MOTIVATION

Key policy questions

- What is the size of the government spending multiplier?
 - Previous work: multiplier ≈ 1 (wide “confidence” bands)
MOTIVATION

Key policy questions

- What is the size of the government spending multiplier?
 - Previous work: multiplier ≈ 1 (wide “confidence” bands)

- What is the size of the government spending multiplier **IN RECESSIONS?**
MOTIVATION

Key policy questions

- What is the size of the government spending multiplier?
 - Previous work: multiplier ≈ 1 (wide “confidence” bands)

- What is the size of the government spending multiplier IN RECESSIONS?

Challenges of estimating state-dependent multipliers

- A handful of recessions in the post-WWII data & relatively little variation in G
 - Post-WWII data: standard
 - Pre-WWII data: many sources + interpolate annual series into quarterly
MOTIVATION

Key policy questions

- What is the size of the government spending multiplier?
 - Previous work: multiplier ≈ 1 (wide “confidence” bands)

- What is the size of the government spending multiplier IN RECESSIONS?

Challenges of estimating state-dependent multipliers

- A handful of recessions in the post-WWII data & relatively little variation in G
 - Post-WWII data: standard
 - Pre-WWII data: many sources + interpolate annual series into quarterly

- Identification of exogenous, unanticipated shocks to government spending
 - RZ: News shocks (extend Ramey (QJE 2011)) about military gov’t spending
MOTIVATION

Key policy questions

- What is the size of the government spending multiplier?
 - Previous work: multiplier ≈ 1 (wide “confidence” bands)

- What is the size of the government spending multiplier in recessions?

Challenges of estimating state-dependent multipliers

- A handful of recessions in the post-WWII data & relatively little variation in G
 - Post-WWII data: standard
 - Pre-WWII data: many sources + interpolate annual series into quarterly

- Identification of exogenous, unanticipated shocks to government spending
 - RZ: News shocks (extend Ramey (QJE 2011)) about military gov’t spending

- Nonlinear models: sensitive estimates + how to model feedback/dynamics?
RESULTS

• Output responds more strongly in “slack times” (unemployment rate > 6.5%)
RESULTS

- Output responds more strongly in “slack times” (unemployment rate > 6.5%)
- Government spending responds more strongly in “slack times”
 - Multipliers $M \equiv \frac{\sum Y}{\sum G}$ are similar in “slack times” and “no-slack times”
RESULTS

• Output responds more strongly in “slack times” (unemployment rate > 6.5%)

• Government spending responds more strongly in “slack times”

 o Multipliers $M \equiv \frac{\sum Y}{\sum G}$ are similar in “slack times” and “no-slack times”

• Little variation/weak identification in post-WWII data

• Multipliers are similar at the zero lower bound (ZLB) and outside ZLB

 o More challenges for multipliers at ZLB
RESULTS

- Output responds more strongly in “slack times” (unemployment rate > 6.5%)
- Government spending responds more strongly in “slack times”
 - Multipliers $M \equiv \frac{\Sigma Y}{\Sigma G}$ are similar in “slack times” and “no-slack times”
- Little variation/weak identification in post-WWII data
- Multipliers are similar at the zero lower bound (ZLB) and outside ZLB
 - More challenges for multipliers at ZLB

A GREAT PAPER!
RESULTS

- Output responds more strongly in “slack times” (unemployment rate > 6.5%)
- Government spending responds more strongly in “slack times”
 - Multipliers $M \equiv \frac{\sum Y}{\sum G}$ are similar in “slack times” and “no-slack times”
- Little variation/weak identification in post-WWII data
- Multipliers are similar at the zero lower bound (ZLB) and outside ZLB
 - More challenges for multipliers at ZLB

A GREAT PAPER!

Why are the RZ results different from the results in Auerbach-Gorodnichenko and others?

