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ABSTRACT

The paper develops a novel testing procedure for hypotheses on deterministic trends in
a multivariate trend stationary model. The trends are estimated by the OLS estimator and
the long run variance (LRV) matrix is estimated by a series type estimator with carefully
selected basis functions. Regardless of whether the number of basis functions K is �xed or
grows with the sample size, the Wald statistic converges to a standard distribution. It is
shown that critical values from the �xed-K asymptotics are second order correct under the
large-K asymptotics. A new practical approach is proposed to select K that addresses the
central concern of hypothesis testing: the selected smoothing parameter is testing-optimal
in that it minimizes the type II error while controlling for the type I error. Simulations
indicate that the new test is as accurate in size as the nonstandard test of Vogelsang
and Franses (2005) and as powerful as the corresponding Wald test based on the large-
K asymptotics. The new test therefore combines the advantages of the nonstandard test
and the standard Wald test while avoiding their main disadvantages (power loss and size
distortion, respectively).

JEL Classi�cation: C13; C14; C32; C51

Keywords: Asymptotic expansion, F-distribution, Hotelling�s T2 distribution, long-run
variance, robust standard error, series method, testing-optimal smoothing parameter choice,
trend inference, Type I and Type II errors.



1 Introduction

Trend regression is one of simple and yet important regressions in economic and climatic
time series analysis. In this paper, we consider a linear trend regression with multiple
dependent variables. For example, the dependent variables may consist of GDPs from
a number of countries. Vogelsang and Franses (2005) provide more empirical examples.
Estimation of the trends is relatively easy as the equation-by-equation OLS estimator is
asymptotically as e¢ cient as the system GLS estimator. Hence, for point estimation, there
is no need to take error autocorrelation into account in large samples. However, trend
inference is subtle as the variance of the OLS trend estimator depends on the long run
variance (LRV) of the error process. Since the LRV is proportional to the spectral density
of the error process evaluated at zero, many nonparametric spectral density methods can
be used to estimate the LRV. Commonly used methods are mostly kernel-based. In this
paper, we consider estimating the LRV using nonparametric series methods. The resulting
series LRV estimator is the sample variance of regression coe¢ cients in a nonparametric
series regression.

The smoothing parameter in the series LRV estimator is the number of basis functions
employed. When the number of basis functionsK is �xed, the LRV estimator is inconsistent
and converges to a scaled Wishart distribution. The underlying scale cancels out in the
limiting distribution the asymptotic variance of the trend estimator. Hence, when K is
�xed, the Wald statistic converges to a pivotal nonstandard distribution. The �xed-K
asymptotics is in the spirit of the �xed-b asymptotics as in Kiefer and Vogelsang (2002a,
2002b, 2005). This type of asymptotics captures the randomness of the LRV estimator
and tests based on it often have better �nite sample size properties than those based on
consistent LRV estimates. Jansson (2004) and Sun, Phillips and Jin (2008, SPJ hereafter)
provide some theoretical justi�cations for the non-standard asymptotic theory.

We design a set of basis functions so that the �xed-K asymptotic distribution becomes
the standard F distribution. For these basis functions, the series LRV estimator is as-
ymptotically invariant to the intercepts and trend parameters. As a result, it does not
su¤er from the bias arising from the estimation uncertainty of model parameters. This is
in contrast with the conventional kernel LRV estimators where the estimation uncertainty
gives rise to a demeaning bias. See, for example, Hannan (1957) and Ng and Perron (1994).
By selecting the basis functions appropriately, we completely remove this type of bias to
the order we care about. This is a desirable property as we generally prefer an estimator
with fewer bias terms, especially in hypothesis testing. Another advantage of using the
new series LRV estimator lies in its convenience in practical use as critical values from the
�xed-K asymptotics are readily available from statistical tables and software packages.

While the LRV estimator is inconsistent when K is �nite, it becomes consistent when K
grows with the sample size at a certain rate. The smoothing parameter K is an important
tuning parameter that determines the asymptotic properties of the LRV estimator. Follow-
ing the conventional approaches (e.g., Andrews, 1991, and Newey and West, 1987, 1994),
Phillips (2005) chooses the smoothing parameter K to minimize the asymptotic MSE of
the LRV estimator. Such a choice of the smoothing parameter is designed to be optimal in
the MSE sense for the point estimation of the LRV, but is not necessarily best suited for
semiparametric testing. Through its e¤ect on the LRV estimator, the smoothing parameter
K a¤ects the type I and type II errors of the associated test. It is thus sensible that the
choice of K should take these properties into account.
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To develop an optimal choice of K for semiparametric testing, we �rst have to decide
on which test to use. We can employ the traditional Wald test, which is based the Wald
statistic and uses a chi-square distribution as the reference distribution. Alternatively, we
can employ the new F � test given in this paper, which is based on a modi�ed Wald statistic
and uses an F-distribution as the reference distribution. We �nd that critical values from
the F-distribution are higher order correct under the conventional large-K asymptotics.
A direct implication is that the F � test generally has smaller size distortion than the
traditional Wald test. On the basis of this theoretical result and the emphasis on the size
control in the econometrics literature, we employ the F � test to conduct inference on the
trend parameters.

One of the main contributions of the paper is to develop an optimal procedure for
selecting the smoothing parameter K that addresses the central concern of semiparametric
testing. The ultimate goal of any testing problem is to achieve smaller type I and type
II errors. However, these two types of errors often move in opposite directions. We can
control one type of error while trying to minimize the other type of error. In this paper,
we propose to choose K to minimize the type II error subject to the constraint that the
type I error is bounded. The resulting optimal K is said to be testing-optimal for the given
bound. The bound is de�ned to be ��; where � is the nominal type I error and � > 1 is
the parameter that captures the user�s tolerance on the discrepancy between the nominal
and true type I errors.

The proposed approach to selecting the testing-optimal K requires asymptotic mea-
surements of type I and type II errors of the F � test. These measurements are provided
by means of high order asymptotic expansions of the �nite sample distribution of the F �

statistic under the null and local alternative hypotheses. In a transformed space, the null
hypothesis is a �xed point while the alternative hypothesis we consider is a random point
uniformly distributed on the sphere centered at the �xed null. The radius of the sphere is
chosen so that the power of the test is 75% under the �rst order asymptotics. This strategy
is similar to that used in the optimal testing literature. In the absence of a uniformly most
powerful test, it is often recommended to pick a reasonable point under the alternative
and construct an optimal test against this particular point alternative. It is hoped that
the resulting test, although not uniformly most powerful, is reasonably close to the power
envelope. Here we use the same idea and select the radius of the sphere according to the
power requirement. We hope that the smoothing parameter that is optimal for the chosen
radius also works well for other points under the alternative hypothesis. This is con�rmed
by our Monte Carlo study.

The testing-optimal K that maximizes the local asymptotic power while preserving size
in large samples is fundamentally di¤erent from the MSE-optimal K: The testing-optimal
K depends on the sign of the nonparametric bias, the hypothesis under consideration and
the permitted tolerance for the type I error while the MSE-optimal K does not. When the
permitted tolerance becomes su¢ ciently small, the testing-optimal K is of smaller order
than the MSE-optimal K: Our criterion for K selection is a testing-focused criterion in that
it aims at the testing problem and takes the speci�c hypothesis into consideration.

The paper that is most closely related to the present paper is SPJ where robust inference
for the mean of a scalar time series is considered. In SPJ, the optimal smoothing parameter
minimizes a loss function that is de�ned to be a weighted sum of the type I and type II
errors. Our procedure can also be cast in this framework with the Lagrange multiplier
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for the constrained minimization problem as the relative weight. The main di¤erence is
that our weight is implicitly de�ned through the tolerance parameter �. For a given �; the
weight may be di¤erent across di¤erent data generating processes. In contrast, in the SPJ
procedure, the weight is speci�ed a priori and is thus �xed. Both procedures require a
user-chosen parameter: the tolerance parameter or the weight. The tolerance parameter is
often easier to choose as it involves only the type I error while the weight is more di¢ cult
to choose as it depends on both type I and type II errors. This is an advantage of the new
procedure proposed here. The same procedure is used in Sun, Phillips, and Jin (2010) for
robust mean inference with exponentiated kernels.

The series LRV estimator has been considered in the literature under di¤erent names.
It belongs to the class of multi-window or multi-taper estimators (Thomson, 1982) and
the class of �lter-bank estimators (Stoica and Moses, 2005, ch. 5). In the simulation and
signal processing literature, the weighted area estimator of Foley and Goldman (1999) is
a series LRV estimator with particular basis functions. In econometrics, Phillips (2005)
embeds this estimator in a framework of automated regression. Müller (2007) motivates
it from the perspective of robust LRV estimation. The �xed-K type of asymptotics has
some precursors in the literature. Foley and Goldman (1999) approximate the distribu-
tion of their autocorrelation robust t-statistic by a t distribution. As we show later, the
t-distribution belongs to the class of �xed-K asymptotic distributions. For some basis
functions, the working paper version of Müller (2007) contains the �xed-K asymptotics
and F approximation. However, the basis functions considered here are di¤erent from the
existing literature. They do not constitute a complete basis system, and are designed to
eliminate the demeaning e¤ect and the detrending e¤ect at the same time. To the best
of my knowledge, the paper is the �rst to explore the relationship between the �xed-K
asymptotics and the conventional large-K asymptotics in trend estimation and inference.
It is also the �rst to propose a testing-optimal smoothing parameter choice in this setting.

