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Abstract

This paper proposes new, simple, and more accurate statistical tests in a cointegrated
system that allows for endogenous regressors and serially dependent errors. The approach
involves first transforming the time series using some orthonormal basis functions in L2[0, 1],
which has energy concentrated at low frequencies, and then running an augmented regression
based on the transformed data. The tests are extremely simple to implement as they can
be carried out in exactly the same way as if the transformed regression is a classical linear
normal regression. In particular, critical values are from the standard F or t distribution. The
proposed F and t tests are robust in that they are asymptotically valid regardless of whether
the number of basis functions is held fixed or allowed to grow with the sample size. The F and
t tests have more accurate size in finite samples than existing tests such as the asymptotic chi-
squared and normal tests based on the fully-modified OLS estimator of Phillips and Hansen
(1990) and the trend IV estimator of Phillips (2014) and can be made as powerful as the
latter tests.
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1 Introduction

This paper considers a new approach to parameter estimation and inference in a triangular
cointegrated regression system. A salient feature of this system is that the I(1) regressors are
endogenous. In addition, to maintain generality of the short-run dynamics, we allow the I(0)
regression errors to have serial dependence of unknown forms. One of the most popular semi-
parametric estimators in this system is the fully modified OLS (FM-OLS) estimator of Phillips
and Hansen (1990). The estimator involves using a long run variance and a half long run variance
to remove the long run joint dependence and endogeneity bias. Both the long run variance and
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the half long run variance are estimated nonparametrically. Inference based on the FM-OLS is
standard — as in the classical linear regression with stationary or iid data the Wald statistic is
asymptotically chi-squared. This is perhaps one of the most elegant and convenient results in
time series econometrics. It releases us from having to simulate functionals of Brownian motion.

A drawback of the FM-OLS method is that the asymptotic chi-square test often has large size
distortion. The source of the problem is that the estimation errors in the long run variance and
half long run variance have been completely ignored in the conventional asymptotic framework
adopted in Phillips and Hansen (1990). A new “fixed-b” asymptotic framework has been put
forward by Vogelsang and Wagner (2014) but the Wald statistic does not appear to be asymp-
totically pivotal, making inference difficult and inconvenient. For this reason, Vogelsang and
Wagner (2014) proceed to propose a different estimation method called the Integrated-Modified
OLS (IM-OLS). They show that the associated test statistics are asymptotically pivotal under the
fixed-b asymptotics. However, the inference procedure is quite complicated, and critical values
have to be simulated.

In the same spirit of Vogelsang and Wagner (2014), we propose a new estimation method that
involves first transforming the data using some orthonormal basis functions and then running an
augmented regression based on the transformed data in the second stage. This gives rise to our
transformed and augmented (TA) OLS (TAOLS) estimator. Augmentation removes the long run
endogeneity problem while transformation eliminates the second order bias that plagues the OLS
estimator. A key feature of our asymptotic analysis is that the number of basis functions K is
held fixed as the sample size goes to infinity, leading to our fixed- K asymptotic theory. Compared
with existing methods such as the FM-OLS of Phillips and Hansen (1990), the Trend Instrument
Variable (TIV) of Phillips (2014) and the IM-OLS of Vogelsang and Wagner (2014), our new
method enjoys several advantages.

First, under the fixed-K asymptotics, the test statistics based on the TAOLS estimator are
asymptotically standard F' or t distributed. Since critical values from the F' and ¢ distributions
are easily available from statistical tables, there’s no need to further approximate or simulate
a nonstandard limit distribution. In addition, the test statistics can be obtained directly from
canned statistical programs that can compute the F and t statistics in a classical linear normal
regression. So our method is practically convenient and empirically appealing comparing with the
IM-OLS method where both the test statistics and the critical values cannot be easily obtained.
In particular, the fixed-b limit of the Wald statistic based on the IM-OLS is highly nonstandard.
Critical values have to be simulated.

Second, our TAOLS method is asymptotically equivalent to the TIV method of Phillips (2014).
As a by-product, we have established the fixed-K asymptotics of the TIV estimator and the
associated test statistics. Under the increasing-K asymptotics where K grows with the sample
size at an appropriate rate, Phillips (2014) shows that the Wald statistic and t statistic are
asymptotically chi-squared and normal, respectively. While the fixed-K asymptotic distribution
is different from the increasing- K asymptotic distribution, we show that the fixed-K asymptotic
distribution approaches the increasing- K asymptotic distribution as K increases. As a result, the
fixed-K critical values are asymptotically valid regardless of the type of asymptotics we consider.
This is a robust property enjoyed by our asymptotic F' and t tests.

Third, simulation results show that the asymptotic F and t tests have more accurate size than
existing tests such as the asymptotic chi-squared and normal tests based on the FM-OLS or TIV
estimators. On the other hand, the asymptotic F and t tests could be made as powerful as the
latter tests. This is based on our simulation evidence. It is also consistent with the asymptotic



efficiency of our TAOLS estimator under the increasing- K asymptotics. The asymptotic efficiency
holds because the TAOLS estimator and the asymptotically efficient FM-OLS estimator have the
same asymptotic distribution under the increasing-K asymptotics.

Fourth, taking it literally, the fixed-K asymptotics requires us to use only low-frequency
information. Fundamentally, what a cointegrating vector measures is the long run relation among
economic time series. For this reason, it is natural to estimate the cointegrating vector using only
the long run variation of the underlying time series. Doing so helps us avoid high-frequency
contaminations. From this perspective, the fixed K limiting thought experiment not only is an
asymptotic device for developing new and more accurate approximations but also has substantive
empirical content in economic applications.

Finally, in the presence of a linear trend, we can filter out the trend using a shifted version of
standard cosine transforms. Interestingly, regression augmentation, which is necessary to achieve
the asymptotic mixed normality for general basis functions, is not needed under the shifted cosine
transforms. As a result, we can justify an even simpler OLS estimator — the transformed OLS
(TOLS) estimator, which involves only transforming the original regression.

This paper contributes to a large body of literature on semiparametric estimation of cointe-
grated systems with Phillips and Hansen (1990), Phillips and Loretan (1991), Saikkonen (1991)
and Stock and Watson (1993) as seminal early contributions. In the FM-OLS setting, partial
fixed-b asymptotic theory for cointegration inference has been considered by Bunzel (2006) and
Jin, Phillips and Sun (2006) but the fixed-b asymptotics is applied only to the standard error
estimator. See Vogelsang and Wagner (2014) for more discussion. Transforming a time series
using the basis functions considered in this paper is equivalent to filtering the time series with a
particular class of linear filters. The filtering idea has a long history; see, for example, Thomson
(1982). For other applications of the idea in cointegration analysis, see Bierens (1997) and Miiller
and Watson (2013). See also Sun (2006) where series data transformation is used to estimate
realized volatility.

The rest of the paper is organized as follows. Section [2] introduces a standard linear cointe-
gration regression and discusses some of the drawbacks of existing methods. Section [3|introduces
our TAOLS estimator and establishes the fixed-K asymptotic limits of the TAOLS estimator
and the corresponding Wald statistic. Section 4] considers cointegration analysis under cosine or
shifted cosine transforms. Section [5| presents simulation evidence. The last section concludes.
Proofs are given in the appendix.

2 Model and Existing Literature

Consider the following cointegration model:

yr = ag + 2380 + uor (1)
Ty = Tp—1 + Ugt

for t = 1,...,T, where 1 is a scalar time series and z; is a d x 1 vector of time series with
zo = O, (1) . The mean zero error vector u; = (uo, uly)’ € R™ for m = d+ 1 is jointly stationary
with long run variance (LRV) matrix €. We partition Q as follows:

oo 0(2) 00z

Q — E EUtU;’_]‘ — 1x1 1xd , (2)
mxXm . O 20 me
J=700 dx1 dxd



and write it as a sum of three conformable components: Q = X + A + A’ where

oo Ao Aoz Yoo oz
A= E Bug_juy= | VP X and = By = | X 14
. A:L“O Aacm Zxo E:m:
= dx1l dxd dx1l dxd

The half long run variance A is defined to be

Aac() Aam

We assume that €2, is positive definite so that x; is a full-rank integrated process.
We shall maintain the Functional Central Limit Theorem (FCLT) below

[T"]
T2y ug = B() = QPW(), (4)
s=1
where W(-) := (wo(+), W.(-))" is an m-dimensional standard Brownian process. Also, it will be

convenient in our asymptotic development to represent the process B(-) using the Cholesky form

of Q1/2:
B()= < Bo (") ) [ 0awo() + 00,2 AW () (5)
Ba(") QM2WL () ’
where a%.m = a% 00820 000 and Qul 12 is a symmetric matrix square root of 2.
To simplify the dlscussmn, we assume that there is no intercept in Athe regression. Let X =
[, ...,a]) and Y = [y1, ..., yr)". The OLS estimator of f, is given by Borg = (X'X)™' X'Y. It
follows from Phillips and Durlauf (1986) and Stock (1987) that

A Lz -1 1z
T <5OLS - 50) = <T2 > xt%) (T > xt%t) (6)
=1 =1

N < /0 1 Bx(r)B;(r)dr> B < /0 ' Ba(r)dBo(r) + Azo> , (7)

where the presence of A, reflects the second-order endogeneity bias.

