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Introduction

Much of behavioural and experimental game theocy$es on two main issues:

e Strategic thinking, the process by which playeesict others’ decisions and make their own
decisions in initial responses to games withoegicprecedents; and

e Adaptive learning, the process by which playeasrido predict others’ decisions from past
experience with analogous games.

| begin with an experimental example showing whig important to understand both issues, and th
continue by discussing thinking and learning imtur



Example: How strategic thinking and learning interact to determine equilibrium selection via
history-dependent learning

In Van Huyck, Cook, and Battalio’s (199EBO) experiment, seven subjects chose simultaneously
and anonymously among efforts from 1 to 14, witbhesubject’s payoff determined by his own
effort and a summary statistic, the median, opkliers’ efforts.

After subjects chose their efforts, the group meavas publicly announced, subjects chose new
efforts, and the process continued.

The relation between a subject’s effort, the meeihort, and his payoff was publicly announced vie
a table as on the next slide.



The payoffs of a player’s best responses to eassilple median are highlighted in bold in the table
as displayed here (but not as displayed to subjects

The payoffs of the (symmetric, pure-strategy) egaa “all-3” and “all-12" are highlighted in large
bold.

Continental divide game payoffs

Median Choice

Your 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Choice
1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98
3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58
4 43 51 58 65 71 77 80 26 8 2 -9 -14 -19 -22
5 35 44 52 60 69 77 83 46 32 25 19 15 12 10
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 64 63 62 062
8 13 -1 11 23 37 51 69 83 81 80 80 80 81 82
9 37 24 11 3 18 35 57 88 89 91 92 94 96 98
10 -65 51 -37 21 -4 15 40 89 94 98 101 104 107 110
11 97 82 -66 -49 31 -9 20 85 94 100 105 110 114 119
12 -133 -117 <100 -82 -61 -37 -5 78 91 99 106 112 118 123
13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123

N
S

-217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120



There were ten sessions, each with its own sepagrratsp.

Half the groups happened to have an initial medfagight or above, and half happened to have an
initial median of seven or below.

(The experimenters probably chose the design teerttakinitial median vary this way, but this kind
of variation is not uncommon.)

The results are graphed on the next slide:

The median-eight-or-above groups converged almer$eqtly to the all-12 equilibrium.

By contrast, the median-seven-or-below groups cgacealmost perfectly to the all-3 equilibrium.
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Thus, it's not enough to know that learning wileetually converge to some equilibrium, even if we
are only interested in the final outcome.

Here we also need to know the prior probabilityrdisition of the median initial response, which is
determined by subjects' strategic thinking befbsythave any direct experience with the game.

In Van Huyck et al.’s experiment, the prior probdpidistribution of final outcomes is determinad i
a simple way by the prior probability distributiohthe median initial response and learning rules
that converge to the equilibrium whose basin aghation—defined by myopic best responses—
subjects’ initial responses fell into.

But in other settings predicting the prior probeidlistribution of final outcomes may require that
we know more about the structure of subjects’ lie@rnules as well as their initial responses.



Strategic thinking

Strategic thinking is an essential part of humdaeraction, so much so that children mustdaght
to look both ways before crossing one-way streets.

(Once children develop enough “theory of mind” tstidguish others as independent decision
makers, they seem to become instinctively overaptimabout using rationality to predict others’
decisions.)

Yet from a behavioral point of view, the importamdestrategic thinking has been downplayed in
economics and game theory.

Most applications of game theory in economics oglyNash equilibrium.

But although equilibrium can be viewed as a modst@tegic thinking, there are many potential
applications of game theory for which it is notadequate model of behavior.
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Players’ strategies will be in equilibrium if twomditions are satisfied:

e Players are rational (in the decision-theoretitsseof best responding to some beliefs).

e Players have the same beliefs about each otheategies.

Assuming rationality for the sake of argument, ¢hare two possible justifications for the
assumption that players have the same beliefs:

e Thinking: If players have perfect models of eatied's decisions, strategic thinking will lead then
to have the same beliefs immediately, and so plagoauilibrium even in their initial responses to
game.

(Note that in this case the usual “as if” justifioa for equilibrium is unavailable: if players’
models do not accurately reflect other players’nitogn, equilibrium will predict their decisions
accurately only by coincidence.)

e Learning: Even without perfect models, if playsrpeatedly play perfectly analogous games (anc
their interaction patterns do not foster repeaiathe effects or strategic teaching), experience m
eventually allow them to predict each others’ decis well enough to play an equilibrium (in the
game that is repeated) in the limit.



In many applications of game theory, the theorketoaditions for learning to converge to
equilibrium are approximately satisfied.

In such settings experimental evidence and fietd tend to support assuming that players’ steady-
state strategies are in equilibrium.

If only long-run outcomes matter, and if equilibrius unique or if there are multiple equilibria but
equilibrium selection does not depend on the detdilearning, such applications can safely rely
entirely on equilibrium.

Because in such settings the cognitive requirenfentearning to converge to equilibrium are
mild, there is then no need to study strategickihon



However, many other applications involve gamesegiiayithout clear precedents, so that the
learning justification for equilibrium is unavailieb

In other applications eventual convergence to dxuiin is assured, but initial as well as limiting
outcomes matter (e.g. the FCC Spectrum auction).

In still other applications convergence is assuaned only long-run outcomes matter, but the
equilibrium is selected from multiple possibilitieim history-dependent learning dynamics.

All such applications depend on reliably predictinijal responses to games, which may require a
non-equilibrium model of strategic thinking.
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Applications of game theory usually assume equuliareven when its learning justification is
unavailable.

This practice seems to be due to two factors:

e Fear that equilibrium is the only possible basisanalysis
(rationalizability seldom yields predictions sgacenough to be useful).

e Hope that equilibrium will still yield accurategqafictions, on average.

But except in simple games, assuming equilibriumkihg in people’s initial responses may be
behaviorally far-fetched.

Even people who are capable of equilibrium thinkimgy doubt that others are capable, and
therefore be unwilling to play their part of an gdpaium.

Moreover, there is a growing body of evidence—nyosdperimental—that initial responses to
novel or complex games often deviate systematid¢adly equilibrium, especially if it requires
thinking that is not straightforward.
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Fortunately, the evidence also suggests that #rersimple and tractable structural non-
equilibrium models of strategic thinking that caqplain a substantial fraction of people’s
deviations from equilibrium initial responses.

Those models allow equilibrium behavior, but do asdume equilibrium in all games.

Instead they assume that players follow strategiacbn-equilibrium decision rules, which yield
decisions that mimic equilibrium in simple gameag, imay deviate systematically in more complex
games.

The models thereby provide a way to predict, invarggame, whether players’ responses are
likely to deviate from equilibrium, and if so, how.

Thus the hope that equilibrium yields predictiomgttare accurate on average is not well founded.

But neither is the fear that equilibrium is theyopbssible basis for analysis.
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Modeling strategic thinking more accurately proraiseveral benefits:

e |t can establish the robustness of conclusionedas equilibrium in games where empirically
reliable rules mimic equilibrium.

e |t can challenge the conclusions of applicatiangames where equilibrium is implausible
without learning.

e |t can resolve empirical puzzles by explaining de®iations from equilibrium that some games
evoke.

e |t can also elucidate the structure of learninigerg assumptions about cognition determine
which analogies between current and previous gaagers recognize and also distinguish
reinforcement from beliefs-based and more soplaisdtrules.
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“Folk game theory” quotations

| now give some folk game theory quotations tostitate the need for models of strategic thinking,
the issues successful models must address, anarnhe of potential applications.

Why study folk game theory instead of “real” garhedry?

Folk game theory is only an imperfect reflectiortrafditional game theory, just as folk physics is
an imperfect reflection of real physics.

But unlike folk physics, folk game theory has adtrand important influence on its observable
counterpart, namely the part of behavioral gamerththat concerns strategic thinking and initial
responses to games.

| will argue below that the lessons regarding setyit thinking from folk game theory are largely
confirmed by experiments designed to study stratégnking in more conventional ways.

This correspondence is powerful evidence for aqdar class of structural non-equilibrium
models of strategic thinking.
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Keynes’s Beauty Contest:

“...professional investment may be likened to thos@spaper competitions in which the
competitors have to pick out the six prettiest &altem a hundred photographs, the prize being
awarded to the competitor whose choice most nearyesponds to the average preferences of the
competitors as a whole; so that each competitotdpgk, not those faces which he himself finds
prettiest, but those which he thinks likeliest &oh the fancy of the other competitors, all of who
are looking at the problem from the same pointieéw It is not a case of choosing those which, to
the best of one’s judgment, are really the prdities even those which average opinion genuinely
thinks the prettiest. We have reached the thirdekeg/here we devote our intelligences to
anticipating what average opinion expects the aeeogpinion to be. And there are some, | believe,
who practice the fourth, fifth and higher degreesJohn Maynard Keyne3he General Theory of
Employment, Interest, and Money

(I suspect that the last sentence was Keynes'sefeyence to himself.)

A simultaneous-move zero-sumperson “outguessing” game, possibly with multipdgiilibria.

The key issue Is anticipating others’ strategipo@ses to a “landscape” of personal judgments
about prettiness which is otherwise payoff-irrel@vaVe will find that equilibrium alone is not
very helpful in describing how people do this. Tustation suggests a thought process in which
players “anchor” beliefs in instinctive reactionstlhe faces and then iterate best responses @ finit
number of times.



Kahneman’s Entry Magic:

“...to a psychologist, it looks like magic."—Kahnem&888, quoted in Camerer, Ho, and Chong
(2004 QJE).

Here Kahneman refers to the fact that subjectssimiarket-entry experiments, structured lke
person Battle of the Sexes games, achieve betgoshcoordination (number of entrants closer to
market capacity) than in the natural symmetric mig&rategy equilibrium benchmark.

(Thus Kahneman should have said “...tgaae theorist, it looks like magic.”)

The key issue here is breaking the symmetry ofgskyroles as required for efficient coordination.
Equilibrium and refinements are not very helpful.

The same strategic issues arise in less abstfeathyed, asymmetric field settings, exemplified by
Roger Myerson’s “Ware Medical Corporation” cabé.//dss.ucsd.edu/~vcrawfor/Ware.htm

A company is considering introducing a new produttich will be profitable only if its only
competitor introduces a related product. The congr&t profits are determined qualitatively (not
guantitatively) in the same way as the companyes Both companies must decide, simultaneously
and irreversibly, whether to begin developmentddition, there may be opportunities for
commitment, signaling, and/or deceptive announcésnen
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Yushchenko:

“Any government wanting to kill an opponent...wouldttry it at a meeting with government
officials.”—comment (quoted in the 2004 New Y diknes) on the poisoning of Ukrainian
presidential candidate—now president—Viktor Yushiwe

A simultaneous-move zero-sum two-person game withigue mixed-strategy equilibrium. The
players are a government assassin choosing om@fad occasions at which to try to poison
Yuschenko, only one of which is linked to the goweent; and an investigator who has the
resources to check only one occasion.

Here the key issue is how players react to framingdecisions that is non-neutral but does not
directly affect payoffs. Equilibrium in zero-sumdvperson games leaves no room for such framinc
to affect outcomes, but people often react toyinay.

The thinking reflected by the quotation is plaistyategic, but non-equilibrium: Any game theorist
worth his salt would respond, “If that's what pemghink, a meeting with government officials is
exactly wherd would try to poison Yushchenko.”

We will see that the quotation can be understoatagught process in which a player anchors his
beliefs in an instinctive reaction to the salien€éhe dinner with government officials and then
iterates best responses a small number of times.
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Lake Wobegon:

“...iIn Lake Wobegon, the correct answer is usually-eGarrison Keillor 1997 on multiple-
choice tests (quoted in Attali and Bar-Hillel (2Q0firnal of Educational Measurement)).

A simultaneous-move two-person zero-sum game withigue mixed-strategy equilibrium. The
players are a test designer deciding where totheleorrect answer and a clueless test-taker trying
to guess the hiding place.

Again the key issue is how players react to themeutral framing, and the thinking reflected by
the quotation is plainly strategic, but non-equitim.