The rest of the paper is organized as follows. Section 2 describes the basic setting and
the limiting distribution of the trend estimator. Section 3 motivates the series LRV estima-
tor and establishes its asymptotic properties under the �xed-K and large-K asymptotics.
Section 4 investigates the limiting distribution of the Wald statistic under both �xed-K
and large-K asymptotics. Section 5 gives a higher order expansion of the �nite sample dis-
tribution of the modi�ed Wald statistic. On the basis of this expansion, Section 6 proposes
a selection rule for K that is most suitable for implementation in semiparametric testing.
The next section reports simulation evidence on the performance of the new procedure.
The last section provides some concluding discussion. Proofs are given in the Appendix.

2 The Model and Preliminaries

Consider n trend-stationary time series denoted by (y1t; :::; ynt)
0 with t = 1; 2; :::; T . We

assume that the data generating process is

yit = �i + �it+ uit; t = 1; 2; :::; T; i = 1; 2; :::; n; (1)

where uit is a weakly dependent process with zero mean. Our focus of interest is on the
inference about the trend parameters f�ig :
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Assumption 1 Let ut = (u1t; :::; unt)
0 ; we assume that

ut = C(L)"t =
1X
j=0

Cj"t�j ;

where "t s iid(0;�); E k"tkv <1 for some v � 4,
1X
j=0

ja kCjk <1 for a > 3; C(1)�C (1)0 > 0

and k�k is the matrix Euclidean norm.

Under the above assumption, the process ut admits the following BN (Beveridge and
Nelson, 1981) decomposition

ut = C(1)"t + ~ut�1 � ~ut for ~ut =
1X
j=0

~Cj"t�j ; ~Cj =
1X

s=j+1

Cs; (2)

where
P1
j=0




 ~Cj


2 <1: Using this decomposition and following Phillips and Solo (1992),
we can prove that

1p
T

[Tr]X
t=1

ut !d �Wn(r); as T !1; (3)

where Wn(r) is an n � 1 vector of standard independent Wiener processes and � =

[C(1)�C(1)0]1=2 is the matrix square root of the long run variance matrix 
 of ut :


 = ��0 =
1X

j=�1
Eutu

0
t�j = C(1)�C(1)

0:

To represent the OLS estimator of the model parameters, we introduce the following
notation:

yi = (yi1; :::; yiT )
0; Y = (y1; y2; :::; yn)

ui = (ui1; :::; uiT )
0; u = (u1; :::; un)

Xt = (1; t) ; X =
�
X 0
1; :::; X

0
T

�0
� = (�1; �2; :::; �n) with �i = (�i; �i)

0 :

The OLS estimator of � is then given by

�̂OLS = (X
0X)�1X 0Y:

If the errors are second-order stationary, then the OLS estimator is asymptotically equiv-
alent to the GLS estimator. In addition, because (1) is a seemingly unrelated regression
(SUR) with the same regressors in each equation, the OLS estimator is equivalent to the
SUR estimator, which is the GLS estimator that accounts for contemporaneous correlation
across the series. Thus, the simple OLS estimator has some nice optimality properties.
Vogelsang and Franses (2005) make the same point.
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Let D = diag
�
T�1=2; T�3=2

�
. Then, for ut de�ned in Assumption 1,

DX 0XD =

 
1 1

T 2
PT
t=1 t

1
T 2
PT
t=1 t

1
T 3
Pt
t=1 t

2

!
!d

 
1

R 1
0 rdrR 1

0 rdr
R 1
0 r

2dr

!
;

DX 0u =

 
1p
T

P
u0t

1
T
p
T

P
tu0t

!
!d

 R 1
0 dW

0
n (r) �

0R 1
0 rdW

0
n (r) �

0

!
:

Therefore

D�1
�
�̂OLS � �

�
!d

 
1

R 1
0 rdrR 1

0 rdr
R 1
0 r

2dr

!�1 R 1
0 dW

0
n (r) �

0R 1
0 rdW

0
n (r) �

0

!
=

 
6
R 1
0

�
2
3 � r

�
dW 0

n (r) �
0

12
R 1
0

�
r � 1

2

�
dW 0

n (r) �
0

!
:

So the OLS estimator �̂OLS of � satis�es

T 3=2
�
�̂OLS � �

�
!d 12�

Z 1

0

�
r � 1

2

�
dWn (r) =d N(0; 12
):

3 Series LRV Estimator and its Asymptotic Properties

To conduct inference regarding �; we need to �rst estimate the LRV matrix 
: In the next
subsection, we motivate the series LRV estimator we use in this paper.

3.1 Motivation of Series LRV Estimator

Consider the kernel-based estimator proposed by Phillips, Sun and Jin (2006, 2007, PSJ
hereafter):


̂PSJ =
1

T

TX
r=1

TX
t=1

ûtK�
�
r � s
T

�
û0s;

where K� (r � s) = [K(r � s)]� for some second-order kernel function K (�). This estimator
is consistent when � ! 1 at a certain rate. Assume that K (�) is even, continuous and
positive semide�nite. By Mercer�s theorem (Mercer, 1909), we can write

K� (r � s) =
1X
k=1

�k�k (r)�k (s) ; (4)

where f�kg is a sequence of eigenvalues and f�k (r)g is an orthonormal sequence of eigen-
functions corresponding to the eigenvalues �k: It can be shown that

1X
k=1

�k = 1 and
1X
k=1

�2k = O

�
1
p
�

�
as �!1: (5)

With this representation of K� (r � s) ; we can write


̂PSJ =
1X
k=1

�k

"
1p
T

TX
r=1

�k

� r
T

�
ûr

#"
1p
T

TX
s=1

�k

� s
T

�
ûs

#0

: =

1X
k=1

�k
̂k (6)
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where


̂k = �̂k�̂
0
k and �̂k =

1p
T

TX
t=1

�k

�
t

T

�
ût:

In the above expression, �k decays to zero as k increases. The intuition is that, as k in-
creases, the eigenfunction �k (r) becomes more concentrated on high frequency components
and we should impose progressively less weight on these components in order to capture
the long run (low frequency) properties of the underlying time series. In addition, for each
k; �k ! 0 as � ! 1: Implicitly, the PSJ estimator employs a soft thresholding method
where the weight �k approaches to zero but is not equal to zero for any given k: Instead of
soft thresholding, we can also consider the hard thresholding estimator:


̂ =
1

K

KX
k=1


̂k (7)

where K is a positive integer. This estimator truncates the in�nite sum in (6) and assigns
equal weights to the remaining terms. In other words, the in�nite sequence (�1; :::; �K ; :::) is
replaced by (1=K; 1=K; :::; 1=K; 0; :::) : For this sequence,

P1
k=1 �k = 1 and

P1
k=1 �

2
k = 1=K:

Comparing the squared sum with that in (5), we can see that K plays the role of
p
� in

the PSJ estimator. This can also be seen by comparing the asymptotic biases and the
asymptotic variances of these two estimators.

As will be shown below, with appropriately chosen �k; each of the summand 
̂k is an
asymptotically unbiased estimator of 
: We refer to the LRV estimators of the form 
̂k as
direct LRV estimators so that 
̂ is an average of K direct LRV estimators.

Note that �̂k is approximately the regression coe¢ cient obtained by regressing the time
series ût on the regressor �k(t=T )=

p
T : 
̂k is part of �the total sum of squares�

PT
t=1 ûtû

0
t

that is explained by the basis function �k(�)=
p
T : This explained sum of squares may be

regarded as another ways of thinking about the long run variance matrix� the contributions
to the variation of ût that are due to low frequency variations in the series.

To obtain more �exible estimators of the form 
̂; we can use any orthogonal basis
functions to construct 
̂: For example, we may use polynomial basis functions. In addition,
the basis functions do not have to be a complete basis system. In fact, we use incomplete
basis functions below in order to remove the demeaning and detrending e¤ects. We have
thus obtained a general class of LRV estimators. For convenience, we refer to them as series
LRV estimators as they are based on nonparametric series regressions.

