic if \(\nu_t = 0 \) for all \(t \).

For a purely linearly indeterministic process, the Wold Decomposition Theorem shows that \(\{y_t\} \) can be represented as a \(MA(\infty) \) process with \(\mu = 0 \):

\[
y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},
\]

This is called the moving average representation of \(\{y_t\} \).

Example An AR(1) process \(\{y_t\} \) may be represented using the lag operator:

\[
(1 - \phi L)y_t = c + \varepsilon_t
\]

If \(|\phi| < 1 \):

\[
y_t = \frac{1}{1 - \phi L}(c + \varepsilon_t) = \sum_{j=0}^{\infty} (\phi L)^j (c + \varepsilon_t)
\]

\[
= \frac{c}{1 - \phi} + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}
\]
Express as deviation from mean:

\[\hat{y}_t = y_t - \frac{c}{1 - \phi} = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j} \]

Then \(E(\hat{y}_t) = 0 \). It follows that \(\{\hat{y}_t\} \) is purely linearly indeterministic, and the \(MA(\infty) \) representation has \(\psi_j = \phi^j \). Moreover:

\[E(\hat{y}_t - \phi \hat{y}_{t-1})\hat{y}_{t-s} = E \varepsilon_t \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-s-j} = \sum_{j=0}^{\infty} \phi^j E \varepsilon_t \varepsilon_{t-s-j} = 0 \]

Thus \(\hat{y}_t^P = \phi \hat{y}_{t-1} \), and the \(\varepsilon_t \)'s are the fundamental innovations of the process.

3 \(MA(\infty) \) representation of \(AR(p) \) processes

Definition \(\{y_t\} \) is an \(AR(p) \) process (\(p^{th} \)-order autoregressive) if

\[
y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t \tag{1}
\]

where \(\{\varepsilon_t\} \) is white noise and \(c, \phi_1, ..., \phi_p \) are arbitrary constants.

Represent (1) using the lag operator:

\[(1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p) y_t = c + \varepsilon_t. \]

To obtain an \(MA(\infty) \) representation, consider the equation

\[\lambda^p - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \ldots - \phi_p = 0. \tag{2} \]

This is called the characteristic equation. According to the fundamental theorem of algebra, there are \(p \) roots \(\lambda_1, \lambda_2, ..., \lambda_p \) in the complex plane such that, for any \(\lambda \):

\[\lambda^p - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \ldots - \phi_p = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_p). \]

Note that complex roots come in conjugate pairs \(\lambda_i = a + bi, \lambda_j = a - bi \). Divide through by \(\lambda^p \) and let \(z = 1/\lambda \):

\[1 - \phi_1 z - \phi_2 z^2 - \ldots - \phi_p z^p = (1 - \lambda_1 z)(1 - \lambda_2 z) \cdots (1 - \lambda_p z). \]
By setting \(z = L \) we may write

\[
(1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p) y_t = (1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_p L) y_t = c + \varepsilon_t.
\]

Assume \(|\lambda_i| < 1 \) for all \(i \), i.e., all roots lie inside the unit circle on the complex plane (recall \(|a + bi| = a^2 + b^2 \), which is the length of the vector \((a, b)\)). Solve for \(y_t \):

\[
y_t = \frac{1}{1 - \lambda_1 L} \frac{1}{1 - \lambda_2 L} \cdots \frac{1}{1 - \lambda_p L} (c + \varepsilon_t).
\]

(3)

The MA(\(\infty \)) representation is derived from (3) in two steps.

Step 1 - Constant term. Note that, for any constant \(\alpha \):

\[
\frac{1}{1 - \lambda_i L} \alpha = \sum_{j=0}^{\infty} (\lambda_i L)^j \alpha = \sum_{j=0}^{\infty} \lambda_i^j \alpha = \frac{\alpha}{1 - \lambda_i}.
\]

Thus:

\[
\frac{1}{1 - \lambda_1 L} \frac{1}{1 - \lambda_2 L} \cdots \frac{1}{1 - \lambda_p L} c = \frac{c}{(1 - \lambda_1)(1 - \lambda_2) \cdots (1 - \lambda_p)} = \frac{c}{1 - \phi_1 - \ldots - \phi_p} \equiv \mu. \quad (4)
\]