- Measurement
- Specification
- Estimation
- Identification
RZ APPROACH

\[Y_t = \alpha_0 \text{shock}_t + \text{error}_t \]
\[Y_{t+1} = \alpha_1 \text{shock}_t + \text{error}_{t+1} \]
\[Y_{t+2} = \alpha_2 \text{shock}_t + \text{error}_{t+2} \]

\[\ldots \]
\[Y_{t+h} = \alpha_h \text{shock}_t + \text{error}_{t+h} \]

\[IRF^Y = \{ \alpha_h \}_{h=0}^H \]
RZ APPROACH

\[Y_{t+h} = \alpha_h \text{shock}_t + \text{error}_t \Rightarrow IRF^Y = \{\alpha_h\}_{h=0}^H \]
\[G_{t+h} = \beta_h \text{shock}_t + \text{error}_t \Rightarrow IRF^G = \{\beta_h\}_{h=0}^H \]
RZ APPROACH

\[Y_{t+h} = \alpha_h \text{shock}_t + \text{error}_t \Rightarrow \text{IRF}^Y = \{\alpha_h\}_{h=0}^H \]

\[G_{t+h} = \beta_h \text{shock}_t + \text{error}_t \Rightarrow \text{IRF}^G = \{\beta_h\}_{h=0}^H \]

Multiplier at horizon \(h \): \(M_h \equiv \frac{\alpha_h}{\beta_h} \)
RZ APPROACH

\[Y_{t+h} = \alpha_h \text{shock}_t + error_t \Rightarrow IRF^Y = \{\alpha_h\}_{h=0}^H \]

\[G_{t+h} = \beta_h \text{shock}_t + error_t \Rightarrow IRF^G = \{\beta_h\}_{h=0}^H \]

Multiplier at horizon \(h \): \(M_h \equiv \frac{\alpha_h}{\beta_h} = \frac{\text{cov}(Y_{t+h}, \text{shock}_t)}{\text{var}(\text{shock}_t)} = \frac{\text{cov}(Y_{t+h}, \text{shock}_t)}{\text{cov}(G_{t+h}, \text{shock}_t)} \frac{\text{var}(\text{shock}_t)}{\text{cov}(G_{t+h}, \text{shock}_t)} \)
\section*{RZ APPROACH}

\[Y_{t+h} = \alpha_h \text{shock}_t + \text{error}_t \Rightarrow \text{IRF}^Y = \{\alpha_h\}_{h=0}^H \]

\[G_{t+h} = \beta_h \text{shock}_t + \text{error}_t \Rightarrow \text{IRF}^G = \{\beta_h\}_{h=0}^H \]

Multiplier at horizon h: $M_h \equiv \frac{\alpha_h}{\beta_h} = \frac{\text{cov}(Y_{t+h}, \text{shock}_t)}{\text{var}(\text{shock}_t)} = \frac{\text{cov}(G_{t+h}, \text{shock}_t)}{\text{var}(\text{shock}_t)}$

Instrumental variable interpretation: Regress Y_{t+h} on G_{t+h} and use shock_t as an IV.
RZ APPROACH

\[Y_{t+h} = \alpha_h shock_t + error_t \Rightarrow IRF^Y = \{\alpha_h\}_{h=0}^H \]
\[G_{t+h} = \beta_h shock_t + error_t \Rightarrow IRF^G = \{\beta_h\}_{h=0}^H \]

Multiplier at horizon \(h \): \(M_h \equiv \frac{\alpha_h}{\beta_h} = \frac{\text{cov}(Y_{t+h}, shock_t)}{\text{var}(shock_t)} = \frac{\text{cov}(Y_{t+h}, shock_t)}{\text{cov}(G_{t+h}, shock_t)} \)

Instrumental variable interpretation: Regress \(Y_{t+h} \) on \(G_{t+h} \) and use \(shock_t \) as an IV.