The series LRV estimator has di¤erent interpretations. First, it can be regarded as a
multiple-window estimator with window function �k(t=T )=

p
T , see Thomson (1982) and

Percival andWalden (1993). In the econometrics literature, Sun (2006) applies the multiple-
window estimator to the estimation of realized volatility. The robust long-run variance
estimators derived by Müller (2007) also belong to the class of multiple-window estimators.
In a di¤erent context and for a di¤erent model, Müller (2007) has established the �xed-
K asymptotics given in Section 3.2. Phillips (2005) gives an alternative motivation of
the multiple-window estimator and establishes its asymptotic properties. Second, when
�k(1� x) = �k(x); we can write �̂k = 1=

p
T
PT�1
�=0 �k(1� �

T )ûT�� ; which can be regarded
as output from applying a linear �lter to the residual process ût: The transfer function of
the linear �lter is

Hk(!) =
1p
T

T�1X
�=0

�k(1�
�

T
) exp(i�!):
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To capture the long run behavior of the process, we require that Hk(!) be concentrated
around the origin. That is, Hk(!) resembles a band pass �lter that passes low frequencies
within a certain range and rejects (attenuates) frequencies outside that range. Hence, 
̂k
can also be regarded as a �lter-bank estimator and 
̂ is a simple average of these �lter-
bank estimators. Finally, 
̂ can be regarded as the sample variance of regression coe¢ cients
f�̂k; k = 1; 2; :::;Kg: By construction, it is automatically positive semide�nite, a desirable
property for practical use.

Many series LRV estimators can be obtained by choosing di¤erent basis functions.
However, in nonparametric series estimation, it is a conventional wisdom that the choice
of basis functions is often less important than the choice of the smoothing parameter. For
this reason, we employ the basis functions that are most convenient for practical use and
focus on the problem of selecting the smoothing parameter K:

3.2 Fixed-K Asymptotics

In this subsection, we establish the asymptotic distribution of 
̂ under the assumption that
K is �xed. Let ût = yt � �y � (t� �t) �̂; then

1p
T

[Tr]X
t=1

ût =
1p
T

[Tr]X
t=1

h
ut � �u� (t� �t)

�
�̂ � �

�i

! � [Wn(r)� rWn(1)]� �
�Z r

0

�
s� 1

2

�
ds

�"Z 1

0

�
s� 1

2

�2
ds

#�1 Z 1

0

�
s� 1

2

�
dWn(s)

: = �Vn(r);

where

Vn(r) =Wn(r)� rWn(1)� 6r (r � 1)
Z 1

0

�
t� 1

2

�
dWn(t):

Using summation and integration by parts and invoking the continuous mapping theorem,
we obtain, for �xed K and under Assumption 1:


̂ ! d�
1

K

KX
k=1

�Z 1

0
�k (r) dVn(r)

� �Z 1

0
�k (s) dVn(s)

�0
�0

= �
1

K

KX
k=1

�Z 1

0

~�k (r) dWn(r)

� �Z 1

0

~�k (s) dWn(s)

�0
�0

: = �
1

K

KX
k=1

�k�
0
k�

0; (8)

where
~�k (r) = �k (r)�

Z 1

0
�k (s) ds� 12

�Z 1

0
�k(s)

�
s� 1

2

�
ds

��
r � 1

2

�
; (9)

is the transformed basis function and

�k =

Z 1

0

~�k (r) dWn(r):
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We call the above asymptotics the �xed-K asymptotics. This is similar to the �xed-b
asymptotics of Kiefer and Vogelsang (2005).

Common choices of �k are the sine and cosine trigonometric polynomials. In fact,
using a simple Fourier expansion and assuming that K (�) is even, we can show that the
eigenfunctions in (4) are the sine and cosine functions. A subset of the cosine functions�
�k(r) =

p
2 cos�kr; k = 0; 1; :::

	
enjoys the desirable property that

~�k (r) = �k (r) for k = 0; 2; 4; :::

So not only f�k(r)g are orthonormal but also are their transforms as de�ned in (9). Note
that the �rst basis with k = 0 is redundant as

PT
t=1 ût = 0. We therefore take

�k

�
t

T

�
=
p
2 cos

�
2�kt

T

�
; for k = 1; 2; :::;K

as our data windows or basis functions. Similar to the Hanning window (1� cos 2�t=T ) =2;
the above functions have small side lobes and their Fourier transforms decay to zero rapidly.
As a result, the associated LRV estimator has a small bias due to spectral leakage (Priestley,
1981, p. 563). This is an especially desirable feature for hypothesis testing where bias
reduction is more important than the point estimation of the LRV.

With the above cosine basis functions, �k is iid N(0; In). As a result,
PK
k=1 �k�

0
k is a

Wishart distribution Wn(In;K): So 
̂ converges to a scaled Wishart distribution. In the
scalar case, the limiting distribution reduces to the scaled chi-square distribution �2K=K.
In general, for any conforming constant vector z; z0
̂z=z0
z converges in distribution to
�2K=K: This result can be used to test hypotheses regarding 
. The resulting test may have
better size properties. See PSJ (2006, 2007) and Hashimzade and Vogelsang (2007) for the
same point based on conventional kernel estimators. We do not pursue this extension here
as our main focus is on the inference for �:

3.3 Large-K Asymptotics

While the �xed-K asymptotics may capture the randomness of 
̂ very well, it does not
re�ect the usual nonparametric bias or Parzen bias of 
̂: In this section, we consider the
asymptotic properties of 
̂ when both K and T go to in�nity such that K=T ! 0:

Theorem 2 Let Assumption 1 hold. As K !1 such that K=T ! 0; we have

(a) E
̂� 
 = K2

T 2
B + o

�
K2

T 2

�
+O

�
1
T

�
:

(b) var
�
vec(
̂)

�
= 1

K (

 
) (In2 +Knn) (1 + o (1)) +O
�
1
T

�
where

B = �2�
2

3

1X
h=�1

h2�u (h) ; �u (h) = Eutu
0
t�h;

Knn is the n2 � n2 commutation matrix, and In2 is the n2 � n2 identity matrix.

Theorem 2 extends Theorem 1 of Phillips (2005), which is applicable only to scalar time
series with known mean. The bias term here is di¤erent from that given in Theorem 1(i)
in Phillips (2005). This is because the basis functions we used are a subset of the basis
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functions in Phillips (2005). The advantage of dropping
�p
2 cos�(2k � 1)r; k = 1; 2; :::

	
is

that the estimation uncertainty of � does not a¤ect the bias and variance calculation in
large samples. More speci�cally, we show in the proof that 
̂ is asymptotically equivalent
to

~
 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k

�
t

T

�
ut

#"
1p
T

TX
s=1

�k

� s
T

�
us

#0
; (10)

an estimator that is based on the true but unknown error term ut: This result is in sharp
contrast to existing results in the HAC estimation literature. For conventional kernel HAC
estimators, the estimation uncertainty in model parameters gives rise to a higher order
bias term, which is typically the same order of magnitude as the asymptotic variance. The
higher order bias is not captured in the �rst-order conventional asymptotic theory, although
it is re�ected in the nonstandard �xed-b asymptotics. See for example SPJ. We have thus
provided a novel way to eliminate the e¤ect of the estimation uncertainty of the model
parameters on the LRV estimation. We note in passing that the estimation uncertainty
may also be eliminated using recursive OLS residuals.

Theorem 2(b) characterizes the asymptotic behavior of the exact variance. This result
is di¤erent from Theorem 1(ii) Phillips (2005) as the latter provides only the variance of
the limiting distribution of 
̂: In terms of moment calculations, our results are stronger
than those in Phillips (2005).

Let
MSE(
̂;W ) = Evec(
̂� 
)0Wvec(
̂� 
)

be the mean squared error of vec(
̂) with weighting matrix W: It follows from Theorem 2
that, up to smaller order terms:

MSE(
̂;W ) = tr
h
WEvec(
̂� 
)vec(
̂� 
)0

i
= vec(B)0Wvec(B)

K4

T 4
+ tr [W (

 
) (In2 +Knn)]

1

K
:

So the MSE optimal K is given by

K =

�
tr [W (

 
) (In2 +Knn)]

4vec(B)0Wvec(B)

�1=5
T 4=5: (11)

This approach to optimal K choice is the same as that for bandwidth choice in kernel LRV
estimators. See, for example, Andrews (1991).