Although there is nothing as uniquely salient ashtihenko’s dinner with government officials,
psychologists like Christenfeld 19%sychological Science and Tversky (in Rubinstein, Tversky,
and Heller 1996) think that with four possible amssy both the a and d end locations and location
c are inherently salient (with the jury still out which is more salient).

Again the quotation can be understood as a thqugieess in which a player anchors beliefs in an
Instinctive reaction to salience and iterates bestonses a small number of times.
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Common Features of the Quotations

e They all concern games played without completigricprecedents.
e They all reflect coherent, clearly identified mixlef strategic thinking.
e But the thinking is systematically different fraquilibrium thinking.

e The thinking tends to start with beliefs ancharedn instinctive reaction to the game, and then
to iterate best responses a small number of times.

(In this respect the thinking resembles that in“teeel-k” or “cognitive hierarchy” (“CH")
models described below. The resemblance is neesalent for Entry Magic, but as explained
below, Camerer, Ho, and Chong (20QJE) explain Kahneman'’s results via a CH model.)

e The instinctive reactions follow different printg, each plausible in its setting, such as uniform
randomness, salient labels, or truthfulness.

e Finite iteration of best responses is common acatisettings, although the number of iterations
may vary across individuals or even settings.
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These common features are representative of fatlegaeory:

e One can also find quotations reflecting one or steps of iterated (strict or weak) dominance in
the normal form, or one or two steps of iterateddly) dominance reflecting forward or
backward induction in the extensive form.

e But it is difficult (counterexamples welcome) tod quotations involving more than one or two
steps of iterated dominance.

e And it is at least as difficult (impossible? coemgxamples welcome) to find quotations that
illustrate the fixed-point reasoning that undexleguilibrium in games without dominance.
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In Selten’s 199&uropean Economic Review words (but generalizing about the results of game
experiments, not about folk game theory):

“Basic concepts in game theory are often circuladhe sense that they are based on definitions
by implicit properties.... Boundedly rational strategeasoning seems to avoid circular
concepts. It directly results in a procedure bychha problem solution is found.”

To paraphrase:

“Real people don't use fixed-point reasoning toide what to do.”

This is not to say that with enough experience safficiently stationary setting, learning can’t
make people converge to steady states thahagst would need fixed-point reasoning to
characterize.

Selten’s point is simply that when equilibrium regs fixed-point reasoning, it may not be a good
behavioral model of people’s cognition.
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Level-k models

Although the number of logically possible non-etdmriilm model seems daunting, both folk game
theory and experimental evidence support a paatialass of models called levebr cognitive
hierarchy (CH) models.

Levelk models allow behavior to be heterogeneous, bunassiat each player follows a rule
drawn from a common distribution over a particuiararchy of decision rules gpes (as they are
called in this literature; no relation to “types eealizations of private information variables).

TypelLk anchors its beliefs in a nonstrateftype, which is meant to describk's model of
others’ instinctive reactions to the game.

The instinctive reactions may follow one of sevgmhciples depending on the setting, such as
uniform randomness, salience, or truthfulness.

Lk then adjusts its beliefs via thought-experimenth werated best responséd: best responds to
LO, L2 to L1, and so on.
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Like equilibrium playersl.1 and higher types are rational in that they chd®s# responses to
beliefs, with perfect models of the game.

LK's only departure from equilibrium is in replacing perfect model of others’ decisions with
simplified models that avoid the complexity of ddurium.

In applications it is usually assumed thatand higher types make errors, which are often téden
be logit with estimated precision as in LQRE.

Thus the probability density of each type’s decis®increasing in its expected payoff, evaluated
using the type’s model of others’ decisiohg; for example, makes errors whose distribution is
sensitive to the payoff costs of deviations, ev@dassuming that other players’ decisiond.4re

Unlike LQRE,Lk types do not respond to the noisiness of otheigsams.

Even so, the deterministic structure of a levatodel captures the sensitivity of players’ deviasio
from equilibrium to out-of-equilibrium payoffs.

(Levelk models are thus structural alternatives to modledsguantal response equilibrium, which
treat deviations from equilibrium entirely as ples/gesponses to others' errors.)
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The population type frequencies are treated asvibmiahparameters, to be estimated from the data
or translated or extrapolated from previous analyse

The estimated type distribution is typically faidiable across games, with most weight. b2,
and perhapks3.

The estimated frequency of the anchoiu@gype is usually small.

Thus,LO “exists” mainly ad.1's model of otherd,2’'s model ofL1’'s model of others, and so on.

Low frequencies okLO are an important sign of health for a leketiodel, in that high frequencies
of LO would reduce the model to a parameterized distobudf responses, thus describing the data
rather than explaining it.

Only when the strategic iteration of best respoipéags a role can the model yield a useful
explanation of the data.
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Even thoughLO normally has a low frequency, its specificatiothie main issue in defining a
levelk model and the key to its explanatory power.

As illustrated belowl.0 needs to be adapted to the setting, and thereasarging consensus
about how to do this in particular applications.

By contrast, the definition dfl, L2, andL3 via iterated best responses allows a simple bielia
explanation of behavior across different settings.

Like equilibrium plus noise and QRE, levenodels are general models of strategic behavidhn, wi
small numbers of behavioral parameters.

Like CH models, discussed below, lekalhodels make point predictions that depend onl{z@n
and the estimated type distribution.



L1 and higher types make undominated decisions] &mdmplies withk rounds of iterated
dominance an#-rationalizability (thanks to Robert Ostling of 8kholm University for clarifying
this relationship).

Thus, a distribution dfk types realistically concentrated on low levelkafimics equilibrium in
games that are dominance-solvable in a few rounds.

But such a distribution deviates systematicallyrfrequilibrium in some more complex games, in
predictable ways.

These features allow levklmodels to capture the sensitivity of deviationsrfrequilibrium to out-
of-equilibrium payoffs.

As a result, like LORE, levet{and CH) models often fit initial responses betit@n equilibrium
plus noise.
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Cognitive hierarchy (“CH”) models

In Camerer, Ho, and Chong’s (20Q4E) cognitive hierarchy (“CH”) model, a close relatiof
levelk models,Lk best responds not tk-1 alone but to an estimated mixture of lower-leveesy;,
and the type frequencies are not unrestrictednistead are treated as a parameterized Poisson
distribution.

For an outside observer modeling behavior econacadiir, this estimated- mixture specification
seems more natural than the lekalpecification.

But which specification better describes peoplaategic thinking remains an empirical question
(on which the jury is still not completely in).
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A CH L1is the same as a level-1, but CHL2 and higher types may differ.

A CH L1 and higher types make undominated decisions, dikeuevelk types, but a CH.k
might not comply withk rounds of iterated dominance ardationalizability.

Unlike in a levelk model, in a CH moddll and higher types are usually assumed not to make
errors.

Instead the uniformly randofrD, which has positive frequency in the Poisson itigtion, doubles
as an error structure fad and higher types.

A CH model makes point predictions that depend onli,0 and the estimated Poisson parameter.
In some applications the Poisson constraint, imgh@sea simplifying restriction, is not very
restrictive and the CH model fits as well as a lldvmodel; but in others the Poisson constraint is
strongly binding.
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Experimental evidence

Levelk and CH models are now supported by a large bo@éxpérimental evidence on initial
responses to games with various structures.

Here | focus on two representative experiments naimal-form games:
e Nagel's 1995AER experiments, which were directly inspired by Keyadxauty Contest, and
which provide a simple introduction to the evideand the class of models that it suggests.

e Costa-Gomes and Crawford’s (CGC) 2{ER experiments, which use a much more powerful
design to identify subjects’ strategic thinkingma@recisely.

CGC'’s conclusions are fully consistent with theadasions of other studies of initial responses to
abstract normal-form games, just more precise.

With adjustments described below, CGC’s conclusamasalso consistent with those of the studies
of the other kinds of games mentioned above.
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Nagel’s design and results

In Nagel'sn-person guessing game design:

e 15-18 subjects simultaneously guessed betwee,1

e The subject whose guess was closest to a tpigel/2 or 2/3, say), times the group average
guess wins a prize, say $50.

e The structure was publicly announced.
If you have not already done so, please take a mbtoalecide what you would guess, in a group
of non-game-theorists:

o if p=1/2,

o if p=2/3.
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Nagel’'s games have a unique equilibrium, in whikiplayers guess 0.

The games are dominance-solvable, so the equitibcan be found by iteratively eliminating

dominated guesses.

For example, ip = 1/2:

e It's dominated to guess more than 50 (because 10< 50).

e Unless you think that other people will make doada guesses, it's also dominated to guess
more than 25 (because 1/2 x55).

e And so on, down to 12.5, 6.25, 3.125, and evelytt@alO.
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The rationality-based argument for this “all-0” didpium is stronger than many equilibrium

arguments, because it depends only on iterated |kdge of rationality, not on the assumption that
players have the same beliefs.

However, even people who are rational are seldotaioghat others are rational, or that others
believe that others are rational.

Thus, they won’t (and shouldn’t) guess 0. But wdha{should) they do?

32



Nagel’s subjects played these games repeatedlyydaan view their initial guesses as responses
to games played as if in isolation if they treateeir influences on the future as negligible, which
plausible in groups of 15 to 18.

Nagel’'s subjects never played their equilibriunatggies initially, and their responses deviated
systematically from equilibrium.

Instead there were spikes that suggest a disiibati discrete thinking “types,” respecting O to 3
rounds of iterated dominance in each treatmentt @l&ie).
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The spikes’ locations and how they vary acrosgrreats are roughly consistent with two
plausible interpretations:

e In one interpretation, callddk, a player doek rounds of iterated dominance for some small
numberk =1 or 2, and then best responds to a uniform jwer other players’ remaining
strategies (thus “completingd:rationalizability by adding a specific selectiomdiscussed
below).

e In another interpretation, “levéd-or “Lk,” a player starts with a naive prior
LO over others’ strategies reflecting people’s ingtuecreactions to the game, and then iterates
best responsdstimes, withk=1, 2, or 3.

In abstractly framed games like Nagel§,is usually taken to be a uniform random distribaitio
reflecting a player’s understanding of the payafidtion before he tries to model others’ decisions.

(In games without dominance this mak#s k= 1,2,... coincide with.1.)

(Although in these lectures | focus mainly on twergpn games, in-person games it matters
whetherLO is independent across players or correlated, lmntimited evidence (HCW, Costa-
Gomes, Crawford, and Iriberri 2008EA) suggests that most people have highly correlated
models of others. Here | tak® to model all others’ average guess.)



In many game®k andLk+1 respond similarly to dominance, yieldikgationalizable strategies.
(The difference in indices is only a quirk of natat)

With a uniform randonh.O, in Nagel's gameBk's andLk+1’s guesses are perfectly confounded,
both tracking the spikes in Nagel's data acrosdreatments (which had different subject groups):

e Dkguesses ([0+1@4/2)p.
o Lk+1 guesses [(0+100)42T".

Either way, one aspect of the message is already:cbubjects do not rely on indefinitely iterated
dominance or indefinitely iterated best responsedead their decisions resp&atationalizability
for at most small values @&f

Despite the lack of separationdk’'s andLk+1’s guesses, many theorists interpret Nagel'dtesu
as evidence that subjects explicitly performeddiyiiterated dominance, the way we teach
students to solve such games.

In previous experiment§k’'s andLk+1’s guesses were weakly separated, and the resalts
inconclusive on this point; but in CGC’s experingdk’'s andLk+1’'s guesses are strongly
separated, and we will see that the results vearigl favorLk overDk rules.



Costa-Gomes and Crawford’s design and results

In CGC’s design, subjects were randomly and anomgtggoaired to play a series of 16 different
two-person guessing games, with no feedback.

The design suppresses learning and repeated-géegeseh order to elicit subjects’ initial
responses, game by game, studying strategic tlgrikimcontaminated” by learning.

(“Eureka!” learning was possible, but it was tedtmdand found to be rare.)

The design combines the variation of games of StatlWilson’s 199%EB design with the large
strategy spaces of Nagel's 198BR design.

This greatly enhances its power, and the profila sfibject’s guesses in the 16 games forms a
“fingerprint” that helps to identify his strateditinking more precisely than is possible by
observing his responses to a series of games midifl strategy spaces or a single game with large
strategy space.
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In CGC’s guessing games, each player has his owerland upper limit, both strictly positive,
implying finite dominance-solvability.