Since By(-) and By(-) are correlated, and A and hence A is unknown, it is not possible to
make asymptotically valid inference based on the naive OLS estimator. To overcome these two
problems, Phillips and Hansen (1990) suggest the FM-OLS method that involves estimating 2
and A in the first step. Typical estimators of 2 and A take the following forms:
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where @y = (fg¢, uly) and do; = v — iU%BOLs- In the above definitions of  and A, Qy, (r,s) is
a symmetric weighting function that depends on the smoothing parameter h. For conventional



kernel LRV estimators, @, (r,s) = k ((r — s) /b) and we take h = 1/b. For the orthonormal series

(OS) LRV estimator Qp(r,s) = Kt ZjK:1 ¢; (1) ¢; (s) and we take h = K, where {¢, (7’)}511

are orthonormal basis functions on L?[0, 1] satisfying fol ¢; (1) dr = 0. We parametrize h in such
a way so that h indicates the amount of smoothing for both types of LRV estimators.
After partitioning 2 and A in the same way as €2 and A, we define

yt+ =Y ACU;Q:;;[%O:
u = uy — Az} 640, (10)
M:=T (A — Ay am(])
Then, the FM-OLS estimator is given by
- -1
Bry = (X'X) (XYt -M),

where Y+ = [yf' , ...,y}']’. On the basis of kernel estimators of 2 and A, Phillips and Hansen
(1990) show that [, is asymptotically mixed normal, i.e.,

T (BFM — 50) —~ MN <0,a§_m /01 Bx(r)B;(r)dr> . (11)

This is in contrast with the limiting distribution of Bo 1.5, Which is complicated and has a second
order endogeneity bias. Based on a consistent estimator 63, of o2, one can obtain t and Wald
statistics that are asymptotically normal and chi-square distributed, respectively.

A key step behind Phillips and Hansen’s result is that Q, A,&%,w are all approximated by
the respective degenerate distributions concentrated at , A, and o2 ,. That is, regardless of
the kernel function and the bandwidth used in the nonparametric estimators €2, A, and 62, the
same asymptotic approximations are used. However, in finite samples, both the kernel function
and the bandwidth, especially the latter, do affect the sampling distribution of ﬁ s and the
associated test statistics. For this reason, the normal and chi-squared approximations can be
very poor in finite samples. This is because we completely ignore the estimation uncertainty in
the nonparametric estimators €2, A, and 63 ., which can be very high in finite samples. Bunzel
(2006) and Jin, Phillips and Sun (2006) develop partial fixed-b asymptotic theory that accounts
for the estimation uncertainty in 2, but ignore that in  and A.

The degenerate distributional approximations for Q, A, and Uo-x with consequential normal
and chi-squared tests are obtained under the conventional increasing-smoothing asymptotic the-
ory. Instead of this conventional asymptotics, we can use the fixed-smoothing asymptotics to
obtain more accurate asymptotic approximations. The fixed-smoothing asymptotics includes the
fixed-b asymptotics of Kiefer and Vogelsang (2005) as a special case. For more discussions on
these two types of asymptotics, see Sun (2014a, 2014b). There is a growing number of papers on
fixed-b asymptotic theory for stationary data starting with Kiefer and Vogelsang (2005). More
recently, Vogelsang and Wagner (2014) establish the full-fledged fixed-b asymptotic distribution
of the FM-OLS estimator and show that the Wald statistic depends on many nuisance parame-
ters even in the limit. As a result, it is hard to make asymptotically pivotal inference. As an
alternative solution, they suggest the Integrated Modified estimator (IM-OLS) which is based on
partial sums of the original cointegration regression augmented by the original regressor. They

'Sun (2011, 2013) provides more background information on the OS LRV estimators.



invoke the fixed-b asymptotics to approximate the IM-OLS test statistics and show that they are
asymptotically pivotal. However, their limiting distributions are quite complicated and highly
nonstandard. Critical values have to be simulated for practical implementation.

3 Cointegration Analysis: Augmentation and Transformation

3.1 Model without time trend

To confront several challenges in the literature, we propose a new method to estimate the coin-
tegration model in ([1), where no trend is present. We consider the augmented cointegration
model:

yr = oo + o + Azid0 + Ug.at (12)

where dg = Q10,0 is the long run regression coefficient of Ax; on ugs, and ug..r = ug — Ul o is

the long run regression error of ug; projected onto wuys. The long run variance of ug.z¢ is a% -
Let {¢;}52; be a set of orthonormal basis functions in Hilbert space L?[0, 1]. Our new method

starts by transformmg the original data {y, z}, A:Et}tzl using the basis functions {gbl}lzl for a

finite K and then conducts regression analysis based on the transformed data. For each ¢ =
., K, the transformed data {W;} are weighted averages of the original data:

1 &t
We = — (=),
KA /qusl(T)
1 I t YD, 1 & XD,
Yy _ (=) = "* T (=) = !
W= = t§1yt¢l(T) Nk Wi ﬁ;:l 1¢i( ) T (13)

T
1 t 1 t
WA = Y Ay (=), WO = — 2thi(=),
i \/thl 219i(7) \/T;:luo t9i( )

where ®; = [¢;(1/T), ..., ¢;(T — 1) /T), ¢;(1)]".
When ¢, (1) = ¢; (1 — r), which holds for the basis functions we will use, we can write, for
example,

T-1 T-1
= \/1? ;yT—tfbi(T; t) \lf Zo T—t¢i(%)' (14)

So WY can be regarded as the output from applying a linear filter to {yt};f:l. The transfer
function of this linear filter is

Hrpi(w Z gbl )exp(itw) for 1 = +/—1. (15)

To capture the long run behavior of the processes, we implicitly require that Hp;(w) be concen-
trated around the origin. That is, Hp;(w) resembles a band pass filter that passes low frequencies
within a certain range and attenuates frequencies outside that range. The requirement can be met
by any low-order trigonometric bases such as v/2sin 27ir, /2 cos 2mir for a small 4. In fact, the
transfer functions associated with the first few basis functions in a commonly-used base system
in L2[0,1] are often concentrated around the origin. So the requirement can be met easily.



Based on the augmented regression and the transformed data, we have
WY = aqWe + W& 8y + WAY50 + W2 for i = 1,..., K. (16)

This can be regarded as a cross sectional regression with K observations. We assume that K > 2d,
which is necessary for consistency. Obviously, there is no point of considering K > T, as there is
no extra information beyond the first T transforms.

Under the assumption that each function ¢, () is continuously differentiable and satisfies
fol ¢; (r) dr = 0, which we will maintain, we have

W = \/:F/1 6i(r)dr +VTO(1/T) = 0 (1/VT) = o(1), (17)
0

and so the effect of the constant term «g in is asymptotically negligible for a large T'. As
a result, our asymptotic theory remains the same regardless of whether an intercept is present
or not. To simplify the presentation, we will assume without loss of generality that there is no
intercept in the model so that

Yyt = 180 + uot, Tt = Teo1 + Ut (18)
and
WY = WYy + W50 + W)™ for i = 1,..., K. (19)
Putting in the vector form, we have

WY = WIIIBO + WAzI50 + Wo-x7

where WY = (WY,...,WY%)" and W®, W22 and WO are defined similarly. Running the OLS
based on the above equation leads to our Transformed and Augmented OLS (TAOLS) estimator
of Yo = (56756), : . -
Araors = (WW) T W'We
where W = (W‘” , WA‘”) .
Let
P, = W? (lewx>—1wx/’ Pa, = WAx (WAleA:c)—lwal’

and M, = Ix — Py, Ma, = Ik — Pag. Then we can represent 474015 as

@TAOLS ) _ < (W Mg W) =1 (W Ma, W) ) . (20)

YTAOLS = < ST AOLS (WAI/MxWAx)—I(WAw/Mny)
To establish the asymptotic properties of 474015, we make the following assumptions.

Assumption 1 (i) Fori=1,..., K, each function ¢, () is continuously differentiable and satisfies
fol ¢; (z) dz = 0; (ii) The functions {¢; (-)}X, are orthonormal in L?[0,1].

Assumption 2 The vector process {u;}}_, satisfies the FCLT in ,



Assumption I is mild and is satisfied by many basis functions. For example, v/2 cos (27ir)
and v/2sin (27ir) satisfy Assumption I Assumption I is a standard FCLT for time series data.
Under Assumptions [I] and 2, we have

Wy = chbz( us:>/ ¢; (r)dB(r) = (Uomylgfféz & ) ~ idN(0,€),

where v; = fo ¢; (1) dwo(r) and &; = fol ¢; (1) dWy(r). Since wp(-) and W,(-) are independent,
we know that v = (vq,...,vx) and € = (&4, ...,€x) are jointly normal and mutually independent.
Also, by the continuous mapping theorem,

Timi@@)ms—;im;) o= =

where for W;(s) = [ ¢;(r

/ 60 (r dr—/olqbi(r) [/Ordws)] drz/o1 </:¢>i<r>dr) aw, (s)
/0 (/0 é: (r) dr) AW, (s) = /01 Ui (s)dW, (). (21)

For any fixed K, let 1 := (11,79, ...,nx )" € RE*? Then

vec(n') N 0 Al; B®I
vec(£') 0 )’\ Bal; Ix®ly, ’
where A € REXE and Be RKXK whose (7, j)th components are | fo fo ¢;(r)¢:(s) min(r, s)drds

and [B fo r) dr, respectively.
Usmg these propertles the following theorem establishes the asymptotic distribution of the
TAOLS estimator.

Theorem 1 Let Assumptions [l and[g hold. Then under the fized-K asymptotics we have

Y7 (Araors — Yo) = (( Q)77

where
T-1

0
_ dxd e — 1/2 1/2 & e ~
TT O Id 9 C < TT 7£Q ) , V g0.2V, and C 1 .

dxd
A direct implication of Theorem [I]is that

T(Braors — Bo) = 000, (U'Mgﬁ)_l ' M, (22)
drA0Ls — 00 = 0022 (€' My€) ™ S/Mrﬂ/, (23)

where My = Ik —f({’f)f ¢ and M, = Ix —n(n'n)” Y4/, Conditional (,¢), both limiting
distributions are normal:

-1 _ _
go. a:Q 1/2 (77 M&ﬁ) 77/M§V - |:0 9. IQ:E:EI/2(77IM§77) 19:133161/2} y

O'O:EQ /2 (fM 5) EM y_dN |:0 UOJ? le/Q(gM g) 195951/2].