4 Autocorrelation Robust Inference for Trend Parameters

The hypotheses of interest in this paper are

H0 : R� = r against H1 : R� 6= r;

where R is a p � n matrix and r is a p � 1 vector. The usual Wald statistic FT;OLS for
testing H0 against H1 is given by

FT;OLS =
h
RT 3=2(�̂OLS � �)

i0 �
R12
̂R0

��1 h
RT 3=2(�̂OLS � �)

i
:

9



When p = 1; we can construct the usual t-statistic

tT;OLS =
RT 3=2(�̂OLS � �)�
R12
̂R0

�1=2 :

4.1 Fixed-K Asymptotics

Under the �xed-K asymptotics and the null hypothesis

FT;OLS !d
1

12

�
R�

Z 1

0

�
r � 1

2

�
dWn(r)

�0
�
(
R�

1

K

KX
k=1

�Z 1

0

~�k(r)dWn(r)

� �Z 1

0

~�k(s)dW
0
n(s)

�
�0R0

)�1�
R�

Z 1

0

�
r � 1

2

�
dWn(r)

�
:

It turns out the scaling factor in the asymptotic distribution of 
̂ cancels out with that in
the asymptotic distribution of T 3=2(�̂OLS � �): To see this, we represent the distribution
Rp�n�Wn(r) by R�W �

p (r) for some p � p matrix R� and p-dimensional Brownian motion
W �
p (r): Then for a �xed K; we have

FT;OLS ! d

�
1p
12

Z 1

0

�
r � 1

2

�
dW �

p (r)

�0(
1

K

KX
k=1

�Z 1

0

~�k (r) dW
�
p (r)

� �Z 1

0

~�k (s) dW
�
p (s)

0
�)�1

�
�

1p
12

Z 1

0

�
r � 1

2

�
dW �

p (r)

�
:= �0

 
1

K

KX
k=1

�k�
0
k

!�1
�;

where

� =
1p
12

Z 1

0

�
r � 1

2

�
dW �

p (r) and �k =
Z 1

0

~�k (r) dW
�
p (r):

So the limiting distribution of FT;OLS does not depend on � and is pivotal.
Since

cov

�Z 1

0

�
r � 1

2

�
dW �

p (r);

Z 1

0

~�k (r) dW
�
p (r)

�
=

Z 1

0

�
r � 1

2

�
~�k (r) dr = 0 for all k;

� and �k are independent as both are normal random variables. In addition, �k s iidN(0; Ip)
and

PK
k=1 �k�

0
k is a Wishart distribution Wp(Ip;K): Hence the limiting distribution of

FT;OLS is Hotelling�s T-square distribution (Hotelling (1931)):

FT;OLS !d T
2(p;K):

Since for K � p;
K � p+ 1
pK

T 2(p;K) s Fp;K�p+1;

we have
(K � p+ 1)

pK
FT;OLS !d Fp;K�p+1 :=

�2p=p

�2K�p+1= (K � p+ 1) ;

10



where �2p and �
2
K�p+1 denote independent �

2 random variables.
When p = 1; the above result reduces to tT !d tK : That is, the t-statistic converges to

the t-distribution with K degrees of freedom. These �xed-K asymptotic results can also
be proved directly using standard techniques from multivariate statistical analysis.

We have therefore shown that under the �xed-K asymptotics, the scaled Wald statistic
converges weakly to the F distribution with degrees of freedom (p;K � p+ 1) and the t-
statistic converges to the t-distribution with degrees of freedom K: These results are very
handy as critical values from the F distribution or the t distribution can be easily obtained
from statistical tables or standard econometrics packages.

Under the local alternative hypothesis,

H1
�
�2
�
: R� = r + c=

�
T
p
T
�
where c =

�
R12
R0

�1=2
~c (12)

for some p� 1 vector ~c; we have, for K � p;

(K � p+ 1)
pK

FT;OLS !d
(K � p+ 1)

p
(� + ~c)0

 
KX
k=1

�k�
0
k

!�1
(� + ~c) := Fp;K�p+1

�
�2
�
;

a noncentral F distribution with degrees of freedom (p;K � p+ 1) and noncentrality pa-
rameter

�2 = (~c)0 ~c = c0
�
12R
R0

��1=2 �
12R
R0

��1=2
c = c0

�
12R
R0

��1
c:

This result follows from Proposition 8.2 in Bilodeau and Brenner (1999) where the nota-
tion Fc is the canonical F distribution (Bilodeau and Brenner, 1999, page 42). Similarly,
the t-statistic converges to the noncentral t distribution with degrees of freedom K and
noncentrality parameter � = c= (12R
R0)1=2 = ~c:

The local alternative power depends on c only through the noncentrality parameter
�2 = k~ck2 ; the squared length of vector ~c: The direction of ~c does not matter. Hence,
for the �rst order asymptotics given here, it is innocuous to assume that ~c is uniformly
distributed on the sphere Sp (�) = fx 2 Rp : kxk = �g. It turns out that this assumption
greatly simpli�es the development of higher order expansions in later sections.

4.2 Large-K Asymptotics

When K !1 such that K=T ! 0; the LRV estimator 
̂ is consistent. As a consequence

FT;OLS ! �2p under H0 and FT;OLS ! �2p
�
�2
�
under H1

�
�2
�
:

When p = 1; the above result reduces to

tT;OLS ! N(0; 1) under H0 and tT;OLS ! N (�; 1) under H1
�
�2
�
:

To compare the �xed-K asymptotics with the large-K asymptotics, we evaluate the
di¤erence in their 1 � � quantiles. Let F�p;K�p+1 be the 1 � � quantile of the Fp;K�p+1
distribution and F�p;1 be the 1 � � quantile of the Fp;1 � �2p=p distribution. In other
words, pF�p;1 � ��p is the 1 � � quantile of the �2p distribution. By de�nition and with a

11



slight abuse of notation, we have, as K !1;

1� � = P
�
Fp;K�p+1 < F

�
p;K�p+1

�
= P

 
�2p < pF

�
p;K�p+1

�2K�p+1
(K � p+ 1)

!

= EGp

 
pF�p;K�p+1

�2K�p+1
(K � p+ 1)

!

= Gp
�
pF�p;1

�
+G0p

�
pF�p;1

�
E

"
pF�p;K�p+1

�2K�p+1
(K � p+ 1) � pF

�
p;1

#

+
1

2
G00p
�
pF�p;1

�
E

"
pF�p;K�p+1

�2K�p+1
(K � p+ 1) � pF

�
p;1

#2
+ o

�
1

K2

�
(13)

= Gp
�
pF�p;1

�
+G0p

�
pF�p;1

� �
pF�p;K�p+1 � pF�p;1

�
+
1

K
G00p
�
pF�p;1

� �
pF�p;1

�2
+ o

�
pF�p;K�p+1 � pF�p;1

�
+ o

�
1

K

�
:

Therefore

pF�p;K�p+1 = �
�
p �

1

K

G00p
�
��p
�

G0p
�
��p
� ���p �2 + o� 1K

�
as K !1: (14)

But

�
G00p
�
��p
�

G0p
�
��p
� = 1

2��p

�
��p � p+ 2

�
;

hence

pF�p;K�p+1 = �
�
p +

1

2K

�
��p � p+ 2

�
��p + o

�
1

K

�
:

Therefore the critical values from the F-distribution are larger than those from the �2-
distribution, re�ecting the randomness in the denominator of the Wald statistic. Up to
the order o(1=K); the correction term

�
��p � p+ 2

�
��p =(2K) increases with p and decreases

withK: So whenK is small or p is large, the di¤erence between the F and �2 approximations
may be large.

5 High Order Expansion of the Finite Sample Distribution

In this section, we consider a high order expansion of the Wald statistic in order to design
a testing-optimal procedure to select K: We make the simpli�cation assumption that ut is
normal, which facilitates the derivations. The assumption could be relaxed but at the cost
of much greater complexity, see for example, Sun and Phillips (2009).

Let V = var(vec(u)), then the GLS estimator of � satis�es

vec
�
�̂GLS � �

�
=
�
(In 
X)0 V �1 (In 
X)

��1
(In 
X)0 V �1vec (u) :

Similarly, the OLS estimator satis�es

vec
�
�̂OLS � �

�
=
�
(In 
X)0 (In 
X)

��1
(In 
X)0 vec (u) :

12



So
vec

�
�̂OLS � �

�
= vec

�
�̂GLS � �

�
+�;

where � =
�
�0�;�

0
�

�0
and more explicitly

� =
n�
(In 
X)0 (In 
X)

��1
(In 
X)0 �

�
(In 
X)0 V �1 (In 
X)

��1
(In 
X)0 V �1

o
vec (u) :

It follows from the asymptotic equivalence of �̂OLS and �̂GLS that Ec0���0�c = O(1=T ) for
any vector c: See Grenander and Rosenblatt (1957).

It is easy to show that

E
h
vec

�
�̂GLS � �

�
�0
i
= 0:

Hence, �̂GLS � � and � are independent. In addition,

û =
n
InT �

h
In 
X

�
X 0X

��1
X 0
io
vec (u) ;

and thus

Evec
�
�̂GLS � �

�
û0

=
�
(In 
X)0 V �1 (In 
X)

��1
(In 
X)0 V �1V

n
InT �

h
In 
X

�
X 0X

��1
X 0
io
= 0:

So �̂GLS is independent of both � and 
̂:
Let FT;GLS be the Wald statistic based on the GLS estimator:

FT;GLS = RT
3=2(�̂GLS � �)

�
R12
̂R0

��1
RT 3=2(�̂GLS � �):

Using the asymptotic equivalence of the OLS and GLS estimators and the above two
independence conditions, we can prove the following Lemma.