(Players are not actually required to guess betwssnlimits. Instead guesses outside the limits
are automatically adjusted up to the lower limitlown to the upper limit as necessary: a trick to
enhance separation of information search implicatimot important for this discussion.)

Each player also has his own target, and his payoféases with the closeness of his guess to his
target times the other’s guess.

The targets and limits vary independently acroagesls and games, with targets both less than one
both greater than one, or “mixed”.

(In Nagel's and HCW's previous guessing experimethis targets and limits were always the same
for both players, and they varied at most acrassitnents with different subject groups.)
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CGC'’s guessing games have essentially unique bgailf‘essentially” due to the automatic
adjustment), determined (not always directly) bayprs’ lower (upper) limits when the product of
targets is less (greater) than one.

The discontinuity of the equilibrium correspondemdesn the product of targets equals one stress-
tests equilibrium, which responds much more stpbhgkhe product of the targets than alternative
decision rules do; and enhances the separatioquafl@ium from alternative rules.

(It also reveals other interesting patterns; seavfard, “Look-ups as the Windows of the Strategic
Soul”.)
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Consider a game in which players’ targets are Qdr1a5, the first player’s limits are [300, 500],
and the second’s are [100, 900].

The product of targets is 1.05 > 1, and it canhmv® that the equilibrium is therefore determined
by players’ upper limits. (When the product of &tgis < 1, the equilibrium is determined by their
lower limits in a similar way.)

In equilibrium the first player guesses his uppartlof 500, but the second player guesses 750 (=
500 x his target 1.5), below his upper limit of 900

No guess is dominated for the first player, but gagss outside [450, 750] is dominated for the
second player.

Given this, any guess outside [315, 500] is iteedyi dominated for the first player.

Given this, any guess outside [472.5, 750] is dameich for the second player, and so on until the
equilibrium at (500, 750) is reached after 22 rauotliterated dominance.
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Costa-Gomes and Crawford’s data analysis

As suggested by previous work, CGC’s data anagsssimed that each subject’s guesses were
determined, up to logit errors, by a single deaiside, or “type” as they are called in this litena
(no relation to the use of “type” for the realinatiof a private information variable), in all 16
games.

This assumption was tested and found reasonab&drfarst all subjects.

41



Most of CGC'’s data analysis restricted attentioa tst of behaviorally plausible types whose
relevance was suggested by previous work:

e LO, L1, L2, andL3, with LO uniform random between a player’s limikg, best responding t0,
L2toL1, and so on.

e D1 andD2, which does one round (respectively, two) of itedadominance and then best

responds to a uniform prior over its partner’s remmg decisions (making a specific selection
from k-rationalizable strategies).

e Equilibrium, which makes its equilibrium decisions.

(Note that because CGC'’s games are all (finitebyhithance-solvable, traditional equilibrium
refinements are not relevant in them.)

e Sophisticated, which best responds to the probability distribns of others’ decisions, estimated
from the observed frequencies.

(Sophisticated is an ideal, included to learn if any subjectsenam understanding of others’
decisions that transcends mechanical rules.)

The restriction to this list was also tested andhtbto be a reasonable approximation to the suppor
of subjects’ decision rules.
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CGC'’s large strategy spaces and the independaatiearof targets and limits across games
greatly enhance the separation of types’ implicetiao the point where many subjects’ types can
be precisely identified from their guessing “fingents”:

Types’ guesses in the 16 games, in (randomized) erdblayed
L1 L2 L3 D1 D2 Eq. Soph.
1 600 525 630 600 611.25 750 630
2 520 650 650 617.5 650 650 650
3 780 900 900 838.5 900 900 900
4 350 546 318.5 451.5 423.15 300 420
5 450 315 472.5 337.5 341.25 500 375
6 350 105 122.5 122.5 122.5 100 122
7 210 315 220.5 227.5 227.5 350 262
8 350 420 367.5 420 420 500 420
9 500 500 500 500 500 500 500
10 350 300 300 300 300 300 300
11 500 225 375 262.5 262.5 150 300
12 780 900 900 838.5 900 900 900
13 780 455 709.8 604.5 604.5 390 695
14 200 175 150 200 150 150 162
15 150 175 100 150 100 100 132
16 150 250 112.5 162.5 131.25 100 187
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Of the 88 subjects in CGC’s main treatments, 43entacesses that compliexactly (within 0.5)
with one type’s guesses in from 7 to 16 of the ga(@6L1, 12L2, 3L3, and 8Equilibrium).

For example, CGC'’s Figure 2 (next slide) shows‘timgerprints” of the 12 subjects whose
guesses conformed most closely. &s; 72% of their guesses were exb2tguesses; only their
deviations are shown.
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S
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300
200+
100
0 T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Game Numbers
—a— 2 (# exact) ----Eg. A 108 (13) o 206 (15)
o 209 (13) o 214 (11) x 218 (11) + 306 (7)
900 A
800 -
700
600 -
g 500 |
400 +
300 -
200 -
100
[¢] T T T T T T T T T T T 1
[0} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Game Numbers
—a— | 2 (# exact) ---- Eq. a 307 (11) o 309 (16)
o 316 (8) o 405 (16) x 407 58) + 422 59)

CGC'’s Figure 2. “Fingerprints” of 12 Apparent L2 Subjects
(Only deviations from L2's guesses are shown.

(Of these subjects’ 192 guesses, 138 (72%) were ERajuesses.)
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The size of CGC'’s strategy spaces, with 200 to@i¥3ible exact guesses in each of 16 different
games, makes exact compliance powerful evidenciaéotype whose guesses are tracked: If a
subject chooses 525, 650, 900 in games 1-3, mlytand econometrically we already “know”
he’s anlL2.

(By contrast, there are usually many possible msgar choosing one of the strategies in a small
matrix game; and even in Nagel's large strateggeapaules as cognitively disparateldsand
Lk+1 yield identical decisions.)

Further, because CGC'’s definitionld? builds in risk-neutral, self-interested rationalive also
know that a subject’s deviations from equilibriune &caused” not by irrationality, risk aversion,
altruism, spite, or confusion, but by his simplifimodel of others.

(Even so, doubts remain about the subjects with gigct compliance withquilibrium, who

appear to be following hybrid types that only miraguilibrium in the games with targets both less
than one or both greater than one; see CrawformbhKtups as the Windows of the Strategic
Soul”.)

That the levek model isdirectly suggested by these subjects’ data (rather thagataafitting
exercises) is an important advantage over altewsti
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CGC'’s other 45 subjects made guesses that confdessalosely to one of CGC'’s types, but
econometric estimates of their types are conceuranlLl, L2, L3, andEquilibrium, in roughly
the same proportions.

TABLE 1 —SUMMARY OF BASELINE AND OB SuBlecTs' ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type gLesses guesses excluding random specification test specification test
Li 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 | ]
DI 0 5 3 | 0
D2 0 0 0 0 0
Eqg. 8 14 13 11 10
Soph. 0 3 2 I |
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.

For those 45 subjects, there is some room for dalobtit whether CGC’s specification omits
relevant types and/or overfits by including irredavtypes.

To test for this, CGC conducted a specification, t@hich suggests that the types estimated to be i

the population are relevant and that any omittpédyare at most 1-2% of the population, hence no
worth modeling.
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Lessons from the experiments for modeling strategibehavior

First, Nagel's 199\ER subjects’ initial guesses resembled neither equilb plus noise nor QRE
for any reasonable distribution.

Nagel's results also suggest that even rationalizals too strong: most subjects’ guesses
respected—rationalizability only for small values &f

Finally, Nagel’'s results call into question the e¢oan simplifying assumption that strategic
thinking is homogeneous in the population.

No model that imposes homogeneity, as equilibrilus poise and QRE do, will do full justice to
subjects’ behavior. Allowing heterogeneity of sb@it thinking is essential for the explanations of
Kahneman’s Entry Magic, Yushchenko, and Lake Wohggoposed below.
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CGC'’s analysis significantly sharpens Nagel’s cosicns, confirming by direct and econometric
evidence and a specification test that a l&vmledel with a uniform randornO and onlyL1, L2,

L3, and, possiblykEquilibrium subjects explains a large fraction of subjectsiateons from
equilibrium in their games.

In particular:

e There are n@k subjects. CGC’s subjects respect iterated dominantee extent thdtk
types do, not because they explicitly perform it.

e Although levelk subjects make decisions that, via the iteratedrespbnses that govern
their strategic thinking) respelctrationalizability, their presence is limited to @linvalues ok,
so even thé&k types respedt-rationalizability for at most small values lof

e There are n&ophisticated subjects. Even the most sophisticated subjects seémor
rules of thumb over less structured strategickiho

(The jury is still out on the extent to which tleisnclusion generalizes.)
e CGC'’s evidence and analysis are more precise ttemgols studies of initial responses to

normal-form games, but their conclusions are fabipsistent with the results of earlier studies as
well as folk game theory.
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lllustration of level-k analyses of matrix games with unique mixed-strateggquilibria:
M. M. Kaye’s The Far Pavilions

| now give a simple example that illustrates agilans of levek models.

In M. M. Kaye’s novelThe Far Pavilions, the main male character, Ash, is trying to esd¢apa
his Pursuers along a North-South road.

Ash and his Pursuers hasteategically simultaneous choices between North and South—although
their choices are time-sequenced, the Pursuersmalst their choice irrevocably before they learn
Ash’s choice.
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If the Pursuers catch Ash, they gain 2 and he I2sBsit South is warm, and North is the
Himalayas with winter coming. Thus both Ash andPhugsuers gain an extra 1 for choosing South,

whether or not Ash is caught:

Pursuers
South Q) North
South () 3 0
-1 1
Ash
North 1 2
0 -2

Far Pavilions Escape!

Escape! has a unique equilibrium in mixed strategrewhich:

3p+1(1—p)=0p+2(1—p) orp=1/4, and
—1g+1(1 —q) = 0g-2(1 —q) orq = 3/4.

This equilibrium responds to the payoff asymmettmeen South and North in a decision-
theoretically intuitive way for Pursuers (becagse 3/4 > the 1/2 of equilibrium without the payoff
asymmetry) but counterintuitively for Ash (becapse 1/4 < 1/2).
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Although the equilibrium does not fully reflect umion, experimental data from such games
suggest that people’s decisions often do reflaattion.

E.g., Camerer reports informally gathered datafperturbed Matching Pennies game (see also
Rosenthal, Shachat, and Walker (2083T)):

L (33%) R (67%)
0 1
2 0
1 0
0
B (28%) 0 1
Perturbed Matching Pennies

T (72%)

The equilibrium mixed-strategy probabilities ar¢Tr= Pr{B} = 0.5 for Row and Pr{L} = 0.33
and Pr{R} = 0.67 for Column.

Although Column players are “right on” the equilibon mixture, Row players overplay their

superficially more attractive strategy T, not reialg that this allows a sophisticated Column to
neutralize Row’s advantage.

(Perhaps unsurprisingly, because that realizatiay maquire fixed-point reasoning.)
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Meanwhile, back in the novel, Ash overcomes his tddreezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and thelromrdinues...
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Meanwhile, back in the novel, Ash overcomes his tddreezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and thelromrginues...romantically...
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Meanwhile, back in the novel, Ash overcomes his tddreezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and thelrmmrginues...romantically...for 900 more
pages.

In equilibrium the observed outcome {Ash North, fuars South} has probability (1pyg = 9/16:
a fit much better than random.

But try a levelk model with a uniformly randoro:

Types Ash Pursuers
LO uniformly random uniformly random
L1 South South
L2 North South
L3 North North
L4 South North
L5 South South

Lk types’ decisions inFar Pavilions Escape!

The levelk model precisely and correctly predicts the outcpnoeided that Ash is eithér2 or L3
and the Pursuers are eitthdror L2,



How do we know Ash’s typd. @ or L3)? One advantage of using fiction as data is tirenarrative
sometimes reveals cognition as well as decisions:

Ash’s mentor—Koda Dad, played by Omar Sharif inlH80 miniseries—qgives Ash the following
advice (p. 97 of the novel):

“...ride hard for the north, since they will be sy will go southward where the climate is
kinder...").