Step 2 - MA coefficients. Suppose the roots of (2) are distinct, i.e., \(\lambda_i \neq \lambda_k \) for all \(i, k \). Then the product term in (3) can be expanded with partial fractions:

\[
\frac{1}{1 - \lambda_1 L} \frac{1}{1 - \lambda_2 L} \cdots \frac{1}{1 - \lambda_p L} = \sum_{i=1}^{p} \frac{\omega_i}{1 - \lambda_i L},
\]

where

\[
\omega_i = \frac{\lambda_i^{p-1}}{\prod_{k=1, k \neq i}^{p} (\lambda_i - \lambda_k)}.
\]

(5)

It can be shown that \(\sum_{i=1}^{p} \omega_i = 1 \). Furthermore, we can write:

\[
\sum_{i=1}^{p} \frac{\omega_i}{1 - \lambda_i L} = \sum_{i=1}^{p} \omega_i \sum_{j=0}^{\infty} (\lambda_i L)^j = \sum_{j=0}^{\infty} \sum_{i=1}^{p} \omega_i \lambda_i^j L^j = \sum_{j=0}^{\infty} \psi_j L^j,
\]

where

\[
\psi_j \equiv \sum_{i=1}^{p} \omega_i \lambda_i^j.
\]

(6)
Thus:
\[
\frac{1}{1-\lambda_1L} \frac{1}{1-\lambda_2L} \cdots \frac{1}{1-\lambda_pL} \varepsilon_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}.
\]

Clearly, \(\psi_0 = 1\). Combining the terms gives:

\[
y_t = \mu + \varepsilon_t + \sum_{j=1}^{\infty} \psi_j \varepsilon_{t-j}.
\]

The restriction \(|\lambda_i| < 1\) for all \(i\) implies that \(\{\psi_j\}\) satisfies square summability, and so \(\{y_t\}\) is stationary.

The following proposition summarizes this analysis.

Proposition. Suppose (2) has distinct roots \(\lambda_1, \ldots, \lambda_p\) satisfying \(|\lambda_i| < 1\) for all \(i\). Then the AR\((p)\) process (1) is stationary and has an MA\((\infty)\) representation (7), where \(\mu\) is given by (4) and \(\psi_i\) is given by (5) and (6).

Often AR\((p)\) processes are analyzed using this alternative form of the characteristic equation:

\[
1 - \phi_1 z - \phi_2 z^2 - \ldots - \phi_p z^p = 0.
\]

In this case, the stationarity condition is that the roots lie outside of the unit circle, since the roots of this equation are the inverses of the earlier roots.

4 Nonstationary processes

a Trend-stationary processes

Definition \(\{y_t\}\) is a trend-stationary process if \(\{y_t - y_{tr}\}\) is stationary, where \(\{y_{tr}\}\) is a deterministic sequence referred to as the trend of \(\{y_t\}\).

Example Let \(\{y_t\}\) be given by

\[
y_t = \sum_{k=0}^{K} \mu_k t^k + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},
\]
where μ_1, \ldots, μ_K are arbitrary constants. In this case the process has a polynomial trend:

$$y_t^r = \sum_{k=0}^{K} \mu_k t^k.$$

$\{y_t\}$ is trend-stationary as long as its $MA(\infty)$ component is stationary.

b Unit root processes

Definition An AR(p) process is integrated of order r, or $I(r)$, if its characteristic equation has r roots equal to unity.

Let $\{y_t\}$ be an AR(p) process whose roots satisfy $|\lambda_i| < 1$, $i = 1, \ldots, p - 1$, and $\lambda_p = 1$. Then $\{y_t\}$ is $I(1)$, and it may be written as

$$(1 - \phi_1 L - \phi_2 L^2 - \cdots - \phi_p L^p)y_t = (1 - \lambda_1 L)(1 - \lambda_2 L)\cdots(1 - \lambda_{p-1} L)(1 - L)y_t = (1 - \lambda_1 L)(1 - \lambda_2 L)\cdots(1 - \lambda_{p-1} L)\Delta y_t = c + \varepsilon_t,$$

where $\Delta y_t = y_t - y_{t-1}$ is the first difference of y_t. It follows that the process $\{\Delta y_t\}$ is stationary.

Example The following AR(1) process is called a random walk with drift:

$$y_t = c + y_{t-1} + \varepsilon_t.$$

Define the process $\{\Delta y_t\}$ by

$$\Delta y_t = c + \varepsilon_t.$$

Then $\{\Delta y_t\}$ is stationary.