Lemma 3 Let Assumption 1 hold and assume that "t s iidN(0;�): Then for K � p;
(a) P

�
(K�p+1)

K FT;GLS < z
�
= EGp

�
z K
K�p+1�

�1
�
+O

�
1
T

�
;

(b) P
�
(K�p+1)

K FT;OLS < z
�
= P

�
(K�p+1)

K FT;GLS < z
�
+O

�
1
T

�
;

where Gp is the CDF of a �2 random variable with degrees of freedom p,

� = e0�
�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
e�;

e� =
(R12
T;GLSR

0)�1=2RT 3=2(�̂GLS � �)


(R12
T;GLSR0)�1=2RT 3=2(�̂GLS � �)


 ;
and 
T;GLS = var

h
T 3=2

�
�̂GLS � �

�i
=12:

Lemma 3 shows that the estimation uncertainty of 
̂ a¤ects the distribution of the
Wald statistic only through �: Taking a Taylor expansion, we have

��1 = 1 + L+Q+ op

�
1

K
+
K2

T 2

�
+Op

�
1

T

�
;
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where L is linear in 
̂ � 
 and Q is quadratic in 
̂ � 
: The exact expressions for L
and Q are not important here but are given in the proof of Theorem 4. Plugging this
stochastic expansion into Lemma 3, we obtain a higher order expansion of the �nite sample
distribution of FT;OLS for the case where K !1 such that K=T ! 0.

Theorem 4 Let Assumption 1 hold and assume that "t s iidN(0;�). If K ! 1 such
that K=T ! 0, then

P

�
(K � p+ 1)

K
FT;OLS < z

�
= Gp (z) +

K2

T 2
G0p (z) z �B +

1

K
G00p (z) z

2 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
(15)

where

�B = �B (R;B;
) =
tr
n
(RBR0) (R
R0)�1

o
p

:

The �rst term in (15) comes from the standard chi-square approximation of the Wald
statistic. The second term captures the nonparametric bias of the LRV estimator while
the third term re�ects the variance of the LRV estimator. The result is analogous to those
obtained by SPJ for Gaussian location models and Sun and Phillips (SP, 2009) for general
linear GMM models with stationary data. However, there is an important di¤erence. For
conventional kernel estimators as used in SPJ and SP, the asymptotics expansion contains
a term that re�ects the bias due to the estimation error of the model parameters. Such
a term does not appear here because the basis functions we employ are asymptotically
orthogonal to the regressors.

To understand the relationship between the �xed-K and large-K asymptotics, we de-
velop an expansion of the limiting pFp;K�p+1 distribution as in (13):

P (pFp;K�p+1 < z) = Gp (z) +
1

K
G00p (z) z

2 + o

�
1

K

�
; as K !1:

Comparing this with Theorem 4, we �nd that the �xed-K asymptotics captures one of
the higher order terms in the high order expansion of the large K asymptotics. Plugging
z = pF�p;K�p+1 into the above equation yields:

1� � = Gp
�
pF�p;K�p+1

�
+
1

K
G00p
�
pF�p;K�p+1

� �
pF�p;K�p+1

�2
+ o

�
1

K

�
:

This implies that

P

�
(K � p+ 1)

K
FT;OLS < pF

�
p;K�p+1

�
= 1� �+ K

2

T 2
G0p
�
pF�p;K�p+1

�
pF�p;K�p+1 �B

+o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (16)

Therefore, use of critical value pF�p;K�p+1 removes the variance term K�1G00p (z) z
2 in the

higher order expansion. The size distortion is then of order O
�
K2=T 2

�
: In contrast, if the
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critical value from the conventional �2p distribution is used, the size distortion is of order
O
�
K2=T 2

�
+O (1=K) : So when K3=T 2 ! 0; using critical value pF�p;K�p+1 should lead to

size improvements. We have thus shown that critical values from the �xed-K asymptotics
is second order correct under the large-K asymptotics.

The �xed-K asymptotic distribution of FT;OLS is K (K � p+ 1)�1 pFp;K�p+1 while its
�rst-order large-K asymptotic distribution is �2p: When K is �xed, the two distributions
are di¤erent. Hence, the large-K asymptotic approximation is not even �rst-order valid
under the �xed-K asymptotics.

Theorem 4 gives an expansion of the distribution of K�1 (K � p+ 1)FT;OLS : The factor
K�1 (K � p+ 1) is a �nite sample correction factor. Without this correction, we can show
that, up to smaller order terms

P
�
FT;OLS < �

�
p

�
= Gp

�
��p
�
+
K2

T 2
G0p
�
��p
�
��p �B�

1

K
G0p
�
��p
�
��p (p� 1)+

1

K
G00p
�
��p
� �
��p
�2
:

Comparing this with (15), we �nd that the above expansion has an additional term
�K�1G0p

�
��p
�
��p (p� 1) : For any given critical value ��p ; this term is negative and grows

with p; the number of restrictions in the hypothesis. As a result, the error in rejection
probability or the error in coverage probability tends to be larger for larger p: This explains
why conventional con�dence regions tend to have large under-coverage when the dimension
of the problem is high.

In the rest of the paper, we use the �nite sample corrected Wald statistic

F �T;OLS =
(K � p+ 1)

K
FT;OLS

and employ critical value pF�p;K�p+1 to perform our test. For convenience, we refer to
F �T;OLS as the F

� statistic and the test as the F � test. F �T;OLS can be viewed as the
standard Wald statistic but using the following estimator for R
R0 :

\R
R0 =
1

K � p+ 1

KX
k=1

R
̂kR
0:

So the �nite sample correction factor (K � p+ 1) =K can be viewed as a degree-of-freedom
adjustment.

The following theorem gives the type I and type II errors of the F � test.

Theorem 5 Let Assumption 1 hold and assume that "t s iidN(0;�). If K ! 1 such
that K=T ! 0, then

(a) The type I error of the F � test is

P
�
F �T;OLS > pF

�
p;K�p+1

�
= �� K

2 �B

T 2
G0p
�
��p
�
��p + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (17)

(b) Under the local alternative H1
�
�2
�
: R� = r + (R
R0)1=2 ~c=

�
T
p
T
�
where ~c is

uniformly distributed on the sphere Sp (�) = fx 2 Rp : kxk = �g; the type II error of the F �
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test is

P
�
F �T;OLS < pF

�
p;K�p+1jH1

�
�2
��
= Gp;�2

�
��p
�
+
K2 �B

T 2
G0
p;�2
�
��p
�
��p

+
1

K
Qp;�2

�
��p
� �
��p
�2
+ o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
; (18)

where Gp;�2 (�) and G0p;�2 (�) are the CDF and pdf of the noncentral �
2 distribution with

degrees of freedom p and noncentrality parameter �2 and

Qp;�2 (z) = G00p;�2 (z)�
G00p (z)

G0p (z)
G0
p;�2

(z) =
�2

2z
G0
(p+2);�2

(z) :

Theorem 5(a) follows from Theorem 4. The uniformity of ~c on a sphere enables us to
use a similar argument to prove Theorem 5(b). A key point in the proof of Theorem 4 is
that e� is uniformly distributed on the unit sphere Sp (1) ; which follows from the rotation
invariance of the multivariate standard normal distribution. The uniformity of ~c ensures
the same property holds for the corresponding statistic

e�� =
(R12
T;GLSR

0)�1=2RT 3=2(�̂GLS � �) + ~c


(R12
T;GLSR0)�1=2RT 3=2(�̂GLS � �) + ~c



under the local alternative hypothesis.

The quantity Qp;�2
�
��p
�
re�ects the di¤erence in curvatures of the two CDF functions

Gp (z) and Gp;�2 (z) at the point z = �
�
p :When we use the second order correct critical value

pF�p;K�p+1, the variance term is removed under the null. However, due to the di¤erence in
curvatures, the variance term remains under the local alternative hypothesis. The O(1=K)
term in Theorem 5(b) captures this e¤ect. Since Qp;�2 (z) > 0 for all z > 0; this term
increases monotonically with K. According to this term, the value of K should be chosen
as large as possible. This is not surprising. In order to improve the power of the F � test,
we should minimize the randomness of the LRV estimator, which calls for a large K value.
However, a large K value may produce large bias, which may lead to power loss or size
distortion. In the next section, we show that there is an opportunity to select K to trade
o¤ the bias e¤ect and variance e¤ect on the size and power properties.

6 Optimal Smoothing Parameter Selection

In this section, we provide a novel approach to smoothing parameter selection that is most
suitable for semiparametric testing.