The logic extends to state-dependent multipliers

\[Y_{t+h} = M_h^R G_{t+h} \times I(recession_t) + M_h^E G_{t+h} \times I(expansion_t) + error_t \]
\[shock_t \times I(recession_t) \] and \(shock_t \times I(expansion_t) \) as IVs.
RZ APPROACH

\[
Y_{t+h} = \alpha_h \text{shock}_t + \text{error}_t \Rightarrow IRF^Y = \{\alpha_h\}_h^{H=0}
\]

\[
G_{t+h} = \beta_h \text{shock}_t + \text{error}_t \Rightarrow IRF^G = \{\beta_h\}_h^{H=0}
\]

Multiplier at horizon \(h \): \(M_h \equiv \frac{\alpha_h}{\beta_h} = \frac{\text{cov}(Y_{t+h}, \text{shock}_t)}{\text{var}(\text{shock}_t)} = \frac{\text{cov}(G_{t+h}, \text{shock}_t)}{\text{cov}(G_{t+h}, \text{shock}_t)} \)

Instrumental variable interpretation: Regress \(Y_{t+h} \) on \(G_{t+h} \) and use \(\text{shock}_t \) as an IV.

The logic extends to state-dependent multipliers

\[
Y_{t+h} = M^R_h G_{t+h} \times I(\text{recession}_t) + M^E_h G_{t+h} \times I(\text{expansion}_t) + \text{error}_t
\]

\(\text{shock}_t \times I(\text{recession}_t) \) and \(\text{shock}_t \times I(\text{expansion}_t) \) as IVs.

Single equation approach

\[
Y_{t+h} = M^R_h G_{t+h} \times I(\text{recession}_t) + \text{error}_t \hspace{1cm} IV: \text{shock}_t \times I(\text{recession}_t)
\]

\[
Y_{t+h} = M^E_h G_{t+h} \times I(\text{expansion}_t) + \text{error}_t \hspace{1cm} IV: \text{shock}_t \times I(\text{expansion}_t)
\]
FIRST STAGE FIT: FULL SAMPLE

Note: controls are included. F-stat in the figure is capped at 45.
Note: controls are included. F-stat in the figure is capped at 45.
FIRST STAGE FIT: RECESSION

Horizon $h = 8$

- Fit all observations: $b = 0.77 (0.11)$
- Exclude WWII observations: $b = 0.45 (0.39)$

$\frac{(G_{t+h}-G_{t-1})}{Y_{t-1}}$ vs. shock
Question: which shocks should one use to design/assess the fiscal stimulus in 2009?
RAMEY-ZUBAIRY VS. BLANCHARD-PEROTTI

Ramey-Zubairy:

- \(Y_{t+h} - Y_{t-1} = M_h (G_{t+h} - G_{t-1}) + controls + error_t \)
- use military spending shocks as the instrument
RAMEY-ZUBAIRY VS. BLANCHARD-PEROTTI

Ramey-Zubairy:
- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + controls + \text{error}_t \)
- Use military spending shocks as the instrument

Blanchard-Perotti
- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + controls + \text{error}_t \)
- Use \((G_t - G_{t-1}) \perp controls\) as the instrument
RAMEY-ZUBAIRY VS. BLANCHARD-PEROTTI

Ramey-Zubairy:

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \textit{controls} + \textit{error}_t \)
- use military spending shocks as the instrument

Blanchard-Perotti

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \textit{controls} + \textit{error}_t \)
- use \((G_t - G_{t-1}) \perp \textit{controls}\) as the instrument
 - First-stage fit for \(h = 0 \) is perfect \((R^2 = 1)\)
RAMEY-ZUBAIRY VS. BLANCHARD-PEROTTI

Ramey-Zubairy:

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \text{controls} + \text{error}_t \)
- use military spending shocks as the instrument

Blanchard-Perotti

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \text{controls} + \text{error}_t \)
- use \((G_t - G_{t-1}) \perp \text{controls}\) as the instrument
 - First-stage fit for \(h = 0 \) is perfect \((R^2 = 1)\)
- Alternative IV (Auerbach-Gorodnichenko):
 \((G_t - F_{t-1}G_t) \perp \text{controls}\)
 \(F_{t-1}G_t \equiv \) a professional forecast as of time \(t - 1 \) of government spending at time \(t\)
Ramey-Zubairy:

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \text{controls} + \text{error}_t \)
- use military spending shocks as the instrument