So the unconditional limiting distributions are mixed normal. Furthermore, there is no second-
order endogeneity bias in the TAOLS estimator. The TAOLS approach has effectively removed
the two problems that plague the naive OLS estimator. The first problem, i.e., the asymptotic
dependence between the partial sum processes of the regressor and regression error is eliminated
because we augment the original regression by the additional regressor Ax;. The second problem,
i.e., the second-order endogeneity bias, is eliminated because we transform the original data and
run the regression in the space spanned by the basis functions. In general, both augmentation
and transformation are necessary to achieve the asymptotic mixed normality and asymptotic
unbiasedness. However, for some special basis functions, augmentation is not necessary for the
asymptotic mixed normality. See Section [4] for more detail.

Our TAOLS approach is similar to the Trend Instrumental Variable (TIV) approach of Phillips
(2014), which involves solving

(Brpv,dppy) = argmin(Y — X8 — AX6)'®('D) 10/ (Y — X8 — AXS6) (24)
8.8y
= (X'PpX") "L (X'PpY), X = [X,AX] and Pp = ®('®) 1@,

The basis functions ® = [®1, ..., Px| now act as “irrelevant” and deterministic trend instruments.
The TTV approach is closely related to our TAOLS approach. It first projects the data onto
the space spanned by the basis functions and then run the regression based on the projected
data in the second stage. However, the interpretations are somewhat different. While Phillips
(2014) emphasizes the use of the basis functions as irrelevant instruments and how they help
reproduce the Karhunen-Loéve representation of Brownian motion, we focus more on using the
basis functions as low-frequency filters to extract the long run variation and covariation. If
trigonometric bases are used, our approach is closer to the frequency domain approach of Phillips
(1991a), although no frequency domain technique is needed here.

The following proposition shows that BT v and BT A0Ls are asymptotically equivalent under
the fixed-K asymptotics.

Proposition 2 Let Assumptions[1] and[2 hold. )
(i) Under the fized-K asymptotics, T(Brry — Bo) = T(Braors — Bo) + 0p(1).
(13) Let Vi be a random wvariable with distribution M N {O I, xﬁgxl/ (n' M, 577)*19;351/2 . As-

sume that {¢; (-)}32 is a complete orthonormal system in

Lg[o,u:{f(.)eL2[0,1]:/01f(r)dr:o}.

—1
Vg = MN [0 ok Q712 </ Woa( Ydr ) Q;;ﬂ]

where Wy (r) = fo s)ds is the demeaned version of Wy (r).

Then as K — o0,

Given the asymptotic equivalence in Proposition (i), our fixed-K asymptotic theory applies
to the TIV estimator. This can be regarded as a by-product of our paper. For the TIV estimator,
Phillips (2014) considers only the increasing-K asymptotics under which 7" and K go to infinity



and K/T — 0 at an appropriate rate. Phillips and Liao (2014, Lemma 5.1) considers the fixed- K
limit of BT ;v in the case with a scalar regressor. In contrast to their claim on the existence of
asymptotic bias, our mixed normal representation in Theorem [I] shows that there is no second-
order asymptotic bias in both TAOLS and TIV estimators.

The conditional variance in Proposition (ii) is the semiparametric efficiency bound in the
sense of Phillips (1991b). Here we do not aim at achieving the bound per se. Instead, our goal is
to come up with a more accurate approximation for the given K value in a finite sample situation.
Proposition [f(ii) indicates that the TAOLS estimator could become more efficient for a larger K
and ultimately reach the semiparametric efficiency bound under the increasing-K asymptotics.
So from this alternative asymptotic point of view, there is no loss of efficiency in our TAOLS
approach.

The asymptotics in Proposition (ii) is obtained for a fixed K as T — oo and then letting
K — oo. This is a type of sequential asymptotics. The sequential asymptotics provides a
smooth transition from our fixed-K asymptotics to the increasing-K asymptotics in Phillips
(2005, 2014). There is no discontinuity between the fixed-K approximation for a large K value
and the increasing- K approximation.

The asymptotic mixed normality and unbiasedness facilitate hypothesis testing. Suppose that
we are interested in testing

Hy: RBg=rvs. H: RBy#r, (25)

where R is a p x d matrix. If 03, is known, then we would construct the following Wald statistic:

. 1 . .
F(Braors) = = (RBraons — 1) [R(W" Ma,W*) "' R’ " (RBraows —)/p.

2
00.2

When p = 1 and for one-sided alternative hypothesis, we would construct the following ¢ statistic:

_ RBraoLs =T .
Vo2  RW M, We)-1R/

E(BTAOLS)

Under the null hypothesis in , we can invoke Theorem |1| to obtain

F(Braows) = Q'R (' Men) ™ R11Q/p, (26)

where

R=RQ;Y?and Q = R(n’Mgn)_ln’Mgl/. (27)
By construction, @) follows the mixed normal distribution M N [0, R(1/ Mgn)_l R ] . Conditional
on R (17’M§77)_1 R,
Q' <f% (n' Men) ™ R’) s~ X5/ p-
The conditional distribution does not depend on the conditioning variable R (1 Mgvz)_l R'. So

X]%/p is also the unconditional distribution. That is, the infeasible test statistic F(Briors)

converges in distribution to X;% /p. Similarly, f(BT A0Ls) converges to the standard normal distri-
bution.

The presence of the unknown long run variance o2, in F (Braors) and #(Braors) hinders
their practical applications. In practice, we have to estimate a%,m in order to construct the test

10



statistics. Given that ag,m is the approximate variance of the error term in the TAOLS regression,
it is natural to estimate o2, by

62, = Kz(wor) - wﬂwl www)-lw] woe,

where WO'“T WY — we ,BTAOLS — Whe 'dra0Ls. With the estimator 62 ., we can construct the
feasible F(Bra0rs) and t(Braorg) as follows:

A 1
F(Braors) = =

S (RBraors — ) [R(W” Mp, W)L R'] - (RBraors —7)/p, (28)
0-x

RBraors — T .
V83 ROWS M, W)L R

t(BraoLs) =

The theorem below establishes the limiting null distributions of F(B740rs) and t(Bra0rs)
under the fixed-K asymptotics.

Theorem 3 Let Assumptions[1] and[g hold. Under the fized-K asymptotics, we have

- K
F(Braors) = K _ag Ipi—2a and

t(Braors) = K —2d UK = 2d).

Theorem [3| shows that both F(BT aoLs) and t(BT A0Ls) are asymptotically pivotal and have
standard limiting distributions. This is in contrast with the IM-OLS approach of Vogelsang
and Wagner (2014) where the corresponding limiting distributions are nonstandard. A great
advantage of our approach is that critical values can be obtained from statistical tables and
software packages. There is no need to simulate nonstandard critical values.

Our asymptotic distributions are also in sharp contrast with the chi-squared (Xf,/p) and
standard normal distributions. The latter distributions are the limits for the infeasible test
statistics. In fact, under the increasing- K asymptotics as developed in Phillips (2014), the latter
distributions are also the limits of the feasible statistics F(Bra0rs) and t(Braors)- So the
increasing-K asymptotics effectively assumes that o3, is known in large samples, and hence
completely ignores the estimation uncertainty in &%,w.

Let ¢ K —2d and X;C; be the (1 — a) quantiles from the standard F), i 2d and X127 distributions,
respectlvely Then we can use the modified F critical value K/(K — 2d)F® oK —2q tO carry out our
F test. This critical value is larger than the scaled chi-squared critical Value Xp & /p for two reasons.
First, Fl'x_ 20 > Xp because the I’ distribution F), o4 has a random denomlnator as compared
to the correspondlng chi-square distribution. Second, the multiplicative factor K/(K — 2d) is
greater than 1. The difference between the two critical values depends on the value of K. It
can be quite large when K is small. However, as K increases, K/(K — 2d)F® b K24 approaches
Xp /p- There is a smooth transition from a fixed-K critical value to the correspondmg increasing-
K critical value. So the critical value K /(K — 2d) FJ' ko4 is asymptotically valid regardless of
whether K is held fixed or allowed to grow with the sample size. In this sense, K/(K —2d)F}' ) o
is a robust critical value.
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3.2 Model with a linear trend

In this subsection, we consider a more general version of by including a time trend in the
cointegration model. The model is now given by

Y = B0 + pot + uor, (29)
Ty = Tp—1 + Ugt-

T
Define Wir = 7-1/2 Z ) ¢;(t/T)t for i = 1,..., K and W™ = (WY, ..., W)’ Then, the trans-
formed regression in (18] is naturally generalized to

WY = WY By + WAY§o + Wi g + WO for i = 1,..., K. (30)

As we discussed before, an intercept can be included in and but our approach is as-
ymptotically invariant to location shifts. The TAOLS estimator for 3,09 and pg is now given
by

N N . / ~ ~ 1~
<5TAOLS»5TA0LS7MIOLS) = (W}, W)~ Wi, WY, (31)

where Wy, = (Wx , WA’”,W”) .
Let WO = WY — Wi'Braors — Wi™draors — Wirjiors and (6§,)% = K~ 305, (Wh)2.

2,tr 1,tr
Then we can construct the Wald statistic and t statistic as follows:
. 1 . B 1
Fy(BraoLs) = W(Rﬁmow — 1) [ROW" Mpg e W) 'R'] ™ (RBraors — 1)/,
0-x

RBraors —
(&&)QR(WI’MAI,”W“;)_1R’

tir(Braors) = \/

—1
where Magir = Ic = Wastr (Whp o Warr) Wiy and Wag g = (WAZ, W)

!/
Theorem 4 Let Assumptions and@ hold. Assume that a := (fol oy (r)rdr, ..., fol o (1) rdr) +
0. Under the fized-K asymptotics, we have (i)

o —1/2 -1
Braors — Bo 700z’ (n' Me¢.qam) 17]/M§7ay

Yrp | draors =60 | = | 000" (&M o)™ EMyav | (32)
firaoLs = Mo 00 (' Myea)™ " a/ My cv

where
Yr 0
TT,tr = < 0 T3/2 ) )

and M, is the project matriz projecting onto the orthogonal complement of the column space of
V.

