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Introduction 

 

Much of behavioural and experimental game theory focuses on two main issues: 

 

● Strategic thinking, the process by which players predict others’ decisions and make their own 
 decisions in initial responses to games without clear precedents; and 

 

● Adaptive learning, the process by which players learn to predict others’ decisions from past 
 experience with analogous games. 

 

I begin with an experimental example showing why it is important to understand both issues, and then 
continue by discussing thinking and learning in turn.  
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Example: How strategic thinking and learning interact to determine equilibrium selection via 
history-dependent learning 
 
 
 
In Van Huyck, Cook, and Battalio’s (1997 JEBO) experiment, seven subjects chose simultaneously 
and anonymously among efforts from 1 to 14, with each subject’s payoff determined by his own 
effort and a summary statistic, the median, of all players’ efforts. 
 
 
 
After subjects chose their efforts, the group median was publicly announced, subjects chose new 
efforts, and the process continued. 
 
 
 
The relation between a subject’s effort, the median effort, and his payoff was publicly announced via 
a table as on the next slide.  
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The payoffs of a player’s best responses to each possible median are highlighted in bold in the table 
as displayed here (but not as displayed to subjects). 
 
The payoffs of the (symmetric, pure-strategy) equilibria “all–3” and “all–12” are highlighted in large 
bold. 
 

 

Continental divide game payoffs

Median Choice 
Your 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Choice

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62
8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82
9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98
10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123 

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123 
14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120
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There were ten sessions, each with its own separate group. 
 
 
 
Half the groups happened to have an initial median of eight or above, and half happened to have an 
initial median of seven or below. 
 
(The experimenters probably chose the design to make the initial median vary this way, but this kind 
of variation is not uncommon.) 
 
 
 
The results are graphed on the next slide: 
 
 
The median-eight-or-above groups converged almost perfectly to the all–12 equilibrium. 
 
 
By contrast, the median-seven-or-below groups converged almost perfectly to the all–3 equilibrium.   
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Van Huyck, Cook, and Battalio’s Figure 3 
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Thus, it’s not enough to know that learning will eventually converge to some equilibrium, even if we 
are only interested in the final outcome. 
 
 
Here we also need to know the prior probability distribution of the median initial response, which is 
determined by subjects' strategic thinking before they have any direct experience with the game. 
 
 
 
 
In Van Huyck et al.’s experiment, the prior probability distribution of final outcomes is determined in 
a simple way by the prior probability distribution of the median initial response and learning rules 
that converge to the equilibrium whose basin of attraction—defined by myopic best responses—
subjects’ initial responses fell into. 
 
 
 
But in other settings predicting the prior probability distribution of final outcomes may require that 
we know more about the structure of subjects’ learning rules as well as their initial responses. 
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Strategic thinking  
 
 
Strategic thinking is an essential part of human interaction, so much so that children must be taught 
to look both ways before crossing one-way streets. 
 
 
(Once children develop enough “theory of mind” to distinguish others as independent decision 
makers, they seem to become instinctively overoptimistic about using rationality to predict others’ 
decisions.) 
 
 
 
 
 
Yet from a behavioral point of view, the importance of strategic thinking has been downplayed in 
economics and game theory. 
 
 
Most applications of game theory in economics rely on Nash equilibrium. 
 
 
But although equilibrium can be viewed as a model of strategic thinking, there are many potential 
applications of game theory for which it is not an adequate model of behavior.   
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Players’ strategies will be in equilibrium if two conditions are satisfied: 

 

● Players are rational (in the decision-theoretic sense of best responding to some beliefs). 

● Players have the same beliefs about each other’s strategies. 

 

Assuming rationality for the sake of argument, there are two possible justifications for the 
assumption that players have the same beliefs: 

● Thinking: If players have perfect models of each other’s decisions, strategic thinking will lead them 
to have the same beliefs immediately, and so play an equilibrium even in their initial responses to a 
game. 

(Note that in this case the usual “as if” justification for equilibrium is unavailable: if players’ 
models do not accurately reflect other players’ cognition, equilibrium will predict their decisions 
accurately only by coincidence.)   

 

● Learning: Even without perfect models, if players repeatedly play perfectly analogous games (and 
their interaction patterns do not foster repeated-game effects or strategic teaching), experience may 
eventually allow them to predict each others’ decisions well enough to play an equilibrium (in the 
game that is repeated) in the limit. 
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In many applications of game theory, the theoretical conditions for learning to converge to 
equilibrium are approximately satisfied. 
 
 
 
In such settings experimental evidence and field data tend to support assuming that players’ steady-
state strategies are in equilibrium. 
 