5 VAR(p) processes

a Definition

Definition. $\{Y_t\}$ is a VAR(p) process (p^{th}-order vector autoregressive) if

$$Y_t = C + \sum_{i=1}^{p} \Phi_i Y_{t-i} + \varepsilon_t,$$
where
\[
Y_t = \begin{bmatrix} y_{1t} \\ y_{2t} \\ \vdots \\ y_{nt} \end{bmatrix}, \quad C = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} \phi_{11}^i & \phi_{12}^i & \cdots & \phi_{1n}^i \\ \phi_{21}^i & \phi_{22}^i & \cdots & \phi_{2n}^i \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{n1}^i & \phi_{n2}^i & \cdots & \phi_{nn}^i \end{bmatrix}, \quad \varepsilon_t = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \vdots \\ \varepsilon_{nt} \end{bmatrix},
\]

and \(\varepsilon_t \) is vector white noise:
\[
E(\varepsilon_t) = 0_{n \times 1}, \quad E(\varepsilon_t \varepsilon_t') = \Omega,
\]

where \(\Omega \) is a positive definite and symmetric \(n \times n \) matrix, and

\[
E(\varepsilon_s \varepsilon_t') = 0_{n \times n} \quad \text{for all} \quad s \neq t.
\]

\(\Omega \) is the variance-covariance matrix of the white noise vector. Positive definiteness means that \(x' \Omega x > 0 \) for all nonzero \(n \)-vectors \(x \).

b Stationarity

To evaluate stationarity of a \(VAR(p) \), consider the equation
\[
|I_n \lambda^p - \Phi_1 \lambda^{p-1} - \Phi_2 \lambda^{p-2} - \cdots - \Phi_p| = 0,
\]

where \(| \cdot | \) denotes the determinant and \(I_n \) is the \(n \times n \) identity matrix:
\[
I_n \equiv \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.
\]

The \(VAR \) is stationary if all solutions \(\lambda = \lambda_i \) to (9) satisfy \(|\lambda_i| < 1 \). (Note that there are \(np \) roots of (9), possibly repeated, and complex roots come in conjugate pairs.) Equivalently, the \(VAR \) is stationary if all values of \(z \) satisfying
\[
|I_n - \Phi_1 z - \Phi_2 z^2 - \cdots - \Phi_p z^p| = 0
\]

10
lie outside of the unit circle.

The solutions to (9) can be computed using the following \(np \times np \) matrix:

\[
F = \begin{bmatrix}
\Phi_1 & \Phi_2 & \Phi_3 & \cdots & \Phi_{p-1} & \Phi_p \\
I_n & 0_n & 0_n & \cdots & 0_n & 0_n \\
0_n & I_n & 0_n & \cdots & 0_n & 0_n \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0_n & 0_n & 0_n & \cdots & I_n & 0_n
\end{bmatrix},
\]

where 0\(_n\) is an \(n \times n \) matrix of zeros. It can be shown that the eigenvalues \(\lambda_1, \ldots, \lambda_{np} \) of \(F \) are precisely the solutions to

\[
|I_n \lambda^p - \Phi_1 \lambda^{p-1} - \Phi_2 \lambda^{p-2} - \cdots - \Phi_p| = 0.
\]

To calculate the mean of a stationary VAR, take expectation:

\[
EY_t = C + \sum_{i=1}^{p} \Phi_i EY_{t-i}.
\]

Stationarity implies \(EY_t = \mu \) for all \(t \). Thus:

\[
\mu = (I_n - \sum_{i=1}^{p} \Phi_i)^{-1} C.
\]

The variance and autocovariances of a stationary VAR are given by

\[
\Gamma_j \equiv E(Y_t - \mu)(Y_{t-j} - \mu)^\prime.
\]

Each \(\Gamma_j \) is an \(n \times n \) matrix, with \(\gamma_{ik}^j \) giving the covariance between \(y_{it} \) and \(y_{k,t-j} \).

c MA(\(\infty \)) representation

To obtain an \(MA(\infty) \) representation, express (8) as

\[
(I_n - \sum_{i=1}^{p} \Phi_i L^i)Y_t = C + \varepsilon_t.
\]

Stationarity allows us to invert the lag polynomial:

\[
(I_n - \sum_{i=1}^{p} \Phi_i L^i)^{-1} = \sum_{j=0}^{\infty} \Psi_j L^j.
\]
Thus:

\[Y_t = \mu + \sum_{j=0}^{\infty} \Psi_j \varepsilon_{t-j} \].