(12)
. K . K
Fu(Braors) = 7—5g 1 v x-2a-1 and tu(Braors) = \| ooy 71K —2d —1).  (33)
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Theorem ii) is entirely analogous to Theorem |3 The effect of having an additional trend
regressor W17 is reflected by the adjustment in the multiplicative correction factor and the degrees
of freedom in the F and t distributions.

The asymptotic F and t limit theory resembles those in the classical linear normal regressions
(CLNR) with K iid observations. The multiplicative correction is a type of degrees-of-freedom
correction. Had we followed the standard practice in the CLNR and define

K K
1 - 1 .
~ 2 2 : VVO"T 2 ~tr \2 — 2 : VVO:B 2

we would not have to make the multiplicative correction. That is, the Wald statistic will be
asymptotically F distributed, and the t statistic will be asymptotically t distributed.

Observing that we compute the standard error of the TAOLS estimator as if the errors in the
transformed regression are homoskedastic, which does hold in large samples, our Wald statistic
Fu(Braors) with 1} as the error variance estimator is numerically identical to the F statistic
based on the residual sum of squares under the restricted and unrestricted models. So we can
obtain Fi.(Braors) (and ty(Braors)) from the output of any simple and very basic regression
program as long as it works at least for the CLNR with homoskedastic errors. The only step that
we have to take is to get the data into the transformed form. A cautionary note is that we do
not include the intercept in the transformed and augmented regression.

If instead of a linear trend we have the polynomial trends (t,#2,...,¢9), then the same proof
of Theorem [] can be invoked to show that

. K N K
Fo(Braors) = anK—Zd—g and tr(fraors) = |/ mt(f{ —2d—yg), (35)

where 2d + ¢ is now the number of parameters to be estimated.

As a by-product, we can perform the endogeneity test, i.e., a test of whether g = 0, in exactly
the same way as if the transformed regression is a CLNR. This can be justified asymptotically
using the same argument for Theorem [3] or

3.3 Selecting the number of basis functions

In principle, we can use any finite number of orthonormal basis functions satisfying Assumption
in our fixed-K framework. However, Proposition 2] indicates that a larger K leads to a more
efficient estimator. On the other hand, when K is too large, the TAOLS estimator will suffer
from the asymptotic bias that is not captured by the fixed-K asymptotics. For example, if we
set K equal to the sample size, which is the upper bound for K, the TAOLS estimator will be
the same as the augmented OLS estimator which suffers from the second order asymptotic bias.
So there is an opportunity to select K to trade-off the variance effect with the bias effect.

A direct approach to data-driven choice of K is to first develop a high order expansion of
BT aors from which we obtain the approximate mean squared error (AMSE) of BT AoLs and then
select K to minimize AMSE(BT a0Ls)- For hypothesis testing, a direct approach is to derive the
optimal choice of K that minimizes the Type II error of our proposed Wald test or t test subject
to a control of the Type I error. The direct approaches are ambitious. Phillips (2014) discusses
some of the technical challenges behind the direct approaches. We leave them for future research.

An indirect approach that appears to work well is based on the bias and variance of the LRV
estimator. Following a large literature on LRV estimation, Phillips (2005) proposes to select K
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by minimizing the AMSE of Q) defined in . In the present setting, we have
K T
. 1 . NI - 1 t
O— - <Wu ( u) for W = —= 3" i (
K Z@':l {) () for T 2 olp)

where 4 = (y — zBorg, Axl) or 4y = (v — 21Bors — forst, Ax,) depending on whether a
linear trend is present or not. Suppose that we use the cosine and sine basis functions:

{\/iCOSQjﬂ'T,\/isin%m",j = 1,...,K/2}. (36)

Then the AMSE-optimal K* is given by

. tr(I,2 + Kom)(Q @ Q) /°
KMSE:R( ) >> v

4vec (B) vec (B)
2 &
for B = —— > 1’Tu(h), Tu(h) = Bugj_, (37)
h=—o00
where K,,,,, is the m2 x m? commutation matrix and 1,2 is the m? x m? identity matrix.

Recall that K has to be large enough to ensure the consistency of the TAOLS estimator and
the associated tests. Suppose that we are interested in testing the significance of all regressors in
the TA regression without a trend. Then the limiting distribution of the Wald statistic is the F
distribution with the denominator degrees of freedom K — 2d. For this F distribution to have a
finite variance, we require K — 2d > 5, i.e., K > 2d + 5. So in finite samples, it is reasonable to
set K equal to K]*MSE’C with

K?\(lSE,C = maX(2d+5,KX45E) (38)

When a linear trend is included, we make an obvious adjustment and set K equal to the following
}\kJSE',c:
Kiysp,. = max(2d + 6, Kjgp)-

There is another reason to avoid a large K. Cointegration is fundamentally a long run
relationship. To estimate the cointegrating vector, we should employ a regression that uses only
the long run variation of the underlying variables. The short run variation can help only when the
short run relationship coincides with the long run relationship. If the two types of relationships
differ from each other, then going beyond a reasonable value of K runs the risk of being struck
by short run contaminations. A trade-off between the asymptotic efficiency and robustness with
respect to short run contaminations leads us to consider a moderate K value.

Under the cosine and sine basis functions given in , the transformed data consist of the real
and imaginary parts of the Discrete Fourier Transforms (DFT) of the original data. In this case,
a useful rule of thumb choice is provided in Miiller (2014) and Miiller and Watson (2013). These
papers propose to select a K value to reflect business cycle frequencies or below. For example,
with T' = 64 years of post-World-War-II macro data, the choice of K = 16 value captures the
long run movements of macro data lower than the commonly accepted business cycle period of
T/(K/2) =8 years.
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4 Cointegration Analysis with Cosine Bases

4.1 Model without time trend

We go back to the model without an intercept and time trend, i.e., the model in , but we
drop the augmented term in and consider the following equation

WY = W' By + W, (39)

where by definition
T
1 ¢
W) = W75 + W™ = —= > upg; () .
T t=1 T

Define the transformed OLS (TOLS) estimator Sorg to be
Brors = (WW) ™ WWY, (40)

In general, dropping WiAx in will lead to an omitted variable bias unless the correlation
between WA% and W? is zero. The zero correlation is ensured by the following assumption.

Assumption 3 The basis functions satisfy fo (r); (1) dr = 0 with W;( fo ¢; (s)ds for
i,7=1,.... K.

Recall that
1
91/2/ b:(r rYdr = 91/2/ () AW, (1),
WY :an/ ¢, (r) dwo(r) + 00282, 12/ ¢;(r)dWy (1), (41)

for 4,7 = 1,..., K where wq (r) and W,(r) are independent Brownian motion processes. The
asymptotic distribution of (W¥ /T, W?) is jointly normal with covariance

o [ o B, [ oy nasatryar) = -2 ([ ()6, (1) ir) 0000

Thus, T‘1Wf and W]-Am are asymptotically independent if the basis functions satisfy Assumption
Bl

Lemma 5 The cosine functions
¢5(r) = V2cos (2j7r) forj=1,..,K (42)
satisfy Assumptions[1] and[3.

The lemma not only shows that Assumption [3] can hold but also gives the set of simple and
commonly-used cosine functions as an example. Although there may be other functions that
satisfy Assumption [3] we have the cosine functions in mind when developing the asymptotic
results in this section. We are not aware of other commonly-used basis functions that also satisfy
Assumption [3]
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Theorem 6 Consider the model in . Let Assumptions ﬁ hold. Under the fived-K asymp-
totics, we have

T(BroLs — Bo) = MN <07 039;;/2(77/77)719;;/2) .

It is interesting to see that the transformed OLS estimator is asymptotically unbiased and
mixed normal. To some extent, the use of the special basis functions such as the cosine functions
kills two birds with one stone. There is no need to augment the original regression in order to
achieve the asymptotic mixed normality.

Given the mixed normality of the limiting distribution, it is reasonable to make inference
based on BTO rg- The Wald statistic and t statistic are

fo 1 Vo iz — 1 -1 Vo
Fe(Brors) = W(RﬂTOLS —r) [R (WwWT) R/} (RBrors —1)/p, (43)
0
. Rp -
te(Bross) = — LT (1)
65\/ R (Werwe) ' R
where
1 & \2 . )
(66)° = =>_ (W) where WY = WY — W' Brops.
=1

Following a proof similar to that of Theorem (3] we can show that

. K N K
Fe(Brors) = o Fpr—d and te(Brops) = |/ 17— - HE —d).

The above results are clearly analogous to the well-known results in a CLNR with K iid obser-
vations and d regressors.