Koda Dad'’s advice reflects the belief that the Bers think Ash i4.1, so that Ash will go south
because it’s “kinder” and that (assuming that thesiers are uniform rando®) the Pursuers are
no more likely to catch him there.

Thus Koda Dad must think the Pursuersldte

Hence Koda Dad advises Ash to think likel&yand go North.

L3 ties my personal bektfor a clearly explained levddtype in fiction. | suspect even postmodern
fiction may have nd.ks higher thar.3: they wouldn’t be credible. | also doubt that @aa find
fixed-point reasoning.
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Of course, most applications don’t come with an meiant author identifying characters’ strategic
thinking types for us.

But if the game is clearly defined and we have ghailata, we can specify a levefodel, derive
its implications, and use them to estimate the [atjaun frequency distribution of types and their
precisions, as illustrated below.

Alternatively, we can calibrate the model usingvppas estimates for similar applications.
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Returning to Camerer’s experiment, for example,ARow plays T and abl Column plays L
and R with equal probabilities (for logit or altative payoff-driven error structures). A2 Row
plays T and ah2 Column plays R. Ai.3 Row plays B and ah3 Column plays R.

L (33%) R (67%)

0 1
(o)
T (72%)|, 0

1 0
0
B (28%)| .

Perturbed Matching Pennies

With a plausible mixture of 50%ls, 30%L2s, and 20%.3s in both player roles—it’s natural to
Impose symmetry when roles are filled randomly fritwe same population—the levetnodel’'s

predicted choice frequencies are 80% T for RowZb% L for Column: Not a perfect fit, but
reasonable.

The outcome resembles a “purified” mixed-strategyilérium.

But the levelk model predicts choice frequencies that deviate fitwerequilibrium probabilities for
Row, Pr{T} = Pr{B} = 0.5, in the intuitive directio.
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Similarly, inFar Pavilions Escape!, even thoudlk types don’t normally randomize, the
heterogeneity of thinking reflected by the estirdadestribution implies a mixture of decisions that
reflects strategic uncertainty.

Pursuers
South Q) North
South (o) 3 0
-1 1
Ash
North 1 2
0 -2

Far Pavilions Escape!

Suppose, for example, that each player role edfiffom a 50-50 mixture dfls andL2s and there
are no errors.

Then Ash goes South with probability 0.5 > 1/4 (@agiilibrium probability) and the Pursuers go
South with probability 1 > 3/4 (the equilibrium jability).

Although the implied mixture of decisions again swhat resembles a “purified” equilibrium, the
model again deviates from equilibrium in the diretthat intuition suggests: this time for both
player roles.
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Kahneman’s Entry Magic: asymmetric coordination via structure in entry games

| now use a simple levd&dmodel to suggest an explanation of Kahneman’s Bviagic.

In market-entry experiments,subjects choose simultaneously between enterInt) @nd staying
out (“Out”) of a market with given capacity.

For simplicity, assume that Out yields zero prafd, matter how many subjects enter.

In yields a given positive profit if no more suldgenter than a given market capacity; but a given

negative profit if too many enter.

| will simplify Camerer, Ho, and Chong’s (20QUE, Section II1.C) CH analysis af-person entry
games to a levek-analysis of two-person Battle of the Sexes gambghnware like two-person
market-entry games with capacity one, and whichesadke central points as simply as possible.

(Goldfarb and Yang (2008urnal of Marketing Research) give a CH analysis of field data on
analogous technology adoption games.)
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Because players have no way to distinguish th@msgtric roles, it is not sensible to predict
systematic differences in behaviour across roles.

The natural equilibrium benchmark prediction is $genmetric mixed-strategy equilibrium, in
which each player enters with a probability thakesaall players indifferent between In and Out.

In Out
0 1

0 a

a 0
Out 0

Battle of the Sexes

In Battle of the Sexes with> 1, the unique symmetric equilibrium has
p = Pr{In} = a/(1+a) for both players.
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This mixed-strategy equilibrium yields an expeatednber of entrants roughly equal to market
capacity (&/(1+a) = 1, at least foa close to 1), but there is a positive probabilitstthither too
many or too few will enter.

With p = Pr{In} = a/(1+a) for both players, the equilibrium expected cooadion rate is @(1 —p)
= 2al/(1+a)”.

Players’ equilibrium expected payoffs &/€l+a), which is < 1 whem > 1: worse for each player
than his worst pure-strategy equilibrium.

Even so, Kahneman's subjects regularly had bettpost coordination (number of entrants
stochastically closer to market capacity) tharhamsymmetric equilibrium.
This led Kahneman to remark, “...to a psychologtdhoks like magic.”

(But no one would be at all surprised by this unles believed in equilibrium, so Kahneman
should have said, “...togame theorist, it looks like magic.”)
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Now consider a levet-model in which each player follows one of fouregd.1, L2, L3, or L4,
with each role filled by a draw from the same dusttion.

Assume for simplicity that the frequencyldd is O, and thaltO chooses its action uniformly
randomly, with Pr{In} = Pr{Out} = 1/2.

L1s mentally simulatéOs’ random decisions and best respond, thus, autld, choosing Int_2s
choose Outt3s choose In; and4s choose Out.

In Out
In 0) 1
0 a
a 0
Out 1 0
Battle of the Sexes
Type pairings L1 L2 L3 L4
L1 In, In In, Out In, In In, Out
L2 Out, In Out, Out Out, In Out, Out
L3 In, In In, Out In, In In, Out
L4 Out, In Out, Out Out,In Out, Out
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The predicted outcome distribution is determinedh®youtcomes of the possible type pairings and
the type frequencies.

If both roles are filled from the same distributighayers have equal ex ante payoffs, proportional
to the expected coordination rate.

L3 behaves likd.1, andL4 like L2. LumpingL1 andL3 together and letting denote their total
probability, and lumpind.2 andL4 together, the expected coordination ratev{d 2v).
This is maximized at = Y2, where it takes the value v-.

Thus forv near Y2, which is behaviorally plausible, the camation rate is close to %2. (For more
extreme values the rate is worse,0 asv— 0 or 1.)

By contrast, the mixed-strategy equilibrium expdateordination rate,
2al(1 +a)?, is maximized whea = 1, where it takes the value %:.

As a — o, 2a/(1 +a)* — 0 like 1A. Even for moderate values afthe levelk coordination rate is
higher than the equilibrium rate.
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The analysis illustrates the importance of thecstmed heterogeneity of strategic thinking a level-
model allows.

The levelk model, and the closely related CH model, yieldmgletely different view of
asymmetric coordination via structure than a traddl refined-equilibrium model:

e Neither equilibrium nor refinements play any roiglayers’ thinking.

e Coordination, when it occurs, is an accidentadtih statistically predictable) by-product of
players’ non-equilibrium decision rules.

e Even though decisions are simultaneous and teare communication or observation of the
other’s decision, the predictable heterogeneitsti@dtegic thinking allows more sophisticated
players such as2s to mentally simulate the decisions of less saiglait®d players such &4ds
and accommodate them, just as Stackelberg followeudd.

e This mental simulation doesn’t work perfectly, @ese a2 is as likely to be paired with
anotherL2 as anL1. Neither would it work if strategic thinking wen®mogeneous. But it's very
surprising that it works at all.



Yuschenko and Lake Wobegon: Framing effects in zereum two-person games

Consider Rubinstein, Tversky, and Heller's 19936,91998-99 (“RTH”) experiments with zero-
sum, two-person “hide-and-seek” games with nonyaétraming of locations, analyzed by
Crawford and Iriberri 200AER.

A typical seeker’s instructions (a hider’s instraos are analogous):

Your opponent has hidden a prize in one of four boxes arranged in a row. The boxes are marked as
snown below: A, B, A, A. Your goal is, of course, to find the prize. His goal isthat you will not find
it. You are allowed to open only one box. Which box are you going to open?

A|lIB|lA]||lA
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RTH’s framing of the hide-and-seek game is nona it two ways:

e The "B” location is distinguished by its label.

e The two ‘end A” locations may be inherently focal.

This gives the €entral A” location its own brand of uniqueness as the tlsaient” location.

Mathematically this “negative” uniqueness is analagjto the “positive” uniqueness @™
However, Crawford and Iriberri’'s (2008ER) analysis shows that its psychological effects are

completely different.
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RTH’s design is important as a tractable abstramtehof a non-neutral cultural or geographic
frame, or “landscape.”

Hide-and-seek games are often played on such lapdsceven though traditional game theory
rules out any influence of the landscape by fiat.

This is well illustrated by the Yuschenko and L&Kebegon quotations:

“Any government wanting to kill an opponent...wouldttry it at a meeting with government
officials.”

“...In Lake Wobegon, the correct answer is usually ‘c

Yuschenko’s meeting with government officials iskgous to RTH’s B, although in that example
there’s nothing like RTH’s end locations.

With four possible choices arrayed left to righthe zero-sum game between a test designer
deciding where to hide the correct answer and eleds test-taker trying to guess where it is, the
Lake Wobegon example is very close to RTH’s design.
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RTH’s hide-and-seek game has a clear equilibriumdliption, which leaves no room for framing to
systematically influence the outcome.

The traditional theory of zero-sum two-person gameéke strongpoint of noncooperative game
theory, where the arguments for playing equilibristnategies are immune to most of the usual
counterarguments.

Yet framing has a strong and systematic effectiiR experiments, qualitatively the same
around the world, witlCentral A (or its analogs in other treatments, as explaindtle paper) most
prevalent for hiders (37% in the aggregate) anah evere prevalent for seekers (46%).

In this game any strategy, pure or mixed, is a B=gionse to equilibrium beliefs. Thus one might
argue that deviations do not violate the theory.

However, systematic deviations of aggregate chioempiencies from equilibrium probabilities

must (with very high probability) have a cause tkaiartly common across players. They are
therefore symptomatic of systematic deviations feaqailibrium.
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Tasre |—AcGrEGATE CHocE Frequescies iy RTH s TREaTMENTS

RTH-4
Hider (33; p = 0,0026)
Seeker (62; p = (,0003)

RT-AABA-Treasure
Hider (189; p = 0,0096)
Seeker (85, p = OE-07)

RT-AABA—Mine
Hider (132:p = 0,0012)
Seeker (73; p = 0,0523)

RT-1234—Treasure
Hider (187; p = 0,0036)
Secker (84 p = 3E-05)

RT-1234—Mine
Hider (133; p = 6E-06)
Seeker(72; p = 0.149)

R-ABAA
Hider (30; p = 0,0186)
Seeker (64; p = 9E-07)

A

9 percent
13 percent

A
22 percent

13 percent

A
24 percent

20 percent

|
25 percent

2 percent

|
I8 percent

19 percent

A
[6 percent

[6 percent

B

36 percent
31 percent

A
35 percent

51 percent

A
39 percent

36 percent

2
22 percent

18 percent

2
20 percent

25 percent

B
|8 percent

19 percent

A
40 percent
43 percent

b
19 percent

21 percent

B
18 percent

14 percent

3
36 percent

48 percent

3
44 percent

36 percent
A

44 percent

34 percent

A

I5 percent
Il percent

A
23 percent
I5 percent
A
I8 percent
22 percent

4
I8 percent

|4 percent

4
[7 percent

19 percent

A
22 percent
|| percent

Notes: Sample sizes and p+values for significant differences from equilibrium in parentheses: salient labels in italics; order
of presentation of locations to subjects as shown,
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RTH'’s results raise several puzzles:

e Hiders’ and seekers’ responses are unlikely todmepletely non-strategic in such simple games.
So if they aren’t following equilibrium logic, whare they doing?

e On average hiders are as smart as seekers, $e tadgted to hide icentral A should realize
that seekers will be just as tempted to look théfiey do hiders allow seekers to find them 32%
of the time when they could hold it down to 25% the equilibrium mixed strategy?

e Further, why do seekers choasatral A (or its analogs) even more often (46% in Table 3
below) than hiders (37%)?

Note that although the payoff structure of RTH'sngais asymmetric, QRE ignores labeling and
(logit or not) coincides with equilibrium in the &, and so does not help to explain the
asymmetry of choice distributions.
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The role asymmetry in subjects’ behavior and how linked to the game’s payoff asymmetry
points strongly in the direction of a levebr CH model, and is a mystery from the viewpoint o
other theories | am aware of.