Blanchard-Perotti

- \(Y_{t+h} - Y_{t-1} = M_h(G_{t+h} - G_{t-1}) + \text{controls} + \text{error}_t \)
- use \((G_t - G_{t-1}) \perp \text{controls}\) as the instrument
 - First-stage fit for \(h = 0 \) is perfect \((R^2 = 1)\)
- Alternative IV (Auerbach-Gorodnichenko):
 \((G_t - F_{t-1}G_t) \perp \text{controls}\)
 \(F_{t-1}G_t \equiv \) a professional forecast as of time \(t - 1 \) of government spending at time \(t \)

Strength of 1st stage: RZ vs. BP

- BP (AG) instrument is nearly impossible to beat over short horizons.
- RZ can perform better over longer horizons b/c it measures present values.
CHALLENGES IN CONSTRUCTING AND ANALYZING LONG-TIME SERIES

- Data quality is likely to vary
 - Linear interpolation
 ⇒ Attenuate differences between recession/expansion
CHALLENGES IN CONSTRUCTING AND ANALYZING LONG-TIME SERIES

• Data quality is likely to vary
 o Linear interpolation
 ⇒ Attenuate differences between recession/expansion

• Regime changes
 o Balanced budget provisions
 o Gold standard
CHALLENGES IN CONSTRUCTING AND ANALYZING LONG-TIME SERIES

- Data quality is likely to vary
 - Linear interpolation
 ⇒ Attenuate differences between recession/expansion

- Regime changes
 - Balanced budget provisions
 - Gold standard

- Structural changes
 - Changes in the volatility of government spending
% CHANGE IN REAL PER CAPITA GOVERNMENT SPENDING

![Graph showing the change in real per capita government spending over time. The x-axis represents years from 1890 to 2010, and the y-axis represents the standard deviation of the log of per capita government spending with a 5-year moving window. The graph displays fluctuations and trends in government spending over the century.]
CHALLENGES IN CONSTRUCTING AND ANALYZING LONG-TIME SERIES

• Data quality is likely to vary
 o Linear interpolation
 ➞ Attenuate differences between recession/expansion

• Regime changes
 o Balanced budget provisions
 o Gold standard

• Structural changes
 o Changes in the volatility of government spending
 o Secular trend in the size and composition of the government
CHALLENGES IN CONSTRUCTING AND ANALYZING LONG-TIME SERIES

- Data quality is likely to vary
 - Linear interpolation
 ⇒ Attenuate differences between recession/expansion

- Regime changes
 - Balanced budget provisions
 - Gold standard

- Structural changes
 - Changes in the volatility of government spending
 - Secular trend in the size and composition of the government
 ⇒ avoid using variables in levels, use differences or/and growth rates

RZ: \[\frac{Y_{t+h} - Y_{t-1}}{Y_{t-1}} = M_h \frac{G_{t+h} - G_{t-1}}{Y_{t-1}} + \sum_k \psi_k \ln Y_{t-k} + \sum_q \gamma_q \ln G_{t-q} + \sum_s \phi_s t^s + \text{error} \]

Alt.: \[\frac{Y_{t+h} - Y_{t-1}}{Y_{t-1}} = M_h \frac{G_{t+h} - G_{t-1}}{Y_{t-1}} + \sum_k \psi_k \Delta \ln Y_{t-k} + \sum_q \gamma_q \Delta \ln G_{t-q} + \sum_s \phi_s t^s + \text{error} \]
NORMALIZATION

Typical approach: \[\Delta \log Y_t = b \times \Delta \log G_t + error \quad \Rightarrow \text{multiplier} \quad M = b \times \left(\frac{Y_t}{G_t} \right) \]
NORMALIZATION

Typical approach: \[\Delta \log Y_t = b \times \Delta \log G_t + \text{error} \] \[\Rightarrow \text{multiplier} \ M = b \times \left(\frac{Y_t}{G_t} \right) \]

Alternative approach: \[\frac{Y_t - Y_{t-1}}{Y_{t-1}} = b \times \frac{G_t - G_{t-1}}{Y_{t-1}} + \text{error} \] \[\Rightarrow \text{multiplier} \ M = b \]
NORMALIZATION

Typical approach: \[\Delta \log Y_t = b \times \Delta \log G_t + \text{error} \quad \Rightarrow \text{multiplier } M = b \times \left(\frac{Y_t}{G_t} \right) \]