4.2 Model with a linear trend

We consider the cointegration system with a linear trend as given in . Dropping the regressors
WiAz and W? in , we obtain

WY = W'y + (Wi + W) fori = 1,... K (45)

where W 11 + W9 = Wi 11 + WA 5o + WO is the composite error. In general, the transformed
OLS estimator obtained by regressing WY on W¥ is not consistent even if cosine transforms are
used. The reason is that the composite error is not mean zero and is correlated with the included
regressor. In fact,

V2 r 2t
Wi = 22 Ztcos(—) =TVv2T
VI T

T )

1 t 2mit

T > T cos( T )
t=1

=TV2T [/01 rcos (2mir) dr + O (1” = O(VT) (46)

T

using fol 7 cos (2mir) dr = 0. So the composite error grows with the sample size at the rate of VT,
and as a result the transformed OLS estimator obtained in the absence of the trend term is not
consistent.
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A simple way to fix this problem is to use shifted cosine transforms. Let

1

Oi(1r) = 5 (r — ﬁ) V2 cos <2m’(7’ — 21T)) fori=1,..,.K (47)

be the finite sample shifted version of {¢§(r)},_ 1I We define
1 t
WY = — 05, (= | forv=y, z, Az and 48
T (T) y (49)

T itgbc <t> Wo — 2 iu 5 <t> (49)
i~ m Ti\7m ) Wi = = 0tPri \ 7= ) -
\/thl T \/thl T

It follows from Lemma 8 in Bierens (1997) that Wfr = ( for any i = 1,..., K. Also, it is easy
to show that T-Y2 ST ¢S, (t/T) = 0 for all i = 1,..., K. So utilizing {¢%; (1)}, as the basis
functions filters out both the intercept and linear trend in the original equation (29))° As a result,
we have

WY = W8y + WY fori = 1,..., K. (50)
On the basis of this equation, the transformed OLS estimator of 3 is given by

X . o -1, o
Brors = (WWWJC) WWY.
In view of ¢%;(r) = ¢5(r) + O(1/T) uniformly for r € [0, 1], we have
1
Wy = 0l L 0l2 [ g () WaGr)ar
WA s 1%, 4 91/2/ 05 (r) AW, (r), (51)

fori,7 =1,..., K, and Wf and WJA"T are asymptotically independent. Using these and the same
proof for Theorem [f, we can prove the theorem below.

Theorem 7 Consider the model in (@ Let Assumptions and@ hold. Suppose that the shifted
cosine transforms are used. Then under the fized-K asymptotics,

T(BroLs — Bo) = MN <07 039;;/2(77/77)719;;/2) .

It follows from the theorem and the arguments similar to the proof of Theorem [3] that

Fo(Brors) = % g Ipk-aand te(Brors) = t(K —d), (52)

where F,(Brors) and to(Brors) are defined in the same way as in and .

?The cosine weight functions ¢$; (t/7) are known as Chebishev time polynomials of even orders. See Hamming
(1973) for details. Bierens (1997) shows that the cosine basis functions enjoy a certain optimality property for
hypothesis testing.

3Sun (2011) also uses the cosine basis functions in OS LRV estimation in order to achieve invariance with respect
to the intercept and linear trend.
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For a cointegration model without a trend, it is not hard to show that Theorem [f] and
the asymptotic results for the test statistics thereafter remain the same if we use the shifted
cosine transforms in place of the original cosine transforms. That is, for a cointegration model
without a trend, it does not matter asymptotically whether the shifted cosine transforms or
the original cosine transforms are employed. However, the shifted cosine transforms lead to the
TOLS estimator that is invariant to the presence of a linear trend. This is a nice property that
is not enjoyed by the original cosine transforms. For this reason, the shifted cosine transforms
are preferred over the original cosine transforms.

4.3 Augment or not: asymptotic efficiency comparison

Suppose that we use the shifted cosine transforms. Regardless of whether there is a linear time
trend, we have two different estimators of 3, both of which are asymptotically mixed normal.
The first one is the TAOLS estimator and the second one is the TOLS estimator. The difference
is whether the underlying regression is augmented or not. In this subsection, we address the
relative efficiency of the two estimators.

For the model without a time trend, it follows from and Theorem |§| that the asymptotic
variances of By 4ors and Brorg conditioning on (1, ) are

Vraors = 05..0%," > (f Men) Q5,2 (53)
Vrors = O'OQ 1/2( n)~ 1Q 1/2 (54)
where we call that n = (11, ...,ng) & = (&1, €)1 = [ 65 (r r)drand & = [ ¢ (1) dW,(r).

For the model with a linear time trend, we know that a = 0 in Theorem A So no trans-
formed time trend can be included in the transformed and augmented regression. In this
case, we can follow the same proof of Theorem [4 and show that the asymptotic variance of
Braovs is 08, Qe (' Men) ™ 0.
UOQ 1/ 2( ) 1Qm/ as indicated by Theorem |7l That is, the asymptotic variance formulae in
and hold regardless of whether a linear trend is included in the model or not.

For any conforming vector ¢ € RY, we have

On the other hand, the asymptotic variance of BTO g 1S

/ —1 —1
¢ (Vraors — Vrors)c

1L/ 9 QL/2
= S (/M — Tty =L
0-x 0'0 00-x
/Ql/2 2 _ Qfl Ql/Q
== [n’ (I — Pe)n— <J° A Mmo) 77’17] ot
00z o 002
. Cﬂclz:ézn/ |:I (UOxQ;;U:w) P:| 7799154:20
= 'K\ 72 ) ¢
00z og 00z
=7 [Ig-0* — P ¢ (55)
where ¢ = 779315;/30/00.33, Ps = )71 and
_ 2
2 UO:EQ;mlO'mO élU:vO
= =T 7 —y ax | ——— ] €]0,1]. 56
s e e ) (56)

By definition, ¢? is the squared long run canonical correlation coefficient between ug; and ;.
If 0> = 0, then c’(VT_jOLS - VT_OlLS)C = — Pe¢ < 0 almost surely. In this case, the asymptotic
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variance of BT A0rLs 1s always larger than the asymptotic variance of BTO 5. Intuitively, when
the long run canonical correlation between ug; and u,; is zero, including the additional regressor
WA will not help reduce the size of the error term in the transformed regression. However, the
presence of W27 reduces the strength of the signal in W* even though they are asymptotically
independent. That is why ET AorLs 1s asymptotically less efficient. On the other hand, when
0®> = 1, which holds if the long run variation of ug; can be perfectly predicted by s, we have
d(Viiors — Vrors)c = & (I — P¢) & > 0 almost surely. In this case, the benefit of including
the additional regressor WA% outweighs the cost, and it is worthwhile to include WA% to get the
asymptotically more efficient estimator BT AOLS-

There are many scenarios between these two extreme cases. Whether the asymptotic distri-
bution of BT A0Ls has a larger variance than that of BTO s depends on the value of g?.

Proposition 8 If 0®> > d/K, then BTAOLS has a smaller asymptotic variance than BTOLS, i.e.,
asymvar(Braors) — asymvar(ﬂTAOLS) is negative semidefinite. Otherwise, Braorg has a larger
asymptotic variance than ,BTO LS~

4.4 AMSE Rule

For the cosine basis function {v/2 cos 2imr}X | we can follow Phillips (2005) and Sun (2011) and
show that the AMSE-optimal K* is given by

Kex _ <1tr(lm2 +Km7n)(Q® Q)>1/5 T4/5
MsE 16 4vec(B) vec(B)

12

1/5
() Kirse = Kiass057) (57)
where K}, 5 is the AMSE-optimal K given in for the basis functions given in . Following
the same argument for , we recommend making an adjustment in finite samples and set K
equal to max (K{j¢p,d+5).

Given the smaller choice of K, the use of cosine basis functions rather than the complete cosine
and sine basis functions may lead to a less efficient estimator of 3,. However, the cosine basis
functions enjoy two advantages that the complete basis functions do not. First, it automatically
filters out the time trend regressor so that we do not have to worry about the estimation error in
trend extraction. Second, the use of cosine basis function renders it unnecessary in some scenarios
to include the first difference regressor in the regression and thus saves some degrees of freedom.
These two advantages may offset the efficiency loss from having to select a smaller K.

5 Simulation Study

5.1 DGP without time trend

We compare the finite sample performance of our method with several existing methods in the
literature. Our first DGP is a cointegration regression model without a time trend. We follow
Phillips (2014) and consider:

/
Y = ag + 280 + uoy L
Tt = Tp—1 + Ugt ’ Ugt

> = Ous_1+ € (58)
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where

€ ..
Et—( ot > ~ild N(0,X), © =p-lgp1, X = Jarra41 @+ Lap1 - (1 — )

€xt

and Jp,, is the p x ¢ matrix of ones. The parameter p controls the persistence of individual
components in u; = (ugs, uly;) € R and the second parameter ¢ characterizes comovements
among the components of u;. The dimension d of x; is set to be 2, and the true coefficients are
set to be ap =3 and B, = (1,1)".

We are interested in testing Hy : Sy = (1,1) vs Hy : By # (1,1)". We consider the Wald type
of tests based on four different estimators: the FM-OLS estimator of Phillips and Hansen (1990),
the TIV estimator of Phillips (2014), the IM-OLS estimator by Vogelsang and Wagner (2014), and
the TAOLS estimator proposed in this paper. The first two tests employ the increasing-smoothing
asymptotic approximation and use chi-square critical values. The IM-OLS test employs the fixed-
b asymptotic approximation with simulated critical valuesﬂ The TAOLS test employs the fixed-K
asymptotic approximation and scaled standard F' critical values.

For the FM-OLS and IM-OLS methods, we consider the Bartlett, Parzen and Quadratic
Spectral kernels with the smoothing parameter b selected by the data-driven method given in
Andrews (1991). The plug-in model used is the VAR(1). For the TIV and TAOLS estimators, we
consider the cosine and sine basis functions given in with K selected based on the formula
in . The results reported here are obtained without making the adjustment given in ({38]).
However, the lower bound of K > 2d + 1 is imposed.

Figures [I] and [2] and Table [I] report the empirical size of different tests for

p € {0.05,0.20,0.35,0.50,0.70,0.90} and ¢ = 0.75.

The empirical size is computed using 10,000 simulation replications. The nominal size of all tests
is 5%. Table[2reports the average of the data-driven smoothing parameters. It is clear that, for all
values for p and sample sizes T' € {100,200}, the TAOLS test with F' critical values outperforms
all other tests by a large margin. For example, when p = 0.9 and T" = 200, the empirical size of
the tests based on the FM-OLS (Bartlett), IM-OLS (Bartlett) and TIV estimators is reported to
be as high as 74%, 35% and 72%, respectively. There is some reduction in size distortion when
other kernels are employed for the FM-OLS and IM-OLS methods: 45% for FM-OLS (QS) and
17% for IM-OLS (QS), but the size distortion is still substantial. In contrast, our proposed F
test has either no size distortion or small size distortion. Simulation results not reported here
show that using the F critical values can also dramatically reduce the size distortion of the TIV
test. Our findings are consistent with the literature on heteroskedasticity and autocorrelation
robust (HAR) inference such as Sun (2013, 2014a), Sun, Phillips, and Jin (2008), and Kiefer and
Vogelsang (2005) which provide theoretical justifications and simulation evidence on the accuracy
of the fixed-smoothing approximations.