In constructing such a model, definib@ as uniform random would be unnatural, given the-no
neutral framing of decisions and th#l describes others’ instinctive responses.
(It would also maké.k the same asquilibriumfor k> 0.)

But a levelk model with a role-independeh0 that probabilistically favors salient locationglgs
a simple explanation of RTH'’s results.

Assume thak0 hiders and seekers both choose A, B, A, A witlbphalitiesp/2, g, 1-p —q, p/2
respectively, withp > ¥2 andg > Y.

LO favors both the end locations and the B locatignadly for hiders and seekers, but the model
lets the data decide which is more salient.
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For behaviorally plausible type distributions (e&ited 0940, 19%L1, 32%L2, 24%L.3, 25%
L4—almost hump-shaped), a ledenodel gracefully explains the major patterns in RsTthta,
the prevalence afentral A for hiders and its even greater prevalence foressek

e GivenLO's attraction to salient locationis] hiders chooseentral A to avoidLO seekers antdl
seekers avoidentral A searching fot.0 hiders (the data suggest that end locations are mor
salient than B).

e For similar reasons,2 hiders chooseentral A with probability between 0 and 1 (breaking
payoff ties randomly) and2 seekers choose it with probability 1.

e L3 hiders avoictcentral A andL3 seekers choose it with probability between zewha@re
(breaking payoff ties randomly).

e L4 hiders and seekers both avoahtral A.
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TaptE2—TYPER" EXPECTED PAYOFFS AND CHOICE PROBARILITIES IN RTH ™S GAMES WHEN p > 1/ 2 AND g == 14

Expected Choice Expected Choice Expected Choice Expected Choice
Hider payoff probability payoff probability Seeker payoff  probability payoff  probability
p=<2q p =< 2gq p=>=2q P> 24 P =2g P=<2g p=2q p=>21q
La(Pr. r) Lo (Pr, r)
B - 4 — o B - 4 — q
A - l—=p—g - l—-p—g | A - l—p—g - 1—p—g
A — »2 — P2 A — P2 — P2
L1 (Pr. x) LT {Pr. 5)
A l = pd2 = 344 0 | =22 = 374 0 A P2 =14 0 2> 14 12
B 1l =g < 34 0 1 =g < 3/4 g B g>14 1 g = /4 0
A P+ g>=34 ! P+ g>=34 1 A l=p—g = 1.4 0 l=pp—g = 174 o
A | = p/2 == 34 o | = /2 == 34 0 A 2= 14 0 2= 14 /2
L2 (Pr, 1t} L2 (Pr. 1)
A 1 153 142 0 A L] 0 0 0]
B 0o o 1 1/2 B 0 0 1] {4
A 1 173 1 12 A 1 1 l 1
A L 143 172 0 A 1 L8] ] o
L3(Pr. ) L3 (Pr, uw)
A 1 3 1 13 A 143 1/3 0 o
B 1 143 1 145 B 0 0 172 1/2
A 0 o ] a A 173 1/3 142 1/2
A 1 3 1 L3 A 1/3% 173 Q 0
L (Pr. v) L4 (Pr, v)
A 243 O 1 1242 A 1/% 3 1/3 143
E 1 1 2 0 B 1/3% /3 /3 1L/3
A 243 0 12 0 A 0 0 Qa 0
A 243 0 1 122 A 143 /3 1/3 173
Total = 2g P =2y Total p=2g P>=2qg
A rpd 21— ) [/ 3+u3] e 24 (1—g ) [/ 3439 2] A 2 (1—e ) [/ 3L w3} e 24 (1 —g) [52 453
+(l—r)eMd +(1—r)e/i +(1—rje/s +[1—r)ed
rg+(1—e ) [w/3+v] g+ 1—e)[124+uw3] B ry+(1—e ) s+v/3] rg+{l—e)[w2+w3]
—{l—rie4s +{l—rlel —(l—rljs/t +{l—rle/t
A ril—p—g)=(1—e)[s+r3 ril—p—g i (l—a)[s+ 2 A rll—p—gi={l—elr+wd ril—p—gi+il—e)r =w2
+il—rje4d +{l—ried =il—ried +{l—rj)eH4
A rpd 2 (1—e ) [t/ 3Eu/3 ] rf 2 (11— e ) 35421 A 2 1— e ) [ 3w 3] rpf 28 (1 —e) [s/2 430
+(1—rie4 +{1l—r)e/d +{1—rjeid =i l—rieid




TABLE 3—ParAMETER ESTIMATES AND LikeL1HOODS FOR THE LEADING MoDpELS N BRTH's GAMES

Model LnL Parameter estimates Observed or predicted choice frequencies MSE
Player A B A A

Observed frequencies H 00,2163 02115  0,3654 02067 _

(624 hiders, 560 seekers ) 5 (L1821 0,2034 04389 (L1536

Equilibrium without —1641 4 H 0,2500 02500 02500 02500 0.00970
perturbations 5 0.2500 0.2500 02500 02500 ™

Equilibrium with —1568.5 ey=es = ,2187 H (18497 (L2085 04122 (1897
restricted perturbations = fo = 0,2010 S 0897 02085 04122 01897 U.00US4

Equiltbrium with —15624 ey =0.2910, fy = 0,2535 H 0,2115 0.2115 03654 (2115 000006
unrestricted perturbations .= 10,1539, f, = 0,1539 S 01679  0,2054 04590 01679 ™

Level-kwitha —15644 p>1/2andg>14.p>29, H (2052 (0,2408 03488 02052 0.00027
mle-symmetric r=10.5= 01896t =103185, § 01772 0,2047 04408 OI772 T
L0 that favors salience w=102446,v=02473e =1

Lavelskwith:a rola: —1563.5 Py< 1/2and g, < 1/4, H 02117 (,2117 03648  (.2117 0.00017
asymmetric L0 that favors ps> 1/2and g > 1/4, S 01800 01800 04600 01800
salience for seekers r= 1.5 =066¢t=10734,
and avods il for hiders e=072; u =v=(limposed

Latvel-cwith-4 15625 p<li2andg<ldp<2q, H 02033 02012 03623 0233 \ .0
role-symmelric r=0,5=03636,r=00944, § (1670 02111 04549 01670

L that avoids salience u=103594,v=1{01826,=10

Crawford and Iriberri's Table 3
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Note that only a heterogeneous population withtsuitigl frequencies df2 andL3 as well ad.1
(estimated 0%.0, 19%L1, 32%L2, 24%L 3, 25%L4) can reproduce the aggregate patterns in the
data.

(Even though there is a nonnegligible estimategiueacy ofL4s, they don’t really matter here
because they never choasatral A (Table 2 above), hence they are not implicatetiennbajor
aggregate patterns.

For the same reason, their frequency is not wehtified in the estimation.)

For example, Crawford and Iriberri estimate (Tebkbove, row 5) that the salience of an end
location is greater than the salience of Bh{@ > 2q).

Given this, a 50-50 mix dfls andL2s in both player roles would imply (Table 2 aboght-most
columns in each panel) 75% of hiders but only 50%eekers choosingentral A, in contrast to
the 37% of hiders and 46% of seekers who did choageal A.
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In Crawford and Iriberri’'s analysis of RTH’s dathe role asymmetry in aggregate behavior
follows naturally from the asymmetry of the gamgésyoff structure, via hiders’ and seekers’
asymmetric responsesltO’s role-symmetric choices.

Allowing LO to vary across roles as in Bacharach and Stall @&B, although it yields a small
improvement in fit (Table 3), would beg the questod why subjects’ responses were so role-
asymmetric.

Crawford and Iriberri’'s analysis also suggests #tlatving LO to vary across roles leads to
overfitting.
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RTH took the main patterns in their data as evidehat their subjects did not think strategically:

e “The finding that both choosers and guessers &eldhe least salient alternative suggests little
or no strategic thinking.”

e “In the competitive games, however, the playerpleged a naive strategy (avoiding the
endpoints), that is not guided by valid strateg@&soning. In particular, the hiders in this
experiment either did not expect that the seelogrswill tend to avoid the endpoints, or else did
not appreciate the strategic consequences ofxtpeceation.”
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RTH could have said the same thing about the Yudahquotation:

e “Any government wanting to kill an opponent...wouldt try it at a meeting with government
officials”,

to which a game theorist would (almost involuntgriespond:

e “If that's what people think, a meeting with gomarent officials is exactly whedewould try to
poison Yushchenko.”

But strategic thinking need not be equilibrium ting.

Crawford and Iriberri’'s analysis suggests that RIslibjects were actually quite strategic and in
fact more than usually sophisticated (with m&Bg and even sonieds, even though in most
settingsL1s andL2s are more common)—they just didn’t follow equilthm logic.

Crawford and Iriberri’'s analysis suggests thatXbhshchenko quotation simply reflects the
reasoning of ahl1 poisoner, or equivalently of &2 investigator reasoning about b poisoner.



Crawford and Iriberri tested for portability by ngithe leading alternative models, estimated from
RTH’s data, to “predict” subjects’ initial respossa the closest relative of RTH’s games in the
literature, O’Neill's (198 PNAS) famous card-matching game.

O’Neill’'s game raises the same kinds of strateggaes as RTH’s games, but with more complex
patterns of wins and losses and different framing.

In O’Neill's card-matching game, players simultangly and independently choose one of four
cards: A, 2, 3, J.

One player, say the row player—but the game wasepted to subjects as a story, not a matrix—
wins if there is a match on J or a mismatch on,Ar3; the other player wins in the other cases.

A 2 3 J

1 0 0 1
A 0 1 1 0

5 0 1 0 1
1 0 1 0

3 0 0 1 1
1 1 0 0

3 1 1 1 0
0 0 0 1

O’Neill's card-matching game
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O’Neill's game is like a hide-and-seek game, extleat each player is a hider (h) for some
locations and a seeker (s) for others.

A, 2, and 3 are strategically symmetric, and elguuim (without payoff perturbations) has Pr{A} =
Pr{2} = Pr{3} = 0.2, Pr{J} = 0.4.

A (s) 2 (s) 3 (s) J(h)
A 1 0 0 1
(h) |0 1 1 0
2 0 1 0 1
(h) |1 0 1 0
3 0 0 1 1
(h) |1 1 0 0
1 1 1 0
J )] g 0 0 1

O’Neill's card-matching game
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The portability test directly addresses the isdughether levek models allow the modeler too
much flexibility.

With regard to the flexibility of.0, first consider how to adapt our “psychologicgésification of
LO from RTH’s to O’Neill’s game.

“Anyone” should agree on the right kind ldd:

e A and J, “face” cards and end locations, are malent than 2 and 3, but the specification
should allow either A or J to be more salient.

That the RTH estimates suggested that their eraditots are more salient than Béabel doesot
dictate whether A or J is more salient, thouglo#gireinforce that they are both more salient than
2 and 3.

This is a psychological issue, but because it dy"oa psychological issue, it is easy to gather
evidence on it from different settings, and sucll@&wce is more likely to yield convergence than if
it were partly a strategic issue.

Further, because all that matters aldduis what it make&.1s do in each role, the remaining
freedom to choosk0 allows only two models.
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With regard to the flexibility of the type frequaes, empirically plausible frequencies often imply
severe limits on what decision patterns a ldvgledel can generate.

Readers of the first version of Crawford and Inmb&007 AER) often asked if the model could
explain behavior in games other than RTH’s.

O’Neill’'s game was the most natural choice in thpegimental literature.

We did not have his data, but discussions of ¢f. (elcKelvey and Palfrey (1996EB)) had been
dominated by an “Ace effect”. aggregated over 8% tounds, row and column players played A
with frequencies 22.0% and 22.6%, significantly\abthe equilibrium 20%.

(O’Neill speculated that this was because “...playegse attracted by the powerful connotations
of an Ace”.