(11)

The values of \(\Psi_j, \ j = 0, 1, 2, \ldots \) may be obtained using the method of undetermined coefficients. Write (10) as

\[I_n = (I_n - \sum_{i=1}^{p} \Phi_i L^i) \sum_{j=0}^{\infty} \Psi_j L^j. \]

(12)

The constant terms on each side of (12) must agree. Thus:

\[I_n = \Psi_0. \]

(13)

Further, since there are no powers of \(L \) on the LHS, the coefficient of \(L^j \) on the RHS must equal zero for each \(j > 0 \):

\[0 = \Psi_j - \Psi_{j-1} \Phi_1 - \Psi_{j-2} \Phi_2 - \cdots - \Psi_{j-p} \Phi_p, \quad j = 1, 2, \ldots . \]

(14)

Given the coefficients \(\Phi_i \) and \(\Psi_0 = I_n \), (14) may be iterated to compute \(MA \) coefficients \(\Psi_1, \Psi_2, \Psi_3, \ldots \).

Nonuniqueness. Importantly, the \(MA(\infty) \) representation of a \(VAR \) is nonunique. Let \(H \) be any nonsingular \(n \times n \) matrix, and define

\[u_t \equiv H \varepsilon_t. \]

Note that \(u_t \) is vector white noise:

\[E(u_t) = HE(\varepsilon_t) = 0_{n \times 1}, \]

\[E(u_t u_t') = HE(\varepsilon_t \varepsilon_t')H' = H \Omega H', \]

\[E(u_s u_t') = HE(\varepsilon_s \varepsilon_t')H' = 0_n, \]

and \(H \Omega H' \) is positive definite since \(H'x \) is nonzero whenever \(x \) is. The \(MA(\infty) \) representation can be expressed as

\[Y_t = \mu + \sum_{j=0}^{\infty} \Psi_j H^{-1} H \varepsilon_{t-j} = \mu + \sum_{j=0}^{\infty} \Theta_j u_{t-j}, \]
where $\Theta_j \equiv \Psi_j H^{-1}$.

Note that in this case u_t is not the fundamental innovation. To obtain the $MA(\infty)$ representation in terms of the fundamental innovation we must impose the normalization $\Theta_0 = I_n$, i.e., $H = I_n$.

6 Identification of shocks

a Triangular factorization

We wish to assess how fluctuations in "more exogenous" variables affect "less exogenous" ones. One way to do this is to rearrange the vector of innovations ε_t into components that derive from "exogenous shocks" to the n variables. This can be accomplished using a triangular factorization of Ω.

For any positive definite symmetric matrix Ω, there exists a unique representation of the form

$$\Omega = ADA', \tag{15}$$

where A is a lower triangular matrix with 1’s along the principal diagonal:

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_{21} & 1 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 1 \end{bmatrix},$$

and D is a diagonal matrix:

$$D = \begin{bmatrix} d_{11} & 0 & 0 & \cdots & 0 \\ 0 & d_{22} & 0 & \cdots & 0 \\ 0 & 0 & d_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{nn} \end{bmatrix},$$

with $d_{ii} > 0$ for $i = 1, \ldots, n$.

13
Use the factorization to define a vector of exogenous shocks:

\[u_t \equiv A^{-1} \varepsilon_t. \]

Substitute into the MA(\(\infty\)) representation to obtain an alternative "structural" representation:

\[Y_t = \mu + \varepsilon_t + \sum_{j=1}^{\infty} \Psi_j \varepsilon_{t-j} = \mu + A u_t + \sum_{j=1}^{\infty} \Psi_j A u_{t-j} = \mu + \sum_{j=0}^{\infty} \Theta_j u_{t-j}, \]

where

\[\Theta_0 \equiv A, \quad \Theta_j \equiv \Psi_j A, \quad j = 1, 2, \ldots. \]

Note that the shocks \(u_{1t}, \ldots, u_{nt} \) are mutually uncorrelated:

\[E(u_t u'_t) = A^{-1} E(\varepsilon_t \varepsilon'_t) (A^{-1})' = A^{-1} \Omega (A')^{-1} = A^{-1} A D A' (A')^{-1} = D. \]

Thus:

\[Var(u_{it}) = d_{ii}, \quad Cov(u_{it}, u_{kt}) = 0. \]

To implement this approach, we order the variables from "most exogenous" to "least exogenous." This means that innovations to \(y_{it} \) are affected by the shocks \(u_{1t}, \ldots, u_{it} \), but not by \(u_{i+1,t}, \ldots, u_{nt} \).