Next, we investigate the finite sample power of each procedure. The power is size-adjusted
so that the comparison is meaningful. The DGP’s are the same except that the parameters of
interest are from the local alternative hypothesis 5 = ¢+ 60/T. The choice rules for K and b are
also the same as before. Each power curve is drawn against ||6]|, which measures the magnitude
of the local departure. Figures present the size-adjusted power curve of each procedure for

*In our simulation, we use the simulated critical values reported by Vogelsang and Wagner (2014) in their
supplementary materials.
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p € {0.35,0.50,0.70,0.90}, ¢ = 0.75 and T = 100, 200. The results are briefly summarized as
follows.

First, the FM-OLS test with second-order kernels such as Parzen and QS kernels yields
the highest power under all DGP’s we consider. The TAOLS method outperforms the IM-OLS
method when p = 0.35 and 0.50, but it starts to under-perform the IM-OLS when the dependence
becomes strong, i.e., p = 0.75 and 0.90. It is not surprising that the FM-OLS method achieves
higher power because it effectively uses both low and high frequency components to estimate the
cointegrating vector with modification only in the second stage. However, the FM-OLS method
can be fragile if there are high frequency contaminations. In addition, the FM-OLS test has very
large size distortion. For example, for T' = 200, the empirical size of the FM-OLS test with the
QS kernel is 26% when p = 0.75. It increases to 45% when p = 0.90.

Second, the power of the TAOLS test is lower especially when the dependence is strong such
as p = 0.75 and 0.90. This can be explained by the small K values selected by the AMSE rule.
According to Table [2 the average values of K’s are 7.12 (p = 0.75) and 6.00 (p = 0.90) which
are very close to the lower bound of the admissible values for Klﬂ So, even though using a small
K gives us very successful size control in finite samples, there is a power loss.

Third, Figures[7] and [§ show that the power of the TAOLS test increases, as K increases. The
power starts to dominate that of the FM-OLS method as K crosses some threshold value. For
example, when p = 0.75, with K = 24 the power of the TAOLS test is slightly higher than that
of the FM-OLS (QS) test. When p = 0.90, the TAOLS test becomes more powerful than the
FM-OLS test when K increases to 10, which is close to the lower bound of 2d + 5 given in ({38]).
There is always a trade-off between power improvement and size distortion. Simulation results
not reported here show that the empirical size of the TAOLS test under p = 0.90 increases from
6% to 10% when K increases from 6 to 10. That is, had we used the adjusted formula in ,
we would have obtained a test that is as nearly powerful as the FM-OLS test. The cost of doing
so is the increase of size distortion ranging from 1 percentage point to 5 percentage points. This
is a relatively small cost comparing with the size distortion of 40% for the FM-OLS(QS) test.

To sum up, when we use the data-driven K given in , the TAOLS-based F test is remark-
ably accurate. It is much more accurate than the FM-OLS and TIV tests that use the chi-square
approximation. It is more accurate than the IM-OLS test, which also uses a fixed-smoothing
approximation. However, the size accuracy is achieved at the cost of some power loss, espe-
cially when the process is highly autocorrelated. When we use the adjusted K given in , the
TAOLS-based F test becomes as powerful as the FM-OLS test, but there is some sacrifice in size
accuracy. However, the size distortion is still much lower than that of the FM-OLS chi-square
test. Depending on our tolerance towards size distortion, we may use either or to select
K.

5.2 DGP with a time trend
The second data generating process generalizes by including a linear time trend:

Ye = ag + pot + T80 + o
Tt = Tp—1 + Uyt

STt follows from Theorem [3|that K has to be larger than 2d 4 1, which is 5 in the present setting.
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where the true parameters are (ap, iy, 8p) = (3,0.05,1,1). We fix p at 0.75 and consider ¢? €
{0.05,0.20, 0.35,0.50,0.75,0.90}. It is straightforward to obtain the LRV € of u; as

1 \2
Q:(I—@)12(1—6)1’2<> »)
L=p
1 \° :
G et
1—p o-Jar Jaa-p+1i-(1—9)
It then follows that )
0* = dp
1+o(d—1)

From the above formula, we can back out the value of ¢ that produces the desired value of o?.

As before, we compare the performances of various Wald type tests. For the FM-OLS, IM-OLS
and TAOLS methods, we consider the same tests as in the previous subsection except that we
take the linear trend into account. We also consider the shifted cosine transforms, leading to the
TAOLS-C and TOLS-C estimators and the corresponding tests where the underlying transformed
regressions do not include a trend term.

Table[3|and Figures[9)and [L0]report the empirical size of each test. We observe the dominating
finite sample performances of TAOLS, TOLS-C and TAOLS-C compared to other testing methods
such as FM-OLS and IM-OLS. The decent performances of TAOLS-C and TOLS-C methods
indicate that the shifted cosine transforms successfully filter out the linear trend and remove the
endogeneity bias.

Figure compares the finite sample power performances of TAOLS-C and TOLS-C when
T = 200. The simulation evidence is consistent with our theoretical results in Section [4.3t as
0? decreases, the efficiency of TAOLS-C relative to TOLS-C decreases. So, the power curves of
TOLS-C and TAOLS-C cross each other at a certain value g% € (0, 1).

6 Conclusion

This paper provides a simple, robust and more accurate approach to parameter estimation and
inference in a triangular cointegrating system. Cointegration is fundamentally a long run rela-
tionship. Our approach echoes this key observation by focusing only on data transformations
that capture the long run variation and covariation of the underlying time series. In this respect,
our approach resembles the frequency domain approach that uses only low-frequency informa-
tion, but it avoids the complications of frequency domain techniques. From a practical point of
view, our approach enjoys two major advantages. First, the more accurate approximations we
derived under the so-call fixed-K asymptotics are the standard F and t distributions. Second,
test statistics can be obtained from the usual regression output. So our asymptotic F and t tests
are just as easy to implement as the F and t tests in a classical linear normal regression. A
simulation study shows that our tests are much more accurate than the chi-square tests.

A key open question is how to select the number of basis functions. While we have suggested
a data-driven approach, it does not directly target at the problem under consideration. It will
be interesting to select the number of basis functions to minimize the approximate mean squared
error of the point estimator of the cointegration vector. If we are interested in interval estimation
or hypothesis testing, then the number of basis functions should be oriented at optimizing the
underlying objects such as the coverage probability error, the interval length, and the type I and

22



type II errors. There may also be room to select optimal basis functions. We hope to address
some of these questions in future research.

7 Appendix of Proofs

Proof of Theorem By the definition of 4r 401 and Y7, we have
Y1 (YraoLs — 7o) = (T3 WWYZH LW WO, (60)
Note that WY ' = (W®/T, WA?) where

W* /T = (W¥/T, ..., W <T3/2Z¢1 )Tty eees T3/22¢K >
and /
T

By Assumption [T] and the continuous mapping theorem,

1
a7 Z«m pou= 032 ([ outrywetryar ) = ki (61)
d Lz:qb'(i)u = QL2 </1 ¢;(r)dW. (r)> = 2, (62)
\/T s J\ xt T 0 7 x T Shpxr S

hold jointly over ¢,5 =1, ..., K. So
W*/T = (Qu%) and WA = (2/2¢'Y',

and
WY = (@), (fY) = (nf? eif?) (63)

Similarly, we have

1 ot 1 o, ¢ '
= <Tl/2 Z ¢1(T)u0~xtu L2 Z ¢K(T)U0~xt)
t=1 t=1
= (00.0V1,00.2V2, s 00sVEK) = 00V (64)
where v = [v1,...,vk] ~ N(0, Ix). The above convergence holds jointly with , ie.,
(WT}I,WO'$> = (&, 17> where ¢ = (17(2915{62,5(2%2) ., U:=00gv and ¢ L 7. (65)
Using this result, we have
Y1 (Araorns — Vo) = (Y7 WWYZH) T T2 Wwos
~I~ 13l d ~I~. _
= (O L MN 0,063,007
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The weak limit can be written more explicitly as
-1
(&’N)—lg’p . Q1/2 / Q1/2 1/2 ,591/2 (2%277’ )
(0 91/25 Q1/2 Ql/zg 591/2 Q3164026,
o 0?0 (7777 n€>_ (n’)u
’ 0 Q.7 &n €€ ¢
. go. xQ /2 ( "M, 77) n/Mfy (66)
= 1/2 / :
0.0 a’? (€ M€) ™ € My
So the representations in and hold. m
Proof of of Proposition Part (i). By Lemma A in Section 6 of Phillips (2005), we have

1 1
P = I+ O(T) and (®'®)~! = Ix + 0(;)

for any fixed K. Then, it is straightforward to show that
Py =0 (¥'0) ' =@ (Ix +O(T)) & = &' + O(T ).