But—we thought—what about the equally powerful catations of the Joker and its unique payoff
role? They seem to make Joker even more salientXba, but in the aggregate data row subjects
chose Joker with frequencies of only 36%, and calsobjects with frequencies of only 43%.)
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We also knew that with a plausible specificatiom.@fnd the resulting types’ decisions in
O’Neill's game (Tables A3 and A4 from the paperslwappendix, reproduced on the next two
slides), no behaviorally plausible levetnodel could make a row player (“Player 1”) playndre
than the equilibrium 20%:

Tables A3 and A4 show that, excludib@s (which normally have 0 estimated frequencies) and
restricting attention to Player 1, when A is masgent (3 —a < 1) onlyL4 chooses A, and that
with probability at most 1/3 (Table A3); and thatem A is less salient(3-a > 1) onlyL3 chooses
A, and that with probability at most 1/3 (Table A4)

This islogically possible, but in the first case it would requingopulation of 60% or morie4s,
and in the second case it would require 60% or h8sein each case behaviorally extremely
unlikely on the available evidence.

Thus, despite the flexibility of the estimated tygistribution, the levek model’s structure and the
principles that guide the specificationldi imply a strong restriction: that row players playe&s
than the equilibrium 20%.

84



Tahle A3, Tvpes' Expected Pavolfs and Choice Probabilities in O°Neill’s Game when 3f - o< 1

Plaver 1 Exp. Pavefl Cholce Pr, Exp. Pavodl Choice Pr. Plaver 2 Exp. Pavoff Choice Pr. Exp. Pavofl Cholce Pr.
A+ 2i<] g 2] a+ 2j = 1 a+ 2> g+ 2= ] ase e ] a+ 2> 1 a+ i 1

L (Pr. R) LAiPr.r)

A - i - A A - i - b

2 5 { [-a-f )2 = {1-ar-f )2 1 = {132 5 {1-a-f)/2

3 - { t-a- )2 - { 1-a-f )2 3 - { B=a-f )2 - {(1-a-f)/2

J - i - of J - i - i
LI{Pr.s) LI {Pr. s}

A [-a-f L a-f L A a+f 0 af |

2 { 1+a-f W2 1/2 (1+a-f2 1/2 2 {1+ )2 0 { 1-ar+ W2 0

3 {1 2 172 {1 +a-f)2 12 3 {1-a+f )2 L { b-ir$ )2 H

J g 0 S 0 J I 1 - 0
L2 (Pr. 1) L2{Pr.)

A 1 { 0 0 A L 0 i H

2 0 0 1 1/2 2 ] 0 1.2 0

3 0 0 1 12 3 ¥z 0 1/2 0

o | | 0 0 J | | | |
L3 (Pr.u) L3 (Pr. u)

A { { { 0 A 1 1/3 { H

2 0 0 0 0 2 H 13 1/2 0

3 L. 1 0 0 3 | 1/3 1/2 L

J 1 1 I 1 J 0 0 1 |
L4 (Pr.v) L4 (Pr.v)

A 3 1/3 0 0 A 1 13 1 173

2 23 1/3 0 L 2 | 1/3 | 1/3

3 23 1/3 0 0 3 | 1.3 1 1/3

J {0 {} 1 1 J i { {} H

Total a+2ji< | a+2f> 1 Tutal a+2f< 1 a+3f= |

A ra(1-E) W3] + {I-r) 84 Fas+ {1-r}eid A ot (-} [wF+vw3]+ (1-ryald e 1-8) [$+v35]+ (1-ry &y
2 r{l-a-f 2% (1-8) [2+w 3]+ (l-r)aid p{lea-f W2 (1-g) [#2+7 2]+ (I-rpad | 2 Pl 1= 29 1-a) [ +w3]+ (F-r)ad Al 1= 2+ 1-a) [W3]+ (1-r} &
3 r(l-a- I ) [83w3]) S+ (e} e P -3 (1) [ 242+ {1-r)ad | 3 A - ) 2 g} [T 3]+ {1-r) & A 1-a-f )y 24 1-g} [w3]+ (I-r) &4
J Ri+(1-g} [t+u]+ (1-r} &4 rf+(1-8) [w+v]+ (1-r) &4 J ri{1-8) [s+t])+ (1-r} &4 i+ 1-&) [t+u]+ (1-r) &4
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Tuble Ad. Tvpes” Expected Pavolls and Cholee Probabilities in O"Neill’s Game when 3f —a > |

| Plaver 1| Exp. Pavoil | Choice Pr. Plaver 2| Exp. Pavoil | Choice Pr.
Lit (Pr. R) L@ (Pr.r)
A - o A - o
2 - {1-a-f¥2 7 - [ 1-a-fii2
3 - (1-a-f¥2 3 - [ 1-cr-fi2
J - i J - i
LI({Pr.5) LI (Pr s5)
A §-a-f L A a+f |
P (1+a-f)/2 7 P {1-a+i}2 H
3 [ Va-f)2 i 3 {1-a+f}2 0
J I I J i- 4
L2{Pr. T) LZ2{Pr. 1)
A 0 H A 1 13
2 1 142 2 1 13
3 i /2 3 ] 13
d L1 0 J [ 0
L3 {Pr. LY LI (Pr. u)
A 23 13 A 0] H
2 23 143 2 12 L
3 2/3 1/3 3 12 0
J 1] H J 1 1
L4 (Pr. V) L4 (Pr. v}
4 0 0 A 13 L
2 Ll L 2 13 L
3 1] H 3 13 {
I l | I 1 |
Total Total
A Ra+(1-&}[w3]+ (1-r} aif A rat( g} g+t 3]+ (1-r) &4
P o gt 2 b ) 23]+ (1-r) 24 2 A L= W T g [ 3] + (1-r} a'd
3 R 1-a-{} 2+ 1) 2+ w3]+ {1-r) &4 3 A 1= 24 e} 3]+ (L-r) s
J R L-g ) v+ (1 -r) &9 J P J-g Y wtw] | I-r) £
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Despite our fear that our explanation of RTH's itesuould be discredited by O'Neill's Ace Effect,
we decided to order and analyze O’Neill’'s datacsfaing, based on the leviemodel’'s success
in RTH's and other games, that his subjacisial responses must not have had an Ace effect.

The initial responses were:
e 8% A, 24% 2, 12% 3, 56% J for rows, and
e 16% A, 12% 2, 8% 3, 64% J for columns.

No Ace effect!

On the contrary, for initial responses there was@e Joker effect, an order of magnitude stronger
than the Ace effect in the time-aggregated datar{buer before mentioned in the literature).

(An order of magnitude stronger because (56 - 48N% (64 - 40)% are respectively roughly ten
times larger than (22 - 20)% and (22.6 - 20)%.)

Unlike the putative Ace effect, the actual Jokdeaf(and the other frequenciesh be explained
by a levelk model with a plausibl&0 that probabilistically favors the salient A andaids.

(The analysis also suggests that the Ace effettianime-aggregated data was an accidental by-
product of how subjects learned, not of saliencdlagt
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TaBLE 5—CoMrParIsON OF THE LEaDinG MoDeELS 18 O'NEILL's GAME

Model Parameter estimates  Observed or predicted choice frequencies MSE
Player A 2 3 ]

Observed frequencies I 0.0800 02400 0.1200 05600 -
(25 Player ls, 25 Player 2s) 2 01600 01200 00800 06400 -
Equilibrium without l 0,2000 0.2000 0.2000 04000 00120

perturbations 2 02000 02000 02000 04000 00200
Level-k with a role-symmetric a>l/Mdand ;> 14 l 0,0824 01772 01772 0,5631 00018

L0 that favors salience Ji—a<l,a+2j<| 2 01640 01640 OGl1640 05081 0.0066
Level-£ with a role-symmetric a>|/dandj> |/4 | 0.0000 02541 0.254] 04919 0,0073

L0 that favors salience i—a<l,a+ 2> 2 0.2720 0,0824 0.0824 0.5631 0.0050
Level-k with a role-symmetric a< |/andj<1/4 | 04245 01807 01807 02142 00614

L0 that avoids salience 2 0.1670 0,1807 01807 04717 0.0105
Level-k with a role-asymmetric LO that a; < 14, j, = 1/4;

favors salience for locations for which a, > 14,7, < 1/4 I 01804 02729 02729 0,2739 00291

player is a seeker and avoids it for locations 3, —a, < |, 2 01804 01804 01804 00,4589 0.0117

for which player is a hider

i+ 4 <L3a+ >

Crawford and Iriberri's Table 5
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Importantly, Crawford and Iriberri’'s analysis trad@e portability of the levek-model (in contrast
to the alternative explanations considered in ty@ep) to the fact thatO is psychological rather
than strategic, and that it is based on simpleusanvkersal intuition and evidence.

If LO were strategic, it would interact with the strategructure in new ways in each new game,
and it would be a rare event when one could extsép@ specification from one game to another
as Crawford and Iriberri did from RTH’s games td\@ill’s.

Thus, the definition oL0 as an instinctive, nonstrategic response is maiealtonvenient
cognitive categorization: it is important for pdotay.
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Adaptive Learning

Experimental evidence strongly suggests that whamgeople have opportunities to observe other
people's decisions in analogous games, strategkirl is eclipsed by adaptive learning.

Learning models describe how players adjust thexrsibns over time in response to experience.

The learning process is usually modeled as repetdf a fixed “stage game,” so that the analogies
are perfect.

The stage game is played either by a small groaghoraly selected from one or more
populations—for example, random pairing to playwa-person game, with player roles filled
either from the same or from identifiably sepagapulations—or sometimes by the entire
population at once (as in Van Huyck, Cook, and&iats (1997JEBO) game discussed above).

Players view decisions in the stage game as theehpf choice, and the dynamics of their
decisions are modeled (either directly, or indikeict terms of their beliefs) as adjusting in a
direction that would increase payoffs, other thirgsal, given the current state of the system.

Players’ decisions and roles are distinguisheddmyrmonly understood labels: the “language” in
which they encode their experience, and in whigha@mvention that emerges will be expressed.
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Convergence and equilibrium selection via learningn Van Huyck, Battalio, and Beil's (1990
AER, 1991QJE, 1993GEB) coordination experiments

VHBB'’s 1990 and 1991 designs

Repeated play of player-role-symmetric coordinagames in populations of subjects, interacting
all at once (“large groups”) or in pairs drawn ramdy (“random pairing”).

Subjects chose simultaneously among 7 efforts, patroffs and ex post optimal choices
determined by own efforts and an order statighie,gopulation median or minimum effort in large
groups or the current pair's minimum with randonripg.

There were five leading treatments, varying theepsedatistic (minimum in 1990, median in 1991),
the size of the subject population, and the patternvhich they interact (minimum games were
played either by the entire population of 14-1®&wprandom pairs, median games were played by
the entire population of 9).

Explicit communication was prohibited throughotie brder statistic was publicly announced after
each play (with random pairs told only pair mininend the structure was publicly announced at
the start, so subjects were uncertain only abdwgret efforts.

The subject populations were large enough thaestbjreated own influences on order statistic as
negligible (the smallest “large” number in behagsiagame theory is around four or five).
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Pavorr TapLE I

Median value of X chosan
7 6 5 4 3 2 1
Your i 1.80 1.15 .90 0.55 0.10 1,45 =110
chaice & 1.25 1.20 105 080 045 0.00 -0.55
af 5 1,50 1.15 1.10 0.95 0.70 0.25 =111
X 4 A5 1.00 1056 1.00 A& 0,60 0.25
3 .50 0.75 0,80 0,85 0.50 075 0,50
2 .05 0. 40 .65 0.80 0856 .80 0. 65
1 —-0.50 — 05 .30 0.55 0,70 0.75 0.70
FaYOFF TARLE A
Smallezt Valoe of X Chosen
T & 5 4 k! 2 1
Your T 1.30 1.10 0.2 070 .50 00,30 (. 16
Chaoice 6 - 1.20 L. .80 a0 .40 .20
af 5 - - 116 0.90 370 {.50 0.30
X 4 - - - 1.00 080 {1.60 (.40
! - - - - 0,4} .7 (.50
2 - - - - - (.50 .60
1 - - - - - - 0.7

VHBB’s Leading Median and Minimum Payoff Tables
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The random-pairing and large-group minimum gamedaager versions of two-effort Stag Hunts.

Other Player All Other Players
Not
Stag Rabbit All-Stag  All-Stag
2 1
Stag 5 0 Stag 2 0
Rabbit |, °l, 1 Rabbit| 1 1
Two-Person Stag Hunt n-Person Stag Hunt

The stage games all have seven strict, symmeareté:ranked equilibria, with players’ best
responses an order statistic of the populatiorrtediistribution.