Bivariate case. Let \(n = 2 \). (11) may be expressed as

\[
\begin{bmatrix}
\hat{y}_{1t} \\
\hat{y}_{2t}
\end{bmatrix}
= \begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
+ \sum_{j=1}^{\infty} \begin{bmatrix}
\psi_{11}^j & \psi_{12}^j \\
\psi_{21}^j & \psi_{22}^j
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{1,t-j} \\
\varepsilon_{2,t-j}
\end{bmatrix},
\]

where \(\hat{y}_{it} \equiv y_{it} - \mu_i \). Here \(y_{1t} \) is taken to be "most exogenous." \(\Omega \) is factorized using the matrices

\[
A = \begin{bmatrix}
1 & 0 \\
\alpha_{21} & 1
\end{bmatrix}, \quad D = \begin{bmatrix}
d_{11} & 0 \\
0 & d_{22}
\end{bmatrix}.
\]

Thus,

\[
\begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
\alpha_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{1t} \\
u_{2t}
\end{bmatrix}
= \begin{bmatrix}
u_{1t} \\
\alpha_{21} u_{1t} + u_{2t}
\end{bmatrix}.
\]
Innovations to y_{1t} are driven by the exogenous shocks u_{1t}. Innovations to y_{2t} are driven by both innovations to y_{1t} and uncorrelated shocks u_{2t}.

Furthermore, for $j > 0$:

$$
\Theta_j = \Psi_j A = \begin{bmatrix}
\psi_{11}^j & \psi_{12}^j \\
\psi_{21}^j & \psi_{22}^j
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
a_{21} & 1
\end{bmatrix} = \begin{bmatrix}
\psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\
\psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j
\end{bmatrix}.
$$

The alternative "structural" $MA(\infty)$ representation is

$$
\begin{bmatrix}
\hat{y}_{1t} \\
\hat{y}_{2t}
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
a_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{1t} \\
u_{2t}
\end{bmatrix}
+ \sum_{j=1}^{\infty} \begin{bmatrix}
\psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\
\psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j
\end{bmatrix}
\begin{bmatrix}
u_{1,t-j} \\
u_{2,t-j}
\end{bmatrix}.
$$

We can use this to assess the effects of an exogenous shock to y_{1t}. Suppose the system begins in the nonstochastic steady state:

$$
\begin{bmatrix}
u_{1,t-j} \\
u_{2,t-j}
\end{bmatrix} = \begin{bmatrix} 0 \\
0
\end{bmatrix}, \quad j = 1, 2, \ldots \quad \Rightarrow \quad
\begin{bmatrix}
\hat{y}_{1,t-j} \\
\hat{y}_{2,t-j}
\end{bmatrix} = \begin{bmatrix} 0 \\
0
\end{bmatrix}.
$$

At time t there is a positive shock to y_{1t}, and there are no shocks following this:

$$
\begin{bmatrix}
u_{1t} \\
u_{2t}
\end{bmatrix} = \begin{bmatrix} 1 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
u_{1,t+j} \\
u_{2,t+j}
\end{bmatrix} = \begin{bmatrix} 0 \\
0
\end{bmatrix}, \quad j = 1, 2, \ldots
$$

Then from the above representation we have

$$
\begin{bmatrix}
\hat{y}_{1t} \\
\hat{y}_{2t}
\end{bmatrix} = \begin{bmatrix} 1 \\
a_{21}
\end{bmatrix}
\begin{bmatrix} 1 \\
0
\end{bmatrix} = \begin{bmatrix} 1 \\
a_{21}
\end{bmatrix},
$$

$$
\begin{bmatrix}
\hat{y}_{1,t+j} \\
\hat{y}_{2,t+j}
\end{bmatrix} = \begin{bmatrix}
\psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\
\psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j
\end{bmatrix}
\begin{bmatrix} 1 \\
0
\end{bmatrix} = \begin{bmatrix}
\psi_{11}^j + a_{21}\psi_{12}^j \\
\psi_{21}^j + a_{21}\psi_{22}^j
\end{bmatrix}.
$$

Subsequent movements in each variable are driven by the direct effect of y_{1t}, and an indirect effect coming through the response of y_{2t}. These are the orthogonalized impulse-response functions.

We can also assess the effects of a positive shock to y_{2t}, as captured by u_{2t}. In this case the change in y_{2t} is conditioned on u_{1t}, i.e., u_{2t} indicates the movement in y_{2t} that cannot
be predicted after u_{1t} is known.