Now

A X/ U0~a;
_ —1 0-x\ _
T(Brrv — Bo) = (X'SeX) ™ (X'SeU™™) = (Ts/z T3/2> <T3/2 T1/2>

where U%® = (ug.z1, ..., uoz7) and Sp = Py — PoAX(AX'PsAX) " !AX'Pg. Note that

5 :(D{(@,)l ~(ea)! @:/ATX [(A\j(%@) (o0)" (quﬂ—l X' - 1}(1),

=@ {4+ O(T7) — [T + 0 (T7)] WA (WA [15c 1+ 0 (T71)] WA} WA [I¢ 4 0 (T
=& (Ix — Pag) @ + 0p(1),

(67)

we have
X' X X'® d'X
T3/2 S‘I’T3/2 ~ T3/2 (Ix — Paz + 0p(1)) 732
W:E/ Wm
- T (IK - PA.Z‘) T + Op(1>a
and
X! UO-x X'® ! (I),UD'I
T3/2 S‘I’Tl/Q - <T3/2> (Ixk — Paz +0p(1)) JT
W:E/
=~ Ik — Pag) WO 4 0,(1). (68)
Combining these two representations and using Theorem [I], we have
~ we W= we! "
T(Brrv — Bo) = ( T (Ik — Pas) T ) < T (Ix —PAx)> WO 1+ 0,(1)

=T (Braors — Bo) + 0p(1).
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Part (ii): For any conformable vector ¢ and 7 € R, we have

lim P (c'VK < T) = lim EG T ,

|
K—oo K—o0
Jo.m\/Cl [Q;mlﬂ(n’Mgn)—lQ;;/ﬂ c

where G(+) is the cdf of the standard normal distribution. Note that fol W (r)W(r) dr is positive
definite with probability one. By the definition of weak convergence and the continuous mapping
theorem, it suffices to show that

1
n Men = / Wa(r)We(r)'dr as K — oo.
0

We first show that n'n = fol W (r)W,(r)'dr. Given that {¢; (-)}2, is a complete orthonormal
system in L2[0, 1], we know that -5 | ¢,(r)¢;(s) converges to the Dirac delta function in that

1 K
H /0 (Z ¢i<r>¢i<s>> f(r)dr — f(s)
=1

for any f € L3[0,1]N C[0,1] as K — oo where ||| ;2 is the L? norm. But
K K 1 1 /
n'n = ;nm’i — Z} < /0 @(r)Wx(r)dr) < /O qf)i(s)Wx(s)ds)
1 p1 /K ~ }
= /0 /0 <Z; ¢¢(T)¢>¢(s)> W (r) WL (s)drds

where W,(s) € L2[0,1] N C [0, 1] almost surely, and so

—0 (69)

L2

1
' — / W ()W () dr (70)

almost surely. This implies that n'n = fol W (r) Wy (r)'dr.
Next, we prove 7' Penp = 0,(1). We have

/ 1
WP =ve (€9 en=eone(5) €
1 K 1K -1 /K
=% (Z m&i) (K Z&fé) (Z fmi)
1 z[-(l p =1 =1
aa (Z 772'5;) <Z 51%) + op(1) (71)
=1 =1
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where the last equality follows from the result that ¢; "N (0, Iy) for i = 1,..., K. For the term

S mi€h, we have
Eémd = —EK:E [/1 U, (s) dW, (s)] [/1 ¢; (1) dW,, (7")]
:—IdZ/ ) ¢, (1 dr——Id/ Z\If )¢, (r

:_Id/ (/ Z@ {s<r}d5> (r)dr

=] [ Al S oear| d

_— /0 1 [ /0 Hé@@)@(r + s)dr | ds = O(1)
and
K
var [vec (Z mgg)
= var [Z/ / s)vec (dW, (r) dW,, (s))]
~ var [Z [ [ o @v ) o aw, <r>>]
:f > [ / / / / 6,(9) [AWz (5) © AW, ()] [dW, (q) © AW, (p)]
_ Zf:i_(: [ / / 6;(p )vec([d)vec(ld)'drdp]
i i/ / ¢i(s)drds[Iq @ 1] (I + Kg,a)

where Kg 4 is the d? x d? commutation matrix. Now

ii [/01 /01 U;(r)d;(r)dr /01 ‘I’j(p)¢j(p)dp] vec(Iy)vec(Iz) = 0

=1 j=1
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because fo (r)g;(r)dr = 3 [\Ilz(r)ﬂ(l) =0. Also

/ / W, (r)o;(s)drds
:/ dr/ $i(s 3_1{2_]}/ dr
:1{@':3'}/0 UO (ﬁi(s)ds] dr. (72)

As a result, we have

- f:/1 [/T <Z5,~(S)dsrdr X [lg ® Iq) (1gz + Ka,a)
/// J()1{p <r}1{q <r}dpdgdr x I3 ® Ig] (12 + Kgq)

- / / {p < rydpdr x [13© L] (Lp + Kq.)
0 JO
1
1
= [ rdr % 112 T (T + Kaa) = 5 1a® Tl (L + Ka) (73)
0

as K — oo. In view of the mean and variance orders, we have Zfil n;£; = O, (1). It then follows
that

K K
1
n Pen = ra (Z 77@52) <Z &Wé) + 0p(1)
k=1 k=1
1
= Op(42) +0p(1) = 0p(1). (74)
Combining and yields
1
' Men=n'n—n'Pen=n'n+o0,(1) = / W (r)We(r) dr
0

as desired. m

Proof of of Theorem We prove only the result for the Wald statistic as the proof goes
through for the t statistic with obvious modifications. Using , we have

WO [IK — v (W) w] o
wWo- {IK — Wt [(WT;)/WT#] o (Wr;l)l} o
= UOIK [IK ¢ << g) &’} .
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But
=1,
C(Ce) ¢

2 e QL2 o Q1/2 QL2 ,591/2 -1 legézn’
Q; ) Q1/2 1/2 Q1/2§ €Q1/2 9315425/
-1
) 0 <7777 n’é) G0 Qi
1/2 &y €€ 0 QX2 QL2
QL/2 Q1/2> 95:51/2 0 (77/77 77’5>_1 0”0 951125/13277/
o ST 0 Q2 &y ¢ 0 Q2 QL%

_ nn e\ ( 7 ) .
= (7775) < 5/77 5/5 > fl = PC;

where ¢ = (n,€) € RE*2 50 63 = 03 -1/ Mcv for M¢ = I — Pr. Combining this with

=
( 91/2’£Q1/2
= (m0

T (RBTAOLS ) = 00.. RO (0 Men) ™ 1f Mev

and
w=/ W,
Bl Maeoqr)
x /! T -1
— R w [IK _ WAI(wAm/wAw)—lwA$/] w R/
T T
1 -1
e (e I P
-1
= R{a (I —€(€) ¢ ) nlf?} R
— RO [ Men]) Tt Q2R (75)
we have

- _ Iy PN B
: i [ROy Men) ™/ M| (RO M) B) [ (o M) ™ ' Mew
F(Braors) = — ;
p V' My

~ ~\—1
k@ (B'Men') — Q
- 5 V' My

(76)

where R = RQ%?,

Q/ R( IM *1Rl -1 i 2 d IM i 2
' Men) Q = x; and V' Mcv = xF¢_og-

Note that conditional on ¢ = (n,§), Mcv = [IK —¢ ((’C)_l C’} v and ' M¢v are independent,

as both M¢v and 1’ M¢v are normal and the conditional covariance is
/ 1 =1 et
cov (Md/,?]Mgl/) = [IK—C(C C) (] Men = 0.
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So conditional on ¢, the numerator and the denominator in are independent chi-square
variates. This implies that

- N1 . -1
kQ (BRMa " R) Q@ @ (RWMal'R) Qg .
P V' M T K—2d V' Mv /(K — 2d) TK—-2d "

K—-2d

conditional on (. But the conditional distribution does not depend on the conditioning variable
¢, so it is also the unconditional distribution. We have therefore proved that

A K
F(Braors) = me,K—Qd- (77)

Proof of Theorem We follow the same step as in the proof of Theorem [I} We consider
only Fy.(Braors)- The proof for ty.(Braorg) is similar.

Let
Tr O
TT,tr = < 0 T3/2 )

Then

Braors — Bo L . - N1
Tru | Oraors =00 | = (Tppp Wi Wer Ty, )™ T Wy, WY = (CtrCtr) Cor?s
firaoLs — Mo

where 3
Cor = (922,602 a)

Some simple calculations show that

_1/2 _
~1 ~ -1, UO-QOx/ (T/Mf»an) 177/Mf»ay
(Ctrgtr> Ctrﬂ = 0'0~me_3:1/2 (gan,ag)il glM ,aV
00-2 (a']\fmga)_1 a' My cv

So part (i) of the theorem holds. In particular,

~ _ -1
T(Braors — Bo) = 002%a"? (' Mean) " 0/ Mg qv. (78)

Following the same steps in the proof of Theorem [3| we have (6§ ,)% = U%,x%u' M¢ qv. Com-
bining this with , we have

~ AV ~\N—1lr~
. i [B O Meam) ™ o Meav| (RO Mean]™ )[R Meam) ™ of Mg o
Fir(Braors) = "

V' M qv
d K

—d__—~_F

K —od_ 1 pk-2d-1- (79)
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Proof of Lemma The cosine functions clearly satisfy Assumption [l Note that

/QSZ ds-\f/ cos(2ims)d

_ 2 sin (2iws) " sin (2i7r)

um -

0 flﬂ' ’

we have, for ¢ # j,

/0 eyt (rydr = [ ST 5 o () ar

0o V2ir
1
= % ; sin (2i7r) cos(2jmr)dr
1 t o v .
=5 (/0 sin (2(i + j)mr) dr —i—/o sin (2(i — j)mr) dr)
1 [ cos(2(i+j)mr) ! 1 [ cos(2(i —j)mr) ! B
2T ( 2(i + j)7 0) i ( 2(i — j)m 0) =0

For ¢ = j, we have

/01 Ui (r)¢f (r) dr = 1 </01 sin (2(i + j)7r) dr) _ QL (_ cos (2(i + j)r)

2im T 200+ )

1
= 0.
0

Therefore fo Ve(r)g] (r)dr = 0 for any given 4,5 = 1,..., K. That is, the cosine functions also
satisfy Assumptlon I ]