The games are like a meeting that can’t start argiven quorum is achieved—2100% in the large-
group minimum game, 50% in the large-group medemeg.

Intuitively, efficient coordination is more diffi¢t) the larger the quorum or the larger the group,
other things equal; but traditional equilibrium bs&s and refinements don’t fully reflect this.
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The games are also closely related to Larry SummeéssBank Runs example:

“A crude but simple game, related to Douglas Diadhand Philip Dybvig’'s (1983PE) celebrated
analysis of bank runs, illustrates some of thedssavolved here. Imagine that everyone who has
invested $10 with me can expect to earn $1, asguthat | stay solvent. Suppose that if | go
bankrupt, investors who remain lose their whole thi@stment, but that an investor who
withdraws today neither gains nor loses. What wgold do? Each individual judgment would
presumably depend on one's assessment of my ptespeatthis in turn depends on the collective
judgment of all of the investors.

Suppose, first, that my foreign reserves, abibtynobilize resources, and economic strength are sc
limited that if any investor withdraws | will go berupt. It would be a Nash equilibrium (indeed, a
Pareto-dominant one) for everyone to remain, bakgfect) not an attainable one. Someone would
reason that someone else would decide to be cawiwdi withdraw, or at least that someone would
reason that someone would reason that someone wahidraw, and so forth. This...would likely
lead to large-scale withdrawals, and | would gokioapt. It would not be a close-run thing.
...Keynes’s beauty contest captures a similar idea.

Now suppose that my fundamental situation were shiheveryone would be paid off as long as
no more than one-third of the investors chose thdvaw. What would you do then? Again, there
are multiple equilibria: everyone should stay iésrone else does, and everyone should pull out if
everyone else does, but the more favorable egaildsems much more robust.”"—Lawrence
Summers, “International Financial Crises: Causesyéhtion, and Cures,” (20KER).

An n-person coordination game with Pareto-ranked daqali Summers presumes that some
equilibrium will emerge, but his model of the irdluce of fragility on equilibrium selection may
implicitly invoke initial responses to shocks falled by adaptive learning (although he cites
Morris and Shin’s (1998ER) non-adaptive “global games” analysis).
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The game Summers describes can be representepdyypth table as follows:

Summary statistic

In Out
Representative In 1 -10
player Out 0 0
Bank Runs

The summary statistic is a measure of whether ptheorequired number of investors stays In.

In Summers’s first example, all investors must $taio prevent the bank from collapsing, so the
summary statistic takes the value In if and on@llifbut the representative player) stay In.

In his second example two-thirds of the invest@sdto stay In, so the summary statistic takes the
value In if and only if (adding in the representatplayer) this is the case.

In each example there are two pure-strategy eqailitall-In” and “all-Out”.

(There is also a mixed-strategy equilibrium in whibe probability that the summary statistic
equals In just balances the benefits of In and Buitthis equilibrium is behaviorally implausible.)
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Aside: Initial responses in Summers's Bank Runs gaen

What happens depends on players' initial respdnse game as shaped by their strategic
thinking: which equilibrium's basin of attractidill-In” or “all-Out”, the initial responses falhito.

The leading models of initial responses for ganiesthis in traditional game theory are Harsanyi
and Selten's notions of payoff- and risk-dominance.

Payoff-dominance favors equilibria that are Pasetperior to other equilibria, hence here uniquely
favors the all-In equilibrium, for any value of thepulation sizen and any value of the deviation
costs which here equals -10. This seems behawiaaite unlikely even for smaii and small -10.

The basic idea of risk-dominance (the precise ftim@on is controversial) is to choose the
equilibrium with the largest “basin of attractiom’beliefs space.

In 2x2 symmetric two-person games, this amounseltecting the equilibrium that results if each
player best responds to a uniform random prior tvemther’s strategies (just lak does wher.O
IS uniform random).

Thus for population size 2, risk-dominance favbies all-Out equilibrium.

In 2x2 symmetric games for populatior 2, risk-dominance again favors the equilibriunthvihe

larger basin of attraction in beliefs space. Assigmndependence, with Summers’s payoffs risk-
dominance favors the all-Out equilibrium for amy 2, even if only two-thirds need to stay In.
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Now consider a levat-model.

In a realistic applicatiohO would have to reflect market psychology, but hasiirate how the
model works, | assume a uniform randbf

In n-person games it is also possible to define a{ewabdel in whichLO is correlated across
players instead of independent.

(Risk-dominance is usually defined assuming inddpane, but correlation is possible there too.
Correlation is irrelevant in defining payoff-domnee.)

In Summers’s first example, where the summarysiatiakes the value In only when all stay In,
L1's decision is Out with either independent or dateslLO.

In Summers’s second example, where the summaigtstaakes the value In when two-thirds or
more stay Inl.1's decision is still Out in either case.

In all cased.2 and higher types also stay Out, so if the frequeityd is O, the outcome is
observationally equivalent to the all-Out equililmi.
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Now consider an example like Bank Runs in whichshlemary statistic takes the value In when
one-third or more of the investors stay In.

If, say,n = 6, then given a choice of In by the represenggibayer himself, the summary statistic
will be In unless all five other players stay Out.

If LO is independent,1 assigns all others staying Out probability°&2.03.

If LO is correlatedl-1 assigns all others staying Out probability %5.

In the former casd,1 and therefore all highétk types stay In, and the outcome is observationally
equivalent to the all-In equilibrium.

In the latter casd,1l and therefore all highdik types stay Out, and the outcome is observationally
equivalent to the all-Out equilibrium.
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In each of these symmetric coordination gamesletved-k model derives the outcome from
strategic responses to instinctive reactions ta#rae.

Unlike traditional coordination refinements, thedek approach is easy to combine with richer
models of market psychology, vi#®.

And because such & is a psychological rather than a strategic congeisteasier to extrapolate
Its specification across games, as illustratedvioelo

Again neither equilibrium nor refinements play anle in players’ thinking.

And coordination, when it occurs, is again an agatdl by-product of players’ non-equilibrium,
levelk decision rules.
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Because in these symmetric coordination ganiegsponses to a uniform randdufdare in
equilibrium, there is no “magic”:

The levelk model reduces to an equilibrium selection devidactvcoincides here with risk-
dominance, but need not do so in general.

In 2x2 symmetric coordination gamies responses to a uniform randdf also coincide with the
equilibrium selected by a global games analysis.

Selecting an equilibrium vial responses seems empirically more promising, bedalusEsponses
are less cognitively taxing and are directly suggpkby experimental evidence.

End of aside
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VHBB'’s 1990 and 1991 results

The five leading treatments all evoked similariatitesponses (table from Crawford (199&EB)).
TABLE 1

Minimum treatment

A (%) B %) A (%) Co (%)  Ci (%)

Subject’'s 7 33 (31)  T76(84) 23 (29) 11 (37) 13 (42)
initial 6 10 9 1 (1) () I (3) 0 (0
effort 5 34 (32) 2 (2) 2 (2 2 (7 6 (19)

4 18 (17) 5 (9 7 8 5 (U 2 (6)

3 5 (5) 1 (D) 7 (8) 3 (10) 1 (3)

2 5 (5 1 (1) 17 (19) i (3 I (3)

1 2 (2) 5 (5 34 (37) 7 (23) 8 (26)

Totals 107 (101) 91 (99) 91 (100) 30 (100) 31 (99)
Median treatment

I', I'dm (%) Q) (%) ® (%)

Subject’s 7 8 (15) 14 (52) 2 (7)
initial 6 4 (7 1 4 3(t)
effort 5 15 (28) 9 (33) 9 (33)

4 19 (35) 3 (1 11 ¢41)
3 8 (19) 0 (0 2 (N
2 0 O 0 (0) 0 <0)
| 0 () 0 0 {0)
Totals 54 (100) 27 (100) 27 (99)

Inexperienced subjects’ initial strategic thinkahgesn’t react strongly to order statistic or group
size.
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Thus the strong treatment effects in subsequenbmés are due to the dynamics of learning.
Subjects almost always converged to some equifiriu

But the dynamics varied with the treatment varialgtgder statistic, group size, interaction
pattern), with large differences in drift, histagpendence, rate of convergence, and equilibrium
selection:

e In 12 out of 12 large-group median trials, thereswaar-perfect “lock-in” on the initial median
(even though it varied across runs and was usiradfficient)

e In 9 out of 9 large-group minimum trials, there wasy strong downward drift, with subjects
always approaching the least efficient equilibrium

e In 2 out of 2 random-pairing minimum trials, thevas very slow convergence, no discernible
drift, and moderate inefficiency

Comparing the first two reveals an “order statisbic“robustness” effect, with coordination less
efficient the smaller the groups that can disrwgdiihble outcomes.

Comparing the last two reveals a “group size” @ffacwhich coordination is less efficient in
larger groups (holding the order statistic constar#asured from the “bottom”).
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TABLE II1

MEeDLan CHOICE FoR THE FiraT TEx Prr1ODS oF ALL ExPEriMENTS

Period
Treatment 1 2 3 4 5 & T 5 9 10
(rarnma
Exp. 1 4 4 4 4 4 4 4% 4 4* 4*
Exp. 2 3 3 a ] ] 5 & 8 B 3
Exp. 3 ] 3 5 5 A A & i 3 BT
Grammadm
Exp. 4 4 4 4 4 4 4" 4" 4+ 4 4"
Exp. 5 4 4 4 4" 4* 4* 4¥ 4+ 4 4%
Exp. § & & 5 ] A 5 ] a* 5% B®
Omega
Exp, 7 T 7 7 i 7™ ™ ks 7 7* T*
Exp. 8 5 5 5 5 h* 3" a* a* 5" B*
Exp. 9 T ¥ (i ™ 7 7 T (A 7" 7™
Phi
Exp. 10 £ 4 i 4 4% 4% 4% 4* 4* 4%
Exp. 11 5 3 5 6™ &* 5= B* 5* a" a*
Exp. 12 51 & 5 5 5* 5* 5 h* 3% 3

Matgs. Exp. = expecioant, * « indieates a mulusl besl rasponge sulcome
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TabLE 2~ EXPERIMENTAL HESULTS FOR TREATMENT A, Comtinued
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TABLE 5==[NSTRIBUTION OF ACTIONS FORE TREATMENT
Banniosd Fataimgs
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VHBB'’s 1993 design and results

VHBB'’s (1993 GEB) design was the same as their 1991 design, wikated play of one of the
1991 median games, but with the right to play ametd each period to the highest 9 bidders in a
population of 18 (an English clock auction, witle tame price paid by all winning bidders).

The market-clearing price was publicly announceédrafach period’s auction, the median was
publicly announced after each period’s play, arddtinucture was publicly announced at the start.

The stage game has a range of symmetric equilibrighich all bid the payoff of some
equilibrium of the median game and play that efguiim, unless others bid differently.

In 8 of 8 trials, subjects quickly bid the priceadevel that could only be recouped in the most
efficient equilibrium and then converged to thatiiegrium: strong, precise selection among a
wide range of equilibria.

Auctioning the right to play had a strong efficigrenhancing effect via focusing subjects’ beliefs
on more efficient ways to coordinate—a new and gty important mechanism by which
competition promotes efficiency.
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Explaining VHBB’s 1990 and 1991 results

"Rational learning"

One possible source of explanations of VHBB's tegala rational learning model, which models
the learning process as an equilibrium in the reggegame that describes the entire learning
process.

Rational learning is unhelpful in explaining VHBBI®90 and 1991 results because any pattern of
perfectly coordinated jumping from one pure-stratequilibrium to another over time is a rational
learning equilibrium.
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Deterministic evolutionary dynamics

VHBB's results can be mostly (but not entirely) ergtoodvia a simple evolutionarigasin of
attraction story proposed in Crawford (199EB).

In deterministic evolutionary dynamics, a large yapon or populations of players repeatedly
play a game, without or with distinguished roles.

Individual players normally play only pure actiomsth payoffs determined by their own actions
and the population action frequencies.

Players in a given player role are identical buttf@ir actions.