6.1 Optimal K Formula

In view of the asymptotic expansion in (17) and ignoring the higher order terms, we can
approximate the type I error of the F � test by

eI = ��
K2 �B

T 2
G0p
�
��p
�
��p :
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Similarly, from (18), the type II error of the F � test can be approximated by

eII = Gp;�2
�
��p
�
+
K2 �B

T 2
G0
p;�2
�
��p
�
��p +

1

K

�2

2
G0
(p+2);�2

�
��p
�
��p :

We choose K to minimize the approximate type II error while controlling for the ap-
proximate type I error. More speci�cally, we solve

min eII ; s:t: eI � ��

where � is a constant greater than 1. Ideally, the type I error is less than or equal to the
nominal type I error �: In �nite samples, there are always some approximation error and
we allow for some discrepancy by introducing the tolerance factor �: For example, when
� = 5% and � = 1:2; we aim to control the type I error such that it is not greater than 6%.
We may allow � to depend on the sample size T: For a larger sample size, we may require
� to take smaller values.

Note that both the type I and type II errors depend on the asymptotic bias of the
estimator R
̂R0 through �B; the relative bias of estimating the variance of RT 3=2(�̂OLS��):
Our testing-oriented criterion is in sharp contrast with the MSE criterion, which depends
on a quadratic form of the asymptotic bias of 
̂. In large samples, the quadratic form is of
smaller order than the bias itself. So for testing problems, it is more important to reduce
the bias of the LRV estimator as compared to the point estimation of the LRV matrix. In
addition, the quadratic form is invariant to sign of B: The MSE-optimal K is the same for
B and �B: In contrast, for the testing-optimal K; the sign of B (hence that of �B) is of
vital importance as shown below.

The solution to the minimization problem depends on the sign of �B: When �B > 0; the
constraint eI � �� is not binding and we have the unconstrained minimization problem:
min eII : The optimal K is

Kopt =

 
�2G0

(p+2);�2

�
��p
�

4 �BG0
p;�2

�
��p
� !1=3 T 2=3: (19)

When �B < 0; the constraint eI � �� may be binding and we have to use the Kuhn-Tucker
theorem to search for the optimum. Let � be the Lagrange multiplier, and de�ne

L(K;�) = Gp;�2
�
��p
�
+
K2 �B

T 2
G0
p;�2
�
��p
�
��p +

1

K

�2

2
G0
(p+2);�2

�
��p
�
��p (20)

+�

��
�� K

2 �B

T 2
G0p
�
��p
�
��p

�
� ��

�
:

It is easy to show that at the optimal K; the constraint eI � �� is indeed binding and
� > 0: Hence, the optimal K is

Kopt =

 
(�� 1)��� �B��G0p ���p ���p

!1=2
T; (21)

and the corresponding Lagrange multiplier is

�opt =
G0
p;�2

�
��p
�

G0p
�
��p
� +

�� �B��1=2 �2G0
(p+2);�2

�
��p
� �
��p
�3=2 �

G0p
�
��p
��1=2

4 [(�� 1)�]3=2 T
:
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Formulae (19) and (21) can be written collectively as

Kopt =

24 �2G0
(p+2);�2

�
��p
�

4 �B
h
G0
p;�2

�
��p
�
� �optG0p

�
��p
�i
351=3 T 2=3;

where

�opt =

8<:
0; if �B > 0

G0
p;�2
(��p )

G0p(��p )
+ �2

j �Bj1=2G0
(p+2);�2

(��p )[��p ]
3=2
[G0p(��p )]

1=2

4[(��1)�]3=2T
; if �B < 0

(22)

The function L(K;�) is a weighted sum of the type I and type II errors with weight given
by the optimal Lagrange multiplier. When the size distortion is expected to be negative,
the optimal Lagrange multiplier is zero and we assign all weight to the type II error. In
this case, the expansion rate of the optimal K is O

�
T 2=3

�
: When the size distortion is

expected to be positive, the Lagrange multiplier is positive. In this case, the loss function
is a genuine weighted sum of type I and type II errors. The optimalK has an expansion rate
that increases with the tolerance on the type I error. When the permitted tolerance is very
low so that �� 1 s 1=T 2; the optimal K is bounded. The �xed-K rule can be interpreted
as assigning increasingly more weight to the type I error as the sample size increases. On
the other hand, when the permitted tolerance is high so that �� 1 = O(1); the optimal K
has an expansion rate of O(T ); which is faster than the MSE-optimal expansion rate.

All else being equal, the optimal K decreases with
�� �B�� : This is expected, as the asymp-

totic bias of 
̂ increases with both K and
�� �B�� :When �� �B�� is large, we should choose a small

K to o¤set the bias e¤ect.
The formula for Kopt depends on the noncentrality parameter �2: For practical imple-

mentation, we suggest choosing �2 such that the �rst order power of the test, as measured
by 1�Gp;�2

�
��p
�
; is 75%. That is, we solve 1�Gp;�2

�
��p
�
= 75% for a given p and a given

signi�cance level �: As usual, we consider � = 5% and 10%: The value of �2 can be easily
computed using standard statistical programs. Since K is an integer greater than or equal
to p; in practice, we take max(dKopte ; p) as the K value, where d�e is the ceiling function.

To sum up, when the size distortion is expected to be negative, the expansion rate of the
optimal K is O

�
T 2=3

�
: When the size distortion is expected to be positive, the optimal K

has an expansion rate that increases with the tolerance on the type I error. The expansion
can range from O(1) when the permitted tolerance is very low to O(T ) when the permitted
tolerance is very high.

6.2 Data Driven Implementation

The optimal K in (22) depends on the data generating process only through the parameter
�B:We can therefore write Kopt = Kopt( �B): The unknown parameter �B can be estimated by
a standard plug-in procedure based on a simple parametric model like VAR (e.g. Andrews
(1991)). More speci�cally, the plug-in procedure involves the following steps. First, we
estimate the model using the OLS estimator and compute the residuals fûtg : Second, we
specify a multivariate approximating parametric model and �t the model to fûtg by the
standard OLS method. Third, we treat the �tted model as if it were the true model for
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the process futg and compute �B as a function of the parameters of the parametric model.
Plugging the estimate �B into (22) gives the automatic bandwidth K̂:

Suppose we use a VAR(1) as the approximating parametric model for ut: Let Â be the
estimated parameter matrix and �̂ be the estimated innovation covariance matrix, then
the plug-in estimates of 
 and B are


̂ = (In � Â)�1�̂(In � Â0)�1; (23)

B̂ = �2�
2

3
(In � Â)�3

�
Â�̂ + Â2�̂Â0 + Â2�̂� 6Â�̂Â0

+�̂(Â0)2 + Â�̂(Â0)2 + �̂Â0
�
(In � Â0)�3: (24)

For the plug-in estimates under a general VAR(p) model, we refer to Andrews (1991) for the
corresponding formulae. Given the plug-in estimates of 
 and B; the data-driven automatic
bandwidth can be computed as

K̂�
opt = max

�l
K̂opt( �B(R; B̂; 
̂))

m
; p
�
: (25)

7 Simulation Evidence

This section provides some simulation evidence on the �nite sample performance of the F �

test based on the plug-in procedure that minimizes the type II error while controlling for
the type I error.

As in Vogelsang and Franses (2005), we set n = 6. The error follows either a VAR(1)
or VMA(1) process:

ut = Aut�1 +
p
1� �2"t

ut = A"t�1 +
p
1� �2"t

where A = �In; "t = (v1t + �ft; v2t + �ft; :::; vnt + �ft)0 =
p
1 + �2 and (vt; ft)0 is a Gaussian

multivariate white noise process with unit variance. Under this speci�cation, the six time
series all follow the same VAR(1) or VMA(1) process with "t s iidN(0;�) for

� =
1

1 + �2
In +

�2

1 + �2
Jn;

where Jn is a matrix of ones. The parameter � determines the degree of cross-dependence
among the time series considered. When � = 0; the six series are uncorrelated with each
other. When � = 1; the six series have the same pair wise correlation coe¢ cient 0.5. The
variance-covariance matrix of ut is normalized so that the variance of each series uit is equal
to one for all values of j�j < 1: For the VAR(1) process, 
 =

�
1� �2

�
(In �A)�1� (In �A0)�1 :

For the VMA(1) process 
 =
�
1� �2

�
(In +A=

p
1� �2)�(In +A=

p
1� �2)0:

For the model parameters, we take � = 0; 0:25; 0:50; 0:75 and set � = 0 and 1: We set
the intercepts and slopes to zero as the tests we consider are invariant to those parameters.
For each test, we consider two signi�cance levels � = 5% and � = 10%; two di¤erent choices
of the tolerance parameter: � = 1:1 and 1:2; and two di¤erent sample sizes T = 300; 500:
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Table 1: Type I error of di¤erent tests for VAR(1) error with T = 300; � = 1:1 and � = 1
New MSE Hybrid VF New MSE Hybrid VF

p = 1 p = 2
� = 0 0.0517 0.0549 0.0508 0.0491 0.0505 0.0609 0.0499 0.0477
� = 0:25 0.0571 0.0681 0.0590 0.0519 0.0614 0.0814 0.0601 0.0521
� = 0:50 0.0579 0.0784 0.0619 0.0557 0.0622 0.1023 0.0659 0.0571
� = 0:75 0.0637 0.0976 0.0665 0.0627 0.0685 0.1492 0.0682 0.0717

p = 3 p = 6
� = 0 0.0505 0.0666 0.0495 0.0497 0.0504 0.0949 0.0508 0.0484
� = 0:25 0.0647 0.0965 0.0611 0.0552 0.0815 0.1645 0.0664 0.0602
� = 0:50 0.0704 0.1353 0.0685 0.0636 0.0936 0.2730 0.0753 0.0787
� = 0:75 0.0781 0.2236 0.0731 0.0881 0.1124 0.5328 0.0776 0.1401

As in Vogelsang and Franses (2005), we consider the following null hypotheses:

H01 : �1 = 0;

H02 : �1 = �2 = 0;

H03 : �1 = �2 = �3 = 0;

H04 : �1 = �2 = ::: = �6 = 0;

where p = 1; 2; 3; 6; respectively. The corresponding matrix R is the �rst p rows of the
identity matrix I6: To explore the �nite sample size of the tests, we generate data under
these null hypotheses. To compare the power of the tests, we generate data under the local
alternative hypothesis H1

�
�2
�
:

We examine the �nite sample performance of three di¤erent testing methods. The �rst
one is the new F � test, which is based on the modi�ed Wald statistic and testing-optimal K
and uses the F-distribution as the reference distribution. The second one is the conventional
Wald test, which is based on the unmodi�ed Wald statistic and MSE-optimal K and uses
the �2p distribution as the reference distribution. The last one is the test proposed by
Vogelsang and Franses (2005), which is based on the Bartlett kernel LRV estimator with
bandwidth equal to the sample size and uses the nonstandard asymptotic theory. The three
methods are referred as �New�, �MSE�, and �VF�respectively in the tables and �gures below.

Table 1 gives the empirical type I error of the three testing methods for the VAR(1)
error with sample size T = 300, tolerance parameter � = 1:1; and � = 1: The table
also includes a hybrid procedure that employs the MSE-optimal K and critical values
from the F-distribution. The only di¤erence between the conventional method and the
hybrid method lies in the critical values used. More speci�cally, let K̂mse be the plug-in
estimate of the MSE-optimal K given in (11) and F̂T;OLS(K̂mse) be the associated Wald
statistic. The hybrid method rejects the null if F̂T;OLS(K̂mse) is larger than the critical value
(pK̂mse)(K̂mse � p + 1)�1F�p;K̂mse�p+1

where F�
p;K̂mse�p+1

is the �-level critical value from
the F distribution Fp;K̂mse�p+1. In contrast, the conventional method uses critical values
from the �2p distribution. The signi�cance level is 5%, which is also the nominal type I error.
Several patterns emerge. First, as it is clear from the table, the conventional method has a
large size distortion. The size distortion increases with both the error dependence and the
number of restrictions being jointly tested. This result is consistent with our theoretical
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analysis. The size distortion can be very severe. For example, when � = 0:75 and p = 6,
the empirical type I error of the test is 0.5328, which is far from 0.05, the nominal type
I error. Using the F critical values eliminates the distortion to a great extent. This is
especially true when the size distortion is large. Intuitively, larger size distortion occurs
when K is smaller so that the LRV estimator has a larger variation. This is the scenario
where the di¤erence between the F critical values and �2 critical values is larger. Second,
the size distortion of the new method and the VF method is substantially smaller than the
conventional method. This is because both tests employ asymptotic approximations that
capture the estimation uncertainty of the LRV estimator. The smaller size distortion of
the new method is also consistent with that of the hybrid method as both are based on
F -approximations. Third, compared with the VF method, the new method has similar size
distortion. Since the bandwidth is set equal to the sample size, the VF method is designed
to achieve the smallest possible size distortion. Given this observation, we can conclude
that the new method succeeds in controlling the type I error.

Due to the approximation error, the bound we impose on the approximate type I error
does not fully control the empirical type I error. This is demonstrated in Table 1. The
quality of approximation depends on the persistence of the time series. When the time
series is highly persistent, the �rst order asymptotic bias of the LRV estimator may not
approximate the �nite sample bias very well. As a result, the approximate type I error,
which is based on the �rst order asymptotic bias, may not fully capture the empirical type
I error. So it is important to keep in mind that the empirical type I error may still be larger
than the nominal type I error even if we exert some control over the approximate type I
error.

Figures 1-4 present the �nite sample power under the VAR(1) error for di¤erent values of
p:We compute the power using the 5% empirical �nite sample critical values obtained from
the null distribution. So the �nite sample power is size-adjusted and power comparisons
are meaningful. The parameter con�guration is the same as those for Table 1 except the
DGP is generated under the local alternatives. Two observations can be drawn from these
�gures. First, the new test has higher power than the VF test in most cases except when the
error dependence is very high and the number of restrictions being jointly tested is large.
When the error dependence is low, the selected K value is relatively large and the variance
of the associated LRV estimator is small. In contrast, the LRV estimator used in the VF
test is inconsistent and is therefore expected to have a large variance. As a result, the new
test is more powerful than the VF test. On the other hand, when the error dependence
is high, the selected K values are small. In this case, both the VF test and the new test
employ a LRV estimator with large variance. The VF test can be more powerful in this
scenario. Second, the new test is as powerful as the conventional Wald test. This result is
encouraging, as the size accuracy of a test is often achieved at the cost of sizable power loss.
An example is the VF test. While it has more accurate size than the corresponding Wald
test based on the Bartlett kernel LRV estimator, it is also less powerful. See Vogelsang and
Franses (2005) for details.

To shed further light on the size and power properties of the new test and the corre-
sponding Wald test under the conventional asymptotics, we present the mean and median
of the selected K values for sample size T = 300 in Table 2. The (sample) mean and
median are computed over 10000 simulation replications. It is clear that for both the
testing-oriented criterion and the MSE criterion, the mean and median of the selected K
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Table 2: The selected K values based on the testing-oriented criterion and the MSE criterion
for VAR(1) error with T = 300; � = 1:1, and � = 1

K̂test, p = 1 K̂test, p = 2 K̂test, p = 3 K̂test, p = 6 K̂mse
Mean Median Mean Median Mean Median Mean Median Mean Median

� = 0 53 44 62 52 62 53 53 50 63 62
� = 0:25 29 24 33 27 37 29 45 37 36 36
� = 0:50 16 13 17 14 19 14 25 20 21 21
� = 0:75 9 6 9 6 11 7 15 12 11 10

Table 3: Type I error for various tests based on VMA(1) error with T = 100; � = 1:1
New MSE Hybrid VF New MSE Hybrid VF

p = 1 p = 2
� = 0 0.0517 0.0549 0.0508 0.0491 0.0505 0.0609 0.0499 0.0477
� = 0:25 0.0546 0.0627 0.0540 0.0510 0.0537 0.0727 0.0522 0.0511
� = 0:50 0.0516 0.0655 0.0539 0.0522 0.0522 0.0804 0.0514 0.0514
� = 0:75 0.0502 0.0657 0.0531 0.0531 0.0517 0.0827 0.0511 0.0513

p = 3 p = 6
� = 0 0.0505 0.0666 0.0495 0.0497 0.0504 0.0949 0.0508 0.0484
� = 0:25 0.0561 0.0850 0.0534 0.0531 0.0661 0.1430 0.0579 0.0560
� = 0:50 0.0561 0.0989 0.0543 0.0544 0.0644 0.1940 0.0553 0.0599
� = 0:75 0.0567 0.1066 0.0541 0.0544 0.0645 0.2154 0.0560 0.0615

value increase with the error dependence. While the sample mean and median of the MSE-
optimal K are about the same, the sample mean of the testing-optimal K is less than its
sample median, implying that the testing-optimal K has relatively few high values. When
the number of constraints is small, e.g. p = 1; 2; 3; the testing-optimal K is smaller than
the MSE-optimal K. This explains why the type I error of the new test is smaller than
or about the same as that of the hybrid test. When the number of constraints is 6, the
testing-optimal K is larger, which explains the higher size-adjusted power of the new test
as compared to the hybrid test. When the sample size increases to 500, the testing-optimal
K becomes smaller than the MSE-optimal K for all values of p considered. In this case, the
new test has smaller size distortion than the hybrid test for all parameter con�gurations
considered but is also slightly less powerful.

Table 3 presents the simulated type I errors for the VMA(1) error process. The qualita-
tive observations for the VAR(1) error remain valid. In fact, these qualitative observations
hold for other parameter con�gurations such as di¤erent sample sizes and di¤erent values
of �: All else being equal, the size distortion of the new method for � = 1:2 is slightly larger
than that for � = 1:1: This is expected as we have a higher tolerance for the type I error
when the value of � is larger.