Proof of Theorem [6l We have

T(Brors — Bo) = Q” (me) (Zm%) :
=1

where

/ o;(r r)dr and ¥, 1= ooV + aon §i

/ ¢;(r)dW,(r) and v; = / ¢, (r)dwy(r

Since ¥ := (1, ..., V) ~ N(0,031x) and i L 1, we can represent the limiting distribution as
zero mean mixed normal dlstrlbutmn

0,/ (me) (Zm)- 2 () e £ MN (0 o3, (of )‘19;3/2)

as desired. m

for

Proof of Proposition Note that B¢’ (Vi iors — Vions)c = ¢E [E(ijOLS - VTT(%LS)M] c
for any conforming vector ¢ € R%. From equation and the independence between 7 and &,
we have

1 1 c Q1/277/ 2 7791/20
’ _ _ TT T
¢ E(Vraons — Vrors)In] ¢ = T oon (0*Ix — E[P]) o (80)
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where the (i, j)th element of Py = £(£'6)71¢ is

K —1
pij =& (Z g&) ;.
s=1

We want to show that E[P:] = d/K - Ix. That is, E[p;] = d/K for i = 1,..., K and E[p;;] =
Elpj;i] =0 for all ¢ # j. Since &; o N(0, 1), it is easy to show that

-1

K -1 K
¢ (Z @5;) &2 (Zssg’s) g foralli,j=1,.. K. (81)
s=1 s=1

So, we have E[p;] = Elpj;], i.e., all the diagonal elements of E[FP] are same. In other words,
Elp11] = Elp22] = ... = E[pk k]| = X for some A. This gives us

AK = tr[EP] = Eltr [£(€6)'¢/) = d

and so A = FElp;] = d/K for ¢ = 1,...,K. For the off-diagonal elements, we note that the
distribution of p; ; is symmetric around zero, which implies that E[p;;] = E[pj;] = 0 for all i # j.

Therefore,
2

Q2
Plar &) (82)

00-x

_ _ d
EC/(VTXOLS - VTolLS)C = <@2 - K) E

and this immediately leads to the desired result. m
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Figure 2: Empirical size of various tests for ¢ = 0.75 and 7' = 200.
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[ T = 100

TAOLS \ TIV FM-OLS IM-OLS
0 DFT Bartlett Parzen QS Bartlett Parzen QS
0.05 | 0.0473 | 0.1629 0.1448 0.1572  0.1515 0.1051 0.0879  0.0988
0.20 | 0.0498 | 0.2161 0.1876 0.1776  0.1705 0.0986 0.0790  0.0813
0.35 | 0.0504 | 0.3017 0.2557 0.2044  0.1919 0.0821 0.0725  0.0749
0.50 | 0.0542 | 0.4809 0.3843 0.2451  0.2329 0.0758 0.0684  0.0669
0.75 | 0.0478 | 0.7153 0.6901 0.3955  0.3777 0.1389 0.0953  0.0756
0.90 | 0.0712 | 0.7520 0.7923 0.6220 0.6114 0.4349 0.1757  0.1017
T = 200
TAOLS \ TIV FM-OLS IM-OLS
P DFT Bartlett Parzen QS Bartlett Parzen QS
0.05 | 0.0472 | 0.0961 0.0981 0.1045  0.1028 0.0681 0.0779  0.0600
0.20 | 0.0532 | 0.1269 0.1299 0.1219  0.1162 0.0944 0.0813  0.0822
0.35 | 0.0529 | 0.1622 0.1704 0.1399  0.1332 0.0826 0.0721  0.0815
0.50 | 0.0534 | 0.2248 0.2629 0.1670  0.1594 0.0841 0.0738  0.0705
0.75 | 0.0560 | 0.5754 0.6183 0.2693  0.2571 0.1192 0.1012  0.0960
0.90 | 0.0603 | 0.7237 0.7371 0.4631  0.4494 0.3460 0.2226  0.1674
Table 1: Empirical size of various tests for ¢ = 0.75.
\ T = 100
TAOLS/TIV FM-OLS IM-OLS
P K Bartlett Parzen QS Bartlett Parzen QS
0.05 19.0040 0.0292 0.0556  0.0276 0.0289 0.0548  0.0272
0.20 14.2524 0.0543 0.0749  0.0372 0.0547 0.0747  0.0371
0.35 10.7156 0.1113 0.1015  0.0504 0.1123 0.1016  0.0505
0.50 8.0284 0.2461 0.1403  0.0697 0.2443 0.1396  0.0693
0.75 6.0310 0.8882 0.2796  0.1389 0.8775 0.2711  0.1347
0.90 6.0012 0.9983 0.5234  0.2611 0.9946 0.4966  0.2480
T = 200
TAOLS/TIV FM-OLS IM-OLS
P K Bartlett Parzen QS Bartlett Parzen QS

0.05 36.1384 0.0139 0.0283  0.0142 0.0138 0.0280  0.0140
0.20 25.6522 0.0250 0.0397  0.0197 0.0252 0.0398  0.0198
0.35 18.6720 0.0541 0.0550  0.0273 0.0548 0.0552  0.0274
0.50 13.5976 0.1257 0.0771  0.0383 0.1264 0.0772  0.0383
0.75 7.1238 0.7303 0.1603  0.0796 0.7267 0.1583  0.0786
0.90 6.0078 0.9997 0.3351  0.1664 0.9990 0.3219  0.1599

Table 2: Averages of the data-driven smoothing parameters K and b for ¢ = 0.75.
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Figure 3: Size-adjusted power curves at p = 0.35, ¢ = 0.75 and T = 200.
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Figure 4: Size-adjusted power curves at p = 0.50, ¢ = 0.75 and T" = 200.
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Figure 6: Size-adjusted power curves at p = 0.90, ¢ = 0.75 and T = 200.
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Figure 7: Size-adjusted power curves at p = 0.75, ¢ = 0.75 and T' = 200 with K values between
8 ~ 36.

Power of TAOLS(DFT) with various Ks
T T T T

0.9 - - ' ' ' '
— = — TAOLS(K=6,AMSE)
08 F — © —TAoLsK=8) -
— % — TAOLS(K=10) e -
07 H — € —Trosk=19 rad g
TAOLS(K=18) e
—B— FM-QS(b=0.1467,AMSE) -

g 06 | —de— IMBartlett(p=0.9967, AMSE) 1

[e]

% 05 i

g _ ~t

= 4+

S o4 -7 1

g "

903 1
0.2 1
0.1 1

0 I :
0 1 5 3 4 5 6 7 8 9 10

el

Figure 8: Size-adjusted power curves at p = 0.90, ¢ = 0.75 and T' = 200 with K values between
6 ~ 18.
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T =100
TAOLS TOLS FM-OLS IM-OLS
0> DFT Cosine Cosine Bartlett QS Bartlett QS

0.05 0.0554 0.0586  0.0795 0.8011 0.4374 0.2816 0.1182
0.20 0.0507 0.0564  0.0822 0.7992 0.4189 0.2733 0.1182
0.35 0.0518 0.0580  0.0763 0.7911 0.4143 0.2481 0.0941
0.50 0.0499 0.0633  0.0846 0.7902 0.4071 0.2283 0.0845
0.75 0.0521 0.0662  0.0839 0.7551 0.3473 0.1749 0.0709
0.90 0.0514 0.0632  0.0830 0.6894 0.2795 0.0899 0.0668
T =200
TAOLS TOLS FM-OLS IM-OLS
0> DFT Cosine Cosine Bartlett QS Bartlett QS

0.05 0.0556 0.0527  0.0597 0.6760 0.2524 0.1839 0.1133
0.20 0.0549 0.0545  0.0577 0.6772 0.2657 0.1846 0.1122
0.35 0.0524 0.0522  0.0623 0.6862 0.2617 0.1667 0.1056
0.50 0.0502 0.0524  0.0587 0.6846 0.2582 0.1565 0.1021
0.75 0.0502 0.0517  0.0546 0.6800 0.2356 0.1106 0.0892
0.90 0.0491 0.0514  0.0632 0.6469 0.1911 0.0711 0.0927

Table 3: Empirical size of various tests in the cointegration model with a linear time trend and
p=0.75.

T =100
DFT Cosine FM-OLS IM-OLS
0> K K Bartlett QS Bartlett QS

0.05 6.0916  6.0000 0.7713 0.1232 0.8092 0.1282
0.20 6.0606  6.0002 0.8014 0.1273 0.8317 0.1313
0.35 6.0414 6.0000 0.8255 0.1314 0.8483 0.1333
0.50 6.0336  6.0000 0.8567 0.1358 0.8622 0.1346
0.75 6.0534 6.0000 0.8801 0.1373 0.8342 0.1277
0.90 6.2974 6.0092 0.8177 0.1260 0.7084 0.1105

T = 200
DFT Cosine FM-OLS IM-OLS
0> K K Bartlett QS Bartlett QS

0.05 8.2486 6.0372 0.4947 0.0670 0.5292 0.0684
0.20 7.9748 6.0184 0.5403 0.0697 0.5711 0.0710
0.35 7.6838 6.0136 0.5928 0.0726 0.6173 0.0736
0.50 7.4500 6.0100 0.6451 0.0754 0.6571 0.0756
0.75 7.0746  6.0080 0.7548 0.0808 0.7233 0.0778
0.90 7.4216 6.0984 0.7596 0.0786 0.6650 0.0717

Table 4: The averages of K and b selected by the AMSE rule in the cointegration model with a
linear time trend and p = 0.75.
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Figure 9: Empirical size of various tests for the cointegration model with a linear trend for
p=0.75 and T = 100.
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Figure 10: Empirical size of various tests for the cointegration model with a linear trend for
p=0.75 and T = 200.
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Figure 11: Size-adjusted power curves of the TAOLS-C and TOLS-C F tests and other tests with
0? € {0.05,0.20,0.35,0.50, 0.75,0.90}, p = 0.75 and T = 200.
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