$$
\begin{bmatrix}
 u_{1t} \\
 u_{2t}
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 1
\end{bmatrix},
\begin{bmatrix}
 u_{1,t+j} \\
 u_{2,t+j}
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0
\end{bmatrix}, \quad j = 1, 2, \ldots ,
$$

$$
\begin{bmatrix}
 \hat{y}_{1t} \\
 \hat{y}_{2t}
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 \\
 a_{21} & 1
\end{bmatrix}
\begin{bmatrix}
 0 \\
 1
\end{bmatrix},
\begin{bmatrix}
 \hat{y}_{1,t+j} \\
 \hat{y}_{2,t+j}
\end{bmatrix} =
\begin{bmatrix}
 \psi_{11}^j + a_{21} \psi_{12}^j & \psi_{12}^j \\
 \psi_{21}^j + a_{21} \psi_{22}^j & \psi_{22}^j
\end{bmatrix}
\begin{bmatrix}
 0 \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \psi_{12}^j \\
 \psi_{22}^j
\end{bmatrix}.
$$

Note that u_{1t} affects y_{2t} in period t (as long as $a_{21} \neq 0$), but u_{2t} does not affect y_{1t}. This is the sense in which y_{1t} is "more exogenous."

Empirical implementation. For a given observed sample of size T, we can obtain OLS estimates \hat{C} and $\hat{\Phi}_i, i = 1, \ldots, p$ by regressing Y_t on a constant terms and p lags Y_{t-1}, \ldots, Y_{t-p}.

Estimated innovations are obtained from the OLS residuals:

$$
\hat{e}_t = Y_t - \hat{C} - \sum_{i=1}^{p} \hat{\Phi}_i Y_{t-i}.
$$

The variance-covariance matrix is estimated as

$$
\hat{\Omega} = \frac{1}{T} \sum_{t=1}^{T} \hat{e}_t \hat{e}'_t.
$$

Estimates of the MA coefficients $\hat{\Psi}_j, j = 1, 2, \ldots$ can be obtained using the formulas derived above:

$$
\hat{\Psi}_0 = I_n,
$$

$$
\hat{\Psi}_s - \hat{\Psi}_{s-1} \hat{\Phi}_1 - \hat{\Psi}_{s-2} \hat{\Phi}_2 - \cdots - \hat{\Psi}_{s-p} \hat{\Phi}_p = 0, \quad s = 1, 2, \ldots .
$$

Orthogonalized impulse response functions are computed as

$$
\hat{\Theta}_0 = A, \quad \hat{\Theta}_j = \hat{\Psi}_j A, \quad j = 1, 2, \ldots .
$$

The coefficient $\hat{\theta}_{ik}^j$, the ik-element of $\hat{\Theta}_j$, gives the response of $\hat{y}_{i,t+j}$ to a one-unit positive shock to u_{kt}.

16
Cholesky factorization. For any positive definite symmetric matrix Ω, there exists a unique representation of the form

$$\Omega = PP', \quad (16)$$

where

$$P = AD^{1/2} = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & \sqrt{d_{11}} & 0 & \cdots & 0 \\
0 & 0 & \sqrt{d_{22}} & \cdots & 0 \\
0 & 0 & 0 & \cdots & \sqrt{d_{33}} \\
0 & 0 & 0 & \cdots & \sqrt{d_{nn}}
\end{bmatrix}.$$

This is called the Cholesky factorization.

Using the Cholesky factorization, the vector of exogenous shocks may be defined as:

$$v_t \equiv P^{-1} \varepsilon_t.$$

In the structural representation, A is simply replaced by P. Moreover, $E(v_tv_t') = I_n$, i.e., $Var(v_{it}) = 1$ for all i.

b Forecast error decomposition

For a stationary $VAR(p)$, consider the problem of forecasting Y_{t+s} at period t. Using (11), the forecast error may be written

$$Y_{t+s} - E_tY_{t+s} = \sum_{j=1}^{s} \Psi_{s-j}\varepsilon_{t+j},$$

where $E_t(\cdot)$ denotes expectation conditional on period t information. The mean squared error of the s-period ahead forecast is given by

$$MSE(s) = E(Y_{t+s} - E_tY_{t+s})(Y_{t+s} - E_tY_{t+s})'$$

$$= E\left(\sum_{j=1}^{s} \Psi_{s-j}\varepsilon_{t+j} \cdot \sum_{l=1}^{s} \varepsilon'_{t+l}\Psi'_{s-l}\right)$$

$$= \sum_{j=1}^{s} \Psi_{s-j}E(\varepsilon_{t+j}\varepsilon'_{t+j})\Psi'_{s-j} + \sum_{j=1}^{s} \sum_{l\neq j} \Psi_{s-j}E(\varepsilon_{t+j}\varepsilon'_{t+l})\Psi'_{s-l}$$

$$= \sum_{j=1}^{s} \Psi_{s-j}\Psi'_{s-j},$$
since \(E(\varepsilon_{t+j} \varepsilon_{t+j}') = E(\varepsilon_t \varepsilon_t') = \Omega \) for all \(j \), while \(E(\varepsilon_{t+j} \varepsilon_{t+l}') = 0_{n \times n} \) for \(l \neq j \).