Alternative approach: \[\frac{Y_t - Y_{t-1}}{Y_{t-1}} = b \times \frac{G_t - G_{t-1}}{Y_{t-1}} + \text{error} \quad \Rightarrow \text{multiplier } M = b \]

\[\frac{G_t - G_{t-1}}{Y_{t-1}} \approx \Delta \log G_t \times \frac{G_{t-1}}{Y_{t-1}} \]
NORMALIZATION

Typical approach: \[\Delta \log Y_t = b \times \Delta \log G_t + error \Rightarrow \text{multiplier } M = b \times \left(\frac{Y_t}{G_t} \right) \]

Alternative approach: \[\frac{Y_t - Y_{t-1}}{Y_{t-1}} = b \times \frac{G_t - G_{t-1}}{Y_{t-1}} + error \Rightarrow \text{multiplier } M = b \]

\[
\frac{G_t - G_{t-1}}{Y_{t-1}} \approx \Delta \log G_t \times \frac{G_{t-1}}{Y_{t-1}}
\]

Potential concerns

- \(\frac{Y_t - Y_{t-1}}{Y_{t-1}} \) and \(\frac{G_t - G_{t-1}}{Y_{t-1}} \) are correlated because \(Y_{t-1} \) shows up in the denominator
- \(\frac{G_t}{Y_t} \) varies systematically over the business cycle
Notes: post 1960 data; potential GDP is from the CBO.
MULTIPLIERS: RAMEY-ZUBAIRY

Spec: baseline, IV implementation
Spec: IV implementation, include more lags, normalize by potential GDP, controls include variables in growth rates rather than levels.

These estimates are similar to the Auerbach-Gorodnichenko results.
EQUALITY OF MULTIPLIERS OVER THE BUSINESS CYCLE

![Graph showing the p-value for Recession vs. Expansion over a 11-year horizon for Blanchard-Perotti and Ramey-Zubairy models.](image-url)
CONCLUDING REMARKS

We need more variation/data to identify G shocks and estimate their effects

- Cross-state variation (e.g., Nakamura and Steinsson 2014)
- Natural experiments (e.g., Joshua Hausman 2013)
- Asset prices and high frequency data (e.g., Johannes Wieland 2012)
CONCLUDING REMARKS

We need more variation/data to identify G shocks and estimate their effects
- Cross-state variation (e.g., Nakamura and Steinsson 2014)
- Natural experiments (e.g., Joshua Hausman 2013)
- Asset prices and high frequency data (e.g., Johannes Wieland 2012)

We need to study responses of other variables to understand the workings of G shocks
- Consumption, investment, durables/non-durables
- Prices, wages, interest rates
- Employment, capacity utilization
- Export, import, exchange rates
CONCLUDING REMARKS

We need more variation/data to identify G shocks and estimate their effects
- Cross-state variation (e.g., Nakamura and Steinsson 2014)
- Natural experiments (e.g., Joshua Hausman 2013)
- Asset prices and high frequency data (e.g., Johannes Wieland 2012)

We need to study responses of other variables to understand the workings of G shocks
- Consumption, investment, durables/non-durables
- Prices, wages, interest rates
- Employment, capacity utilization
- Export, import, exchange rates

We need better theory to guide our empirical analyses
- RZ: Michaillat (2014) is the only modern macro model with state-dependent multipliers
- Most models are linearized or close to linear
CONCLUDING REMARKS

We need more variation/data to identify G shocks and estimate their effects

- Cross-state variation (e.g., Nakamura and Steinsson 2014)
- Natural experiments (e.g., Joshua Hausman 2013)
- Asset prices and high frequency data (e.g., Johannes Wieland 2012)

We need to study responses of other variables to understand the workings of G shocks

- Consumption, investment, durables/non-durables
- Prices, wages, interest rates
- Employment, capacity utilization
- Export, import, exchange rates

We need better theory to guide our empirical analyses

- RZ: Michaillat (2014) is the only modern macro model with state-dependent multipliers
- Most models are linearized or close to linear

“The problem with QE is it works in practice but it doesn’t work in theory.” – Bernanke