In biology the law of motion of the population actifrequencies is derived, usually with a
functional form known as the replicator dynamicent the assumption that players inherit their
actions unchanged from their parents, who reprodticates proportional to their current payoffs.

In economics similar dynamics are derived from gilake assumptions about individual
adjustment.

The usual goal is to identify the locally stableasty states of the dynamics.

If the dynamics converge, they converge to a stetabg in which the actions that persist are
optimal in the stage game, given the limiting attfi‘equencies; thus, the limiting frequencies are
iIn Nash equilibrium.
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Even though players’ actions are not rationallysgm—indeed, not even chosen—the population
collectively “learns” the equilibrium as its frequmes evolve, with selection doing the work of
rationality and strategic sophistication.

Deterministic evolutionary dynamics have two adeget over traditional equilibrium analyses
(including rational learning models) for the purpad explaining results like VHBB's:

Together with the dispersion of initial responghs, effect of the order statistic on the sizedef t
basins of attraction begins to capture the intevadietween strategic uncertainty and learning
dynamics.

And the dynamics give a rudimentary account ofdnstiependent equilibrium selection, in which
the population always converges to the equilibrvnose basin of attraction includes its initial
state.
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Imagine that there are only two efforts as in $agt, not seven:

Stag Rabbit All-Stag  All-Stag
2 1
Stag 5 0 Stag 2 0
Rabbit |, °l, 1 Rabbit| 1 1

Other Player

All Other Players
Not

Two-Person Stag Hunt n-Person Stag Hunt

Graph the expected payoffs of high (Stag) and Rabit) effort against the population frequency
of high effort in the random pairing and large-graninimum games and the large-group median
game.

A
A\ 4
A\ 4
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In the large-group median game, the all-Stag aRrRatbbit equilibria are both locally stable.

[
>

By symmetry, random shocks are neutral, equalbfiyiko flip the population from all-Stag to all-
Rabbit or vice versa.

With random initial conditions, the population wdude equally likely to converge to all-Stag or
all-Rabbit. If the initial conditions (strategicittking) favor one equilibrium, then its probabiliby
being selected is higher.

In the seven-effort version of the game that VHBRIged, if learning always makes subjects
adjust their efforts toward the current value & thedian, then the population converges to the
median without changing it (a general property roleo statistics like the median).

Even with random shocks, the median is just a$ylitcego up as it is to go down.

Either way, the learning dynamics have no up orrdoend; and (given the dampening effect of
the median on shocks) the population is very likel§lock in” on the initial median, as it did in
VHBB’s median experiments.
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In the random-pairing minimum game, the all-Stad ali-Rabbit equilibria are again both locally
stable.

< [
<% >

Random shocks are again neutral; and with randdraliconditions, the population would be
equally likely to converge to all-Stag or all-Rabbi

Crawford (199%conometrica) shows that in the seven-effort version of thisygahat VHBB
studied (i.e. for their payoffs), it's actually apal for a (risk-neutral) player to set his effegual
to his forecast of the median effort in the enpiopulation.

Thus, just as in the large-group median game gaming dynamics have no up or down trend and

the population is likely to “lock in” on the inifianedian.

However, with random pairing a subject samples andgynall fraction of the population effort
distribution each period (his current partner'®dffs an estimate of the population median, but a
very noisy one), so convergence will be much slpasiit was in VHBB'’s experiments.
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TABLE 5=—=[N3TRIBUTION OF ACTIONS FOR TREATMENT
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Finally, in the large-group minimum game, the allbRit equilibrium is locally stable but the all-
Stag equilibrium is locally unstable. Starting frath Stag, any shock, however small, will make
the population converge to all-Rabbit.

This makes the strong convergence to the equilibmith lowest effort VHBB observed in the
large-group minimum game plausible, but in thisecd® story is more complicated.

In the seven-effort large-group minimum game, arfeng always made subjects adjust their efforts
toward the current value of the minimum, then tapydation would converge monotonically to the
initial minimum without ever changing it.

This result, formalized in Proposition 1 of CrawdpfLearning Dynamics...”, is general across
group sizes and order statistics in this classaafes and evolutionary models.
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However, in VHBB’s experiments the initial minimuwas above one in five out of seven sessions,
but it always converged quickly down to one. E.g.:

Taple 2—EXPERIMENTAL RESULTS FOR TREATMENT A

Period
1 1 3 4 5 [ 7 1 9 10
Experirment 1
Ma. of 7' ! 1 1 1] ] i ] 1] ] 1
Mo, of 675 3 2 1 a ] a 1] 1] 0 0
Blo. of 8 2 3 2 L ] i} 1 i] a |
Mo of 4% 1 é 4 4 1 1 1 i a bl
Mo, of 3% 1 2 5 5 4 1 1 1 ] 1
Ma, of 2' 1 el 2 4 B T i il 4 1
Mo, of 1's ¥ o | 1 3 7 3 9 12 11
Minitnum p 2 '] 1 1 1 L 1 L I
Experiment 2
Mo, of T's 4 0 1 0 0 0 1] V] 0 1
Ma. of &' 1 0 L 0 o 1 1] i) (1] (1]
Ma. of i's 3 3 2 1 ] ] 1 1 1] 1
Ma. of 4's 4 1] 2 3 3 a ] (i} i) )
Wa. of 3's 1 4 2 5 0 1 1 a 1 i
Ma. af 1's 3 1 [\ 3 5 9 3 4 1 1
No.af 1's 0 1 2 2 S 3 1L 11 11 13
Mlir um s 1 1 1 1 1 1 L 1 1
Experiment 3
MWa, of T's 4 4 1 [ 1 1 1 { { 2
Mo, of 675 p 0 2 0 LU 0 ) a a i
Mo, of 5 3 [ 1 1 1 1] a ] ] q
Mo, af 4's k| 3 2 L 1 1 )} a a 1
Mo, of 3% i 1] 7 é ] 2 1 ] a 0
Ma, af 2's i) 1 1 4 g 3 [ 1 2 2
Mo, af 1's 0 O ] 2 5 7 4 11 12 4
Minimum 4 2 p 1 1 1 1 1 I 1
Experiment 4
Mao. af T's é 1] 1 1 ] 1] 1 1] 0 0
Mo af 6's 0 G 2 0 1 L 0 0 ] i}
Ma. af &g ] g 5 4 0 1 a ] O 0
Mo of 4's 1 1 & b ¥ 1 1 1 1 ]
Ma. af 3 { 2 3 1 4 3 1 y L a
Moo af 2's f 1 1] a 2 3 7 4 2 i
Wo. ol 1% { q i) 1 1 & 3 ] L 13
MMinimum d 1 3 1 L 1 i 1 L L
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Crawford (199%conometrica) shows that this happens because in the larggagnaimum game,
random shocks (which represent subjects’ inaligitperfectly predict others’ adjustments) are not
neutral as they were in the median game:

Instead they tend to make the minimum go downntexdent that can be approximately quantified.

As In our intuition about the effect of a largelogum or group suggests, the downward trend is
stronger, the larger the group or the closer tiderostatistic (below the median) is to the minimum.
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Adaptive learning models

Crawford (199%conometrica), summarized in Crawford, “Learning Dynamics...”psls that the
dynamics and limiting outcomes in VHBB'’s (1988R, 1991QJE) games can be more fully
understood via an adaptive learning model withrogeneous beliefs.

The model assumes that players ignore their indalichfluences on the order statistic, learn to
predict it, and independently choose their optiafédrts.

Learning is beliefs-based, which seems closeshit the evidence suggests here.

But learning is characterized in the style of tHagive control literature, with players’ beliefs
represented by the optimal efforts they imply.
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The form of the learning rules and the “evolutioriatructure of VHBB's designs allow a simple
statistical characterization of the dynamics oyplta’ beliefs and efforts.

The model is a Markov process with nonstationaagdition probabilities, whose long-run steady
states coincide with pure-strategy stage-gameibgail

Its recursive structure and i.i.d. shocks rulewouhodeled coordination (as by deduction);
coordination can occur only via independent respemng common observations of the order
statistic.

The key difference from stochastic evolutionary ayncs is that the heterogeneity of players’
beliefs, modeled as i.i.d. random perturbationsiabacommon mean, converges to zero over time,
rather than remaining with variance constant ovee t

This makes adaptive learning inherently nonstatypaad nonergodic, allowing the extreme form
of history-dependence seen in the data, in whieldtinamics lock in on a particular equilibrium in
the stage game.

A full analysis normally depends on the valuesedlfdwioral parameters; the model provides a

framework in which to estimate them, using datanftbe experiments, and allowing different
parameter values in each treatment.
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The estimated models give an adequate statisticatgmry of subjects’ behavior, and generate
dynamics and limiting outcomes in each treatmerdsehprobability distributions closely resemble
the empirical frequency distributions in the expemnts.

Unless the heterogeneity of beliefs is eliminated/\slowly, the learning dynamics converge, with
probability 1, to one of the symmetric equilibriatlee coordination game.

The model’s implications for equilibrium selectioan be summarized by the prior probability
distribution of the limiting equilibrium, which isormally nondegenerate due to the persistent
effects of strategic uncertainty.
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The limiting outcome is determined by the cumulatilrift before learning eliminates strategic
uncertainty (faculty meeting example with varyingpgum and group size).

The form of the learning rules and the “evolutiofiatructure of VHBB’s designs allow a closed-
form solution for players’ behavior as functiongloé behavioral parameters, the treatment
variables, and the shocks that represent straegeertainty, which shows how the outcome is built
up period by period from the shocks that represeategic uncertainty, whose effects persist
indefinitely.

Persistence makes the limiting outcome depend gnrigia behavioral parameters.

This dependence is eliminated in other approachiyshy ruling out either significant strategic
uncertainty (as in equilibrium analyses) or itsspent effects (as in long-run equilibrium
analyses).

Paraphrase of quotatigabout optimality, not equilibrium] in Stephen Jagpuld’s Wonderful Life:
“Equilibrium covers the tracks of history.”
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Overall, the analysis yields the following conchrss:

e Perfect history-dependence in 1991 median tredasngmue to no drift and small variance; but
convergence to initial median in 12 of 12 trialsynoaerstate history-dependence: initial median
“explains” 46-81% of variance of final median.

e Lack of history-dependence in large-group minimueatment is due to strong downward drift,
which yields convergence to lower bound with veightprobability; but convergence in 9 of 9
trials may understate the difficulty of coordination simulations it occurred in 500 of 500 trials.

e Slow convergence, weak history-dependence, akdliaitend in the random-pairing minimum
treatment are due to no drift and subjects' observaf only their current pair's minimum,
which is a very noisy estimate of the populatiordrare that determined their best responses.

The analysis yields qualitative comparative dynansianclusions about the direct effects of
changes in treatment variables, holding the behaMparameters constant:

e Coordination is less efficient the lower the orditistic (the smaller the subsets of the
population that can adversely affect the outcotmedause small numbers of deviations are more
likely than large numbers.

e Coordination is less efficient in larger groupslffing the order statistic constant, measured from
the bottom) because it requires coherence amomg imdependent decisions.
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Explaining VHBB’s 1993 results

Crawford and Broseta (19%ER), following Crawford (199%conometrica), show that this effect
can be understood as following from effects thatfaize “order statistic,” “optimistic subjects,”
and “forward induction” intuitions.

The optimistic subjects and order statistic efféatgether have approximately the same magnitude
in VHBB’s environment (where the right to play a@iperson median game was auctioned in a
group of 18) as the order statistic effect in afpg&8on coordination game without auctions in
which payoffs and best responses are determindiagebi§fth highest (the median of the nine
highest) of all 18 players’ efforts.

Auctioning the right to play a 9-person median gama group of 18 effectively turns the game
into a “78" percentile” game (0.75 = 13.5/18), whose ordeissia effect contributes a large

upward drift as Crawford’s (1995) analysis suggdstse would have been in such a game without
auctions.

Crawford and Broseta’s analysis attributes theratldf of the efficiency-enhancing effect of
auctions in VHBB'’s environment to a strong forwarduction effect.

The analysis shows that coordination is more efficivith more intense competition for the right
to play, because it yields higher prices for a gilevel of dispersion in bidding strategies, and it
increases the optimistic subjects effect.

This effect should extend to related environmdnts,may not always yield full efficiency.
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