\(\text{MSE}(s) \) can be decomposed based on the contributions of the identified shocks \(u_{1t}, \ldots, u_{nt} \).

The innovations \(\varepsilon_t \) may be expressed as

\[
\varepsilon_t = Au_t = \sum_{i=1}^{n} A_i u_{it},
\]

where \(A_i \) is the \(i^{th} \) column of the matrix \(A \) defined in (15). Thus:

\[
\Omega = E(\varepsilon_t \varepsilon_t') = E \left(\sum_{i=1}^{n} A_i u_{it} \cdot \sum_{k=1}^{n} A_k u_{kt} \right)
= \sum_{i=1}^{n} A_i E(u_{it}^2) A_i' + \sum_{i=1}^{n} \sum_{i \neq k} A_i E(u_{it} u_{kt}) A_k'
= \sum_{i=1}^{n} A_i d_{ii} A_i',
\]

since \(E(u_{it}^2) = \text{Var}(u_{it}) = d_{ii} \) and, for \(k \neq i \), \(E(u_{it} u_{kt}) = \text{Cov}(u_{it}, u_{kt}) = 0 \). Substitution gives

\[
\text{MSE}(s) = \sum_{j=1}^{s} \psi_{s-j} \left(\sum_{i=1}^{n} A_i d_{ii} A_i' \right) \psi_{s-j}
= \sum_{i=1}^{n} d_{ii} \sum_{j=1}^{s} \psi_{s-j} A_i A_i' \psi_{s-j}.
\]

Equation (17) decomposes \(\text{MSE}(s) \) into \(n \) terms, associated with variation contributed by the \(n \) shocks \(u_{1t}, \ldots, u_{nt} \).

As \(s \to \infty \), stationarity implies \(E_t Y_{t+s} \to \mu \), and

\[
\text{MSE}(s) \to E(Y_t - \mu)(Y_t - \mu)' = \Gamma_0,
\]

i.e., \(\text{MSE}(s) \) converges to the variance of the \(\text{VAR} \). Thus, (17) decomposes the variance in terms of the contributions of the underlying shocks.

When the Cholesky factorization is used, the vectors \(A_i \) are replaced by vectors \(P_i \), which are columns of the matrix \(P \) defined in (16).

c Identification via long-run restrictions

Consider the following bivariate VAR process:

\[
\begin{bmatrix}
 y_{1t} \\
 y_{2t}
\end{bmatrix} =
\begin{bmatrix}
 y_{1,t-1} \\
 0
\end{bmatrix} +
\begin{bmatrix}
 \varepsilon_{1t} \\
 \varepsilon_{2t}
\end{bmatrix} +
\sum_{j=1}^{\infty} \psi_j
\begin{bmatrix}
 \varepsilon_{1,t-j} \\
 \varepsilon_{2,t-j}
\end{bmatrix},
\]

(18)
with variance-covariance matrix Ω, where

$$\Psi_j = \begin{bmatrix} \psi_{11}^j & \psi_{12}^j \\ \psi_{21}^j & \psi_{22}^j \end{bmatrix}.$$

Note that forecasted values of y_{1t} are permanently affected by innovations, while the effects on y_{2t} die out when the Ψ_j's satisfy suitable stationary restrictions. This distinction can be used to identify "permanent" versus "transitory" shocks.

Write (18) as

$$\begin{bmatrix} \Delta y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} + \sum_{j=1}^{\infty} \Psi_j \begin{bmatrix} \varepsilon_{1,t-j} \\ \varepsilon_{2,t-j} \end{bmatrix},$$

(19)

where $\Delta y_t = y_t - y_{t-1}$, and assume that (19) is stationary. We wish to obtain a structural representation

$$\begin{bmatrix} \Delta y_{1t} \\ y_{2t} \end{bmatrix} = \sum_{j=0}^{\infty} \Theta_j \begin{bmatrix} u_{1,t-j} \\ u_{2,t-j} \end{bmatrix},$$

(20)

where u_{1t} and u_{2t} indicate permanent and transitory shocks, respectively, and

$$\Theta_j = \begin{bmatrix} \theta_{11}^j & \theta_{12}^j \\ \theta_{21}^j & \theta_{22}^j \end{bmatrix}.$$

Assume $Cov(u_{1t}, u_{2t}) = 0$ and $Var(u_{1t}) = Var(u_{2t}) = 1$, i.e., the variances of the shocks are normalized to unity. Furthermore, since $\Theta_0 u_t = \varepsilon_t$:

$$\Theta_0 E_t(u_t u_t') \Theta_0' = E_t(\varepsilon_t \varepsilon_t') \Rightarrow \Theta_0 \Theta_0' = \Omega.$$

Recall that the Cholesky factorization gives a unique lower triangular matrix satisfying $PP' = \Omega$. It follows that $\Theta_0 = P\Gamma$ for some orthogonal matrix Γ, i.e., Γ satisfies $\Gamma\Gamma' = I_2$. Orthogonality implies three restrictions on Γ, so we need one more restriction to identify Θ_0.