 
 
If only long-run outcomes matter, and if equilibrium is unique or if there are multiple equilibria but 
equilibrium selection does not depend on the details of learning, such applications can safely rely 
entirely on equilibrium. 
 
 
 
Because in such settings the cognitive requirements for learning to converge to equilibrium are 
mild, there is then no need to study strategic thinking. 
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However, many other applications involve games played without clear precedents, so that the 
learning justification for equilibrium is unavailable. 
 
 
 
 
In other applications eventual convergence to equilibrium is assured, but initial as well as limiting 
outcomes matter (e.g. the FCC Spectrum auction). 
 
 
 
 
In still other applications convergence is assured and only long-run outcomes matter, but the 
equilibrium is selected from multiple possibilities via history-dependent learning dynamics. 
 
 
 
 
All such applications depend on reliably predicting initial responses to games, which may require a 
non-equilibrium model of strategic thinking. 
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Applications of game theory usually assume equilibrium even when its learning justification is 
unavailable.   
 
This practice seems to be due to two factors: 
 
● Fear that equilibrium is the only possible basis for analysis 

 (rationalizability seldom yields predictions specific enough to be useful). 
 
 
● Hope that equilibrium will still yield accurate predictions, on average.        
 
But except in simple games, assuming equilibrium thinking in people’s initial responses may be 
behaviorally far-fetched. 
 
Even people who are capable of equilibrium thinking may doubt that others are capable, and 
therefore be unwilling to play their part of an equilibrium. 
 
 
Moreover, there is a growing body of evidence—mostly experimental—that initial responses to 
novel or complex games often deviate systematically from equilibrium, especially if it requires 
thinking that is not straightforward. 
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Fortunately, the evidence also suggests that there are simple and tractable structural non-
equilibrium models of strategic thinking that can explain a substantial fraction of people’s 
deviations from equilibrium initial responses. 
 
 
Those models allow equilibrium behavior, but do not assume equilibrium in all games.  
 
 
Instead they assume that players follow strategic but non-equilibrium decision rules, which yield 
decisions that mimic equilibrium in simple games, but may deviate systematically in more complex 
games.    
 
 
The models thereby provide a way to predict, in a given game, whether players’ responses are 
likely to deviate from equilibrium, and if so, how.       
 
 
 
Thus the hope that equilibrium yields predictions that are accurate on average is not well founded. 
 
 
But neither is the fear that equilibrium is the only possible basis for analysis.   
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Modeling strategic thinking more accurately promises several benefits: 
 
 
 
● It can establish the robustness of conclusions based on equilibrium in games where empirically 
 reliable rules mimic equilibrium. 
 
 
● It can challenge the conclusions of applications to games where equilibrium is implausible 
 without learning. 
 
 
● It can resolve empirical puzzles by explaining the deviations from equilibrium that some games 
 evoke. 
 
 
● It can also elucidate the structure of learning, where assumptions about cognition determine 

which analogies between current and previous games players recognize and also distinguish 
reinforcement from beliefs-based and more sophisticated rules. 
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“Folk game theory” quotations 

 

I now give some folk game theory quotations to illustrate the need for models of strategic thinking, 
the issues successful models must address, and the range of potential applications. 

 

Why study folk game theory instead of “real” game theory? 
 
Folk game theory is only an imperfect reflection of traditional game theory, just as folk physics is 
an imperfect reflection of real physics. 

 

But unlike folk physics, folk game theory has a direct and important influence on its observable 
counterpart, namely the part of behavioral game theory that concerns strategic thinking and initial 
responses to games. 
 
 
I will argue below that the lessons regarding strategic thinking from folk game theory are largely 
confirmed by experiments designed to study strategic thinking in more conventional ways. 

This correspondence is powerful evidence for a particular class of structural non-equilibrium 
models of strategic thinking.  
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Keynes’s Beauty Contest: 

“...professional investment may be likened to those newspaper competitions in which the 
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being 
awarded to the competitor whose choice most nearly corresponds to the average preferences of the 
competitors as a whole; so that each competitor has to pick, not those faces which he himself finds 
prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all of whom 
are looking at the problem from the same point of view. It is not a case of choosing those which, to 
the best of one’s judgment, are really the prettiest, nor even those which average opinion genuinely 
thinks the prettiest. We have reached the third degree where we devote our intelligences to 
anticipating what average opinion expects the average opinion to be. And there are some, I believe, 
who practice the fourth, fifth and higher degrees.”—John Maynard Keynes, The General Theory of 
Employment, Interest, and Money 

(I suspect that the last sentence was Keynes’s coy reference to himself.) 

