# Not-for-Publication Appendix to 

Neville Francis \& Valerie Ramey "Is the Technology-Driven Real Business Cycle Dead?"
May 20, 2004

This appendix shows the steps used to derive equations (2)-(7) in the text.

Consider the following model of the economy:
$Y_{t}=\left(A_{t} N_{t}\right)^{\alpha} K_{t}^{1-\alpha}$
Production Function
$A_{t}=\mu^{t} A_{0}, \quad \mu>1$
Technology Growth
$K_{t+1}=(1-\delta) K_{t}+I_{t}$
Capital Accumulation
$C_{t}+I_{t}+G_{t} \leq Y_{t}$
Resource Constraint
$U\left(C_{t}, N_{t}\right)=\ln \left(C_{t}\right)+\phi_{t} \ln \left(1-N_{t}\right) \quad$ Utility
$C_{t}+I_{t}=\left(1-\tau_{n t}\right) W_{t} N_{t}+\left(1-\tau_{k t}\right) r_{t} K_{t}+\delta \tau_{k t} K_{t}-\psi_{t} \quad$ Household Budget Constraint
$G_{t}=\tau_{n t} W_{t} N_{t}+\tau_{k t}\left(r_{t}-\delta\right) K_{t}+\psi_{t} \quad$ Government Budget Constraint

Following standard practice, we transform the economy to eliminate the nonstationarity arising from technology by dividing $Y_{t}, K_{t}, I_{t}, C_{t}, G_{t}, W_{t}$ and $\psi_{t}$ by $A_{t}$. Let lower case letters denote variables divided by $A_{t}$, and lower case letters with tildes denote variables divided by output $Y$, i.e., $k_{t}=K_{t} / A_{t}$ and $\tilde{k}_{t}=K_{t} / Y_{t}$. We have:
(A-2) $y_{t}=N_{t}^{\alpha} k_{t}^{1-\alpha}$
(A-3) $\mu \cdot k_{t+1}=(1-\delta) k_{t}+i_{t}$
(A-4) $c_{t}+i_{t}+g_{t} \leq y_{t}$
(A-5) $U\left(c_{t}, N_{t}\right)=\ln \left(c_{t}\right)+\phi_{t} \ln \left(1-N_{t}\right)+\ln \left(A_{t}\right)$
$(\mathrm{A}-6) c_{t}+\mu \cdot k_{t+1}-(1-\delta) k_{t}=\left(1-\tau_{n t}\right) w_{t} N_{t}+\left(1-\tau_{k t}\right) r_{t} k_{t}+\delta \tau_{k t} k_{t}-\varphi_{t}$
(A-7) $g_{t}=\tau_{n t} w_{t} N_{t}+\tau_{k t}\left(r_{t}-\delta\right) k_{t}+\varphi_{t}$

Consumer optimization problem and FOCs:
$L=\sum_{t=0}^{\infty} \beta^{t}\left\{\ln c_{t}+\phi_{t} \ln \left(1-N_{t}\right)+\ln A_{t}+\lambda_{t}\left[\left(1-\tau_{n t}\right) w_{t} N_{t}+\left(1-\tau_{k t}\right) r_{t} k_{t}+\delta \tau_{k t} k_{t}-\varphi_{t}-c_{t}-\mu \cdot k_{t+1}+(1-\delta) k_{t}\right\}\right\}$
(A-8) $\frac{\partial L}{\partial c_{t}}=0 \rightarrow \frac{1}{c_{t}}=\lambda_{t}$
(A-9) $\frac{\partial L}{\partial N_{t}}=0 \rightarrow \frac{\phi_{t}}{1-N_{t}}=\lambda_{t}\left(1-\tau_{N t}\right) \cdot w_{t}$
(A-10) $\frac{\partial L}{\partial k_{t+1}}=0 \rightarrow \beta \cdot \lambda_{t+1}\left(1-\tau_{k t+1}\right) r_{t+1}+\beta \cdot \lambda_{t+1} \cdot \delta \cdot \tau_{k t+1}+\beta \cdot \lambda_{t+1}(1-\delta)=\mu \cdot \lambda_{t}$

Firm optimization problem and FOCs:

Max $\quad \pi=N_{t}^{\alpha} k_{t}^{1-\alpha}-w_{t} N_{t}-r_{t} k_{t}$
$(\mathrm{A}-11) \frac{\partial \pi}{\partial k_{t}}=0 \rightarrow r_{t}=(1-\alpha)\left(\frac{k_{t}}{N_{t}}\right)^{-\alpha}$
(A-12) $\frac{\partial \pi}{\partial N_{t}}=0 \rightarrow w_{t}=\alpha\left(\frac{k_{t}}{N_{t}}\right)^{1-\alpha}$
Calculating the steady-state of the transformed economy:

1. Derivation of the Marginal Rate of Substitution Equation (text equation (4)):

Imposing steady-state, equations (A-8), (A-9) and (A-11) imply:
$\frac{\phi}{1-N}=\frac{\left(1-\tau_{N}\right) \alpha N^{\alpha-1} k^{1-\alpha}}{C}$
which with substitutions from (A-2) and reorganization implies:
$\frac{\phi N}{1-N}=\frac{\left(1-\tau_{N}\right) \alpha y}{c}$

Combining this with (A-4) and recalling that tildes denote upper case variables dividing by Y , we have equation (4) from the text:
$\frac{1-N}{N}=\frac{\phi}{\alpha\left(1-\tau_{N}\right)}[1-\tilde{i}-\tilde{g}]$
2. Derivation of Marginal Product of Capital condition (text equation (2)):

Rewrite (A-10) with elimination of time-subscripts (since steady-state):

$$
\beta\left[\left(1-\tau_{k}\right) r+\delta \cdot \tau_{k}+1-\delta\right]=\mu
$$

Combine this equation with (A-11) we obtain equation (2) from the text:

$$
1+\left(1-\tau_{k}\right)\left[(1-\alpha)\left(\frac{k}{N}\right)^{-\alpha}-\delta\right]=\frac{\mu}{\beta}
$$

Equation (5) from the text comes from imposing steady-state on equation (A-3) and dividing by Y. The derivation of the rest of the equations is obvious.

The following are the list of balanced growth equations from the text:
$1+\left(1-\tau_{k}\right)\left[(1-\alpha)\left(\frac{k}{N}\right)^{-\alpha}-\delta\right]=\frac{\mu}{\beta} \quad$ MP of Capital-Time Preference Link
$\tilde{c}+\tilde{g}+\tilde{i}=1 \quad$ Resource Constraint
$\frac{1-N}{N}=\frac{\phi}{\alpha\left(1-\tau_{n}\right)}[1-\tilde{i}-\tilde{g}] \quad$ Marginal Rate of Substitution
$\tilde{i}=(\mu+\delta-1)\left(\frac{k}{N}\right)^{\alpha} \quad$ Investment Rate
$Y=A N\left(\frac{k}{N}\right)^{1-\alpha} \quad$ Production Function
$\alpha \frac{Y}{N}=W=\alpha A\left(\frac{k}{N}\right)^{1-\alpha} \quad$ Labor Productivity