Figures 5-8 present the power curves under the VMA(1) error. The �gures reinforce
and strengthen the observations for the VAR(1) error. It is clear now that the new test
is more powerful than the VF test and is as powerful as the conventional Wald test based
on the MSE-optimal K and �2 approximation. This is true for all parameter combinations
considered.
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In simulations not reported here, we have considered VAR(1) and VMA(1) errors with
negative values of � and hypotheses of the form �1 = �2 = ::: = �j0 for some j0 � 2: For
some of these con�gurations, �B > 0: Regardless of the sign of �B; the new F � test is often
as powerful as, albeit sometimes slightly less powerful than, the conventional Wald test we
consider here. On the other hand, the new F � test is much more accurate in size than the
Wald test. In terms of the type I error and size-adjusted power, the new F � test dominates
the VF test in an overall sense. Compared to the hybrid test, the new F � test achieves a
smaller type I error for a medium sample size at the cost of very small power loss.

8 Conclusion

The paper proposes a novel approach to multivariate trend inference in the presence of
nonparametric autocorrelation. The inference procedure is based on a series type LRV
estimator. Compared to the conventional kernel type LRV estimators, the series LRV esti-
mator enjoys two advantages. First, it is asymptotically invariant to the intercept and trend
parameters. This property releases us from worrying about the estimation uncertainty of
those parameters. Second, the associated (modi�ed) Wald statistic converges to a standard
distribution regardless of the asymptotic speci�cation of the smoothing parameter. This
property releases practitioners from the computation burden of simulating nonstandard
critical values.

As a primary contribution of this paper, we propose a new method to select the smooth-
ing parameter in the series LRV estimator. The optimal smoothing parameter is selected
to minimize the type II error hence maximize the power of the test while controlling for the
type I error. This new selection criterion is fundamentally di¤erent from the MSE criterion
for the point estimation of the LRV. Depending on the permitted tolerance on the type
I error, the expansion rate of the testing-optimal smoothing parameter may be larger or
smaller than the MSE-optimal smoothing parameter. The �xed smoothing parameter rule
can be interpreted as exerting increasingly tight control on the type I error. Monte Carlo
experiments show that the size of the new testing procedure is as accurate as the nonstan-
dard test of Vogelsang and Franses (2005) with bandwidth equal to the sample size. It is
also as powerful as the conventional Wald test that is based on the series LRV estimator
and uses the MSE-optimal smoothing parameter.

The idea of testing-optimal smoothing parameter choice can be extended to usual kernel
HAC estimator. Sun (2010) considers kernel HAC estimation in a general GMM framework
and develops a testing-optimal procedure for smoothing parameter choice. The method in
Sun (2010) can be adopted for trend estimation and inference, leading to a testing-oriented
bandwidth choice for the VF type test.
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Figure 1: Size-adjusted Power of Di¤erent Testing Procedures for VAR(1) Error with T =
300; � = 1:1 and p = 1:
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Figure 2: Size-adjusted Power of Di¤erent Testing Procedures for VAR(1) Error with T =
300; � = 1:1 and p = 2:
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Figure 3: Size-adjusted Power of Di¤erent Testing Procedures for VAR(1) Error with T =
300; � = 1:1 and p = 3:
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Figure 4: Size-adjusted Power of Di¤erent Testing Procedures for VAR(1) Error with T =
300; � = 1:1 and p = 6:
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Figure 5: Size-adjusted Power of Di¤erent Testing Procedures for VMA(1) Error with
T = 300; � = 1:1 and p = 1:
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Figure 6: Size-adjusted Power of Di¤erent Testing Procedures for VMA(1) Error with
T = 300; � = 1:1 and p = 2:

27



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

δ2

P
ow

er

(a) ρ =  0

New
VF
MSE

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

δ2

P
ow

er

(b) ρ =  0.25

New
VF
MSE

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

δ2

P
ow

er

(c) ρ =  0.5

New
VF
MSE

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

δ2
P

ow
er

(d) ρ =  0.75

New
VF
MSE

Figure 7: Size-adjusted Power of Di¤erent Testing Procedures for VMA(1) Error with
T = 300; � = 1:1 and p = 3:
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Figure 8: Size-adjusted Power of Di¤erent Testing Procedures for VMA(1) Error with
T = 300; � = 1:1 and p = 6:
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9 Appendix of Proofs

Proof of Theorem 2. Part (a). Let �x be the sample mean of the sequence x1; :::; xT ;
then

1p
T

TX
t=1

�k

�
t

T

�
ût
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Some calculations show that
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It is easy to see that the bias and variance of ~
 are the same as those of 
̂ up to order
O (1=T ). Therefore it su¢ ces to compute the bias and variance of ~
:
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It follows from equation (22) in Phillips (2005) that
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where �u (h) = Eutu0t�h and LT satis�es
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Taking the �rst term of (29) ; averaging over k and using the fact that khk � LT and LT
satis�es (27), we get
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Approximating the sums by integrals, we can show that
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So
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Part (b). Using the device in Phillips and Solo (1992), we have the BN decomposition
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Plugging this into the de�nition of ~
 yields

~
 = R1 +R2 +R
0
2 +R3;

where

R1 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k

�
t

T

�
C (1) "t

#"
1p
T

TX
�=1

�k

� �
T

�
C(1)"�

#0
;

R2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k

�
t

T

�
C (1) "t

#"
1p
T

TX
�=1

�k

� �
T

�
(~u��1 � ~u� )

#0
;

R3 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k

�
t

T

�
(~ut�1 � ~ut)

#"
1p
T

TX
�=1

�k

� �
T

�
(~u��1 � ~u� )

#0
:

It is not hard but tedious to show that
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To save space, we omit the details but they are available upon request. Now
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and
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Proof of Lemma 3. Part (a). We write the statistic FT;GLS as
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Note that � is independent of � because (i) (�̂GLS��) is independent of 
̂: (ii) � is the
squared length of a standard normal vector and e� is the direction of this vector. By the
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rotation-invariance of standard normals, the length is independent of the direction. Hence
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Writing 
̂ = 
̂(u) and �� = �� (u) as functions of the error process u; we have 
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Proof of Theorem 4. We write � = �(
̂) and proceed to take a Taylor expansion of
�(
̂) around �(
) = 1: To this end, we �rst compute the derivatives of �(
̂) with respect
to 
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Next, we compute the second order derivative:
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Now h
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We proceed to compute the expected values of L and Q. As a by-product, we obtain the
order of the remainder term. For notational simplicity, we let X = (X1; :::; Xp)

0 = e� 2 Rp.
It is easy to see that X is a random vector uniformly distributed on the surface of the
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To compute E(Q); we note that Q consists of two terms. The �rst term is
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R0)�1=2 : Plugging in (32) and (33), we
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1

2
Evec(
̂� 
)0J1vec(
̂� 
)

= E
X
i

A2iiEX
4
i + E

X
i6=m

AiiAmmEX
2
iX

2
m + 2E

X
i6=j

AijAijEX
2
iX

2
j

= E
X
i

A2ii
3

p (p+ 2)
+ E

X
i6=m

AiiAmm
1

p (p+ 2)
+ 2E

X
i6=j

A2ij
1

p (p+ 2)

=
3

p (p+ 2)
E
X
i

A2ii +
1

p (p+ 2)
E
X
i6=m

�
AiiAmm + 2A

2
im

�
=

1

p (p+ 2)
E
X
i;m

�
AiiAmm + 2A

2
im

�
=

1

p (p+ 2)
E
�
2tr(AA) + [tr(A)]2

�
:

Now

Etr (AA)

= E

���
R0
�
R
R0

��1=2�0 
R0 �R
R0��1=2� vec(
̂� 
)�0
�
��
R0
�
R
R0

��1=2�0 
R0 �R
R0��1=2� vec(
̂� 
)
=

1

K
tr

���
R0
�
R
R0

��1=2�0 
R0 �R
R0��1=2� (

 
) (In +Knn)
�
�
R0
�
R
R0

��1=2 
 �R0 �R
R0��1=2�0��+ o�K2

T 2

�
+O

�
1

T

�
=

1

K
tr
n�h

R0
�
R
R0

��1
R
i


h
R0
�
R
R0

��1
R
i�
(

 
) (In2 +Knn)

o
+ o

�
K2

T 2

�
+O

�
1

T

�

37



The trace in the last line is the sum of
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with ei being

the i-th column unit vector of order n: See Magnus and Neudecker (1979, de�nition 3.1).
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Using the above expansion, we have
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Proof of Theorem 5. Part (a). It follows from Theorem 4 that
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Part (b). The FT;GLS statistic can be written as
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and �� is independent of ��: In addition, �� s �2p
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and e�� is uniformly distributed on

the unit sphere Sp (1) : Using the same calculation as in the proof of Theorem 4, we have,
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where
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completing the proof of the theorem.
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