For the fourth restriction, assume that u_{2t} has no long-run effect on the level of y_{1t}, so that u_{2t} is transitory. For this to be true, all effects on Δy_{1t} must cancel out in the long run:

$$\sum_{j=0}^{\infty} \theta_{12}^j = 0.$$
Moreover, since \(\Theta_j = \Psi_j \Theta_0 \):
\[
\theta_{12}^j = \psi_{11}^j \theta_{12}^0 + \psi_{12}^j \theta_{22}^0.
\]
Substitute and rearrange:
\[
\theta_{12}^0 \sum_{j=0}^{\infty} \psi_{11}^j + \theta_{22}^0 \sum_{j=0}^{\infty} \psi_{12}^j = 0.
\]
This supplies one more restriction, and thus \(\Theta_0 \) is identified.

7 Granger causality

Consider two stationary processes \(\{y_{1t}\} \) and \(\{y_{2t}\} \). Recall that the linear projection of \(y_{1t} \) on \(y_{1,t-1}, y_{1,t-2}, \ldots \), denoted by \(y_{1t}^P \), minimizes MSE among all linear forecast rules. We are interested in whether the variable \(y_{2t} \) can be used to obtain better predictions of \(y_{1t} \). That is, does the linear projection of \(y_{1t} \) on \(y_{1,t-1}, y_{1,t-2}, \ldots \) and \(y_{2,t-1}, y_{2,t-2}, \ldots \) give a lower MSE than \(y_{1t}^P \)? If not, then we say that the variable \(y_{2t} \) does not \underline{Granger-cause} \(y_{1t} \).

Suppose \(y_{1t} \) and \(y_{2t} \) are given by a bivariate VAR:
\[
\begin{bmatrix}
 y_{1t} \\
 y_{2t}
\end{bmatrix} =
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix} + \sum_{i=1}^{p} \begin{bmatrix}
 \phi_{11}^i & \phi_{12}^i \\
 \phi_{21}^i & \phi_{22}^i
\end{bmatrix} \begin{bmatrix}
 y_{1,t-i} \\
 y_{2,t-i}
\end{bmatrix} + \begin{bmatrix}
 \varepsilon_{1t} \\
 \varepsilon_{2t}
\end{bmatrix}.
\]
Then \(y_{2t} \) does not Granger-cause \(y_{1t} \) if the coefficient matrices are lower triangular:
\[
\begin{bmatrix}
 \phi_{11}^i & \phi_{12}^i \\
 \phi_{21}^i & \phi_{22}^i
\end{bmatrix}
= \begin{bmatrix}
 \phi_{11}^i & 0 \\
 \phi_{21}^i & \phi_{22}^i
\end{bmatrix}, \quad i = 1, \ldots, p.
\]
To test for Granger causality, estimate the first equation in the VAR with and without the parameter restriction
\[
y_{1t} = c_1 + \sum_{i=1}^{p} \phi_{11}^i y_{1,t-i} + \eta_{1t},
\]
\[
y_{1t} = c_1 + \sum_{i=1}^{p} (\phi_{11}^i y_{1,t-i} + \phi_{12}^i y_{2,t-i}) + \varepsilon_{1t}.
\]
Let \(\hat{\eta}_{1t} \) and \(\hat{\varepsilon}_{1t} \) be the fitted residuals and let the sample size be \(T \). Define
\[
RSS_0 = \sum_{t=1}^{T} \hat{\eta}_{1t}^2, \quad RSS_1 = \sum_{t=1}^{T} \hat{\varepsilon}_{1t}^2.
\]
Then for large T the following statistic has a χ^2 distribution:

$$S = \frac{T(RSS_0 - RSS_1)}{RSS_1}$$

If S exceeds a designated critical value for a $\chi^2(p)$ variable (e.g., 5%), then we reject the null hypothesis that y_{2t} does not Granger-cause y_{1t}, i.e., y_{2t} does help in forecasting y_{1t}.

Sources