 

A simultaneous-move zero-sum n-person “outguessing” game, possibly with multiple equilibria. 
The key issue is anticipating others’ strategic responses to a “landscape” of personal judgments 
about prettiness which is otherwise payoff-irrelevant. We will find that equilibrium alone is not 
very helpful in describing how people do this. The quotation suggests a thought process in which 
players “anchor” beliefs in instinctive reactions to the faces and then iterate best responses a finite 
number of times.   
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Kahneman’s Entry Magic: 
 
“…to a psychologist, it looks like magic.”—Kahneman 1988, quoted in Camerer, Ho, and Chong 
(2004 QJE). 
 
Here Kahneman refers to the fact that subjects in his market-entry experiments, structured like n-
person Battle of the Sexes games, achieve better ex post coordination (number of entrants closer to 
market capacity) than in the natural symmetric mixed-strategy equilibrium benchmark. 
 
(Thus Kahneman should have said “…to a game theorist, it looks like magic.”) 
 
 
 
The key issue here is breaking the symmetry of players’ roles as required for efficient coordination. 
Equilibrium and refinements are not very helpful. 

The same strategic issues arise in less abstractly framed, asymmetric field settings, exemplified by 
Roger Myerson’s “Ware Medical Corporation” case (http://dss.ucsd.edu/~vcrawfor/Ware.htm): 

A company is considering introducing a new product, which will be profitable only if its only 
competitor introduces a related product. The competitor’s profits are determined qualitatively (not 
quantitatively) in the same way as the company’s are. Both companies must decide, simultaneously 
and irreversibly, whether to begin development. In addition, there may be opportunities for 
commitment, signaling, and/or deceptive announcements….  
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Yushchenko: 
 
“Any government wanting to kill an opponent…would not try it at a meeting with government 
officials.”—comment (quoted in the 2004 New York Times) on the poisoning of Ukrainian 
presidential candidate—now president—Viktor Yushchenko. 
 
A simultaneous-move zero-sum two-person game with a unique mixed-strategy equilibrium. The 
players are a government assassin choosing one of several occasions at which to try to poison 
Yuschenko, only one of which is linked to the government; and an investigator who has the 
resources to check only one occasion. 
 
 
Here the key issue is how players react to framing of decisions that is non-neutral but does not 
directly affect payoffs. Equilibrium in zero-sum two-person games leaves no room for such framing 
to affect outcomes, but people often react to it anyway.  
 
 
The thinking reflected by the quotation is plainly strategic, but non-equilibrium: Any game theorist 
worth his salt would respond, “If that’s what people think, a meeting with government officials is 
exactly where I would try to poison Yushchenko.” 
 
We will see that the quotation can be understood as a thought process in which a player anchors his 
beliefs in an instinctive reaction to the salience of the dinner with government officials and then 
iterates best responses a small number of times.
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Lake Wobegon: 
 
“…in Lake Wobegon, the correct answer is usually ‘c’.”—Garrison Keillor 1997 on multiple-
choice tests (quoted in Attali and Bar-Hillel (2003 Journal of Educational Measurement)).  
 
 
A simultaneous-move two-person zero-sum game with a unique mixed-strategy equilibrium. The 
players are a test designer deciding where to hide the correct answer and a clueless test-taker trying 
to guess the hiding place. 
 
 
Again the key issue is how players react to the non-neutral framing, and the thinking reflected by 
the quotation is plainly strategic, but non-equilibrium.  
 
 
Although there is nothing as uniquely salient as Yushchenko’s dinner with government officials, 
psychologists like Christenfeld 1995 Psychological Science and Tversky (in Rubinstein, Tversky, 
and Heller 1996) think that with four possible answers, both the a and d end locations and location 
c are inherently salient (with the jury still out on which is more salient). 
 
Again the quotation can be understood as a thought process in which a player anchors beliefs in an 
instinctive reaction to salience and iterates best responses a small number of times. 
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Common Features of the Quotations 

 

● They all concern games played without completely clear precedents. 
 
● They all reflect coherent, clearly identified models of strategic thinking. 
 
● But the thinking is systematically different from equilibrium thinking. 
 
● The thinking tends to start with beliefs anchored in an instinctive reaction to the game, and then 

to iterate best responses a small number of times.  
 
(In this respect the thinking resembles that in the “level-k” or “cognitive hierarchy” (“CH”) 
models described below. The resemblance is not self-evident for Entry Magic, but as explained 
below, Camerer, Ho, and Chong (2004 QJE) explain Kahneman’s results via a CH model.) 

 
● The instinctive reactions follow different principles, each plausible in its setting, such as uniform 
 randomness, salient labels, or truthfulness.  
 
● Finite iteration of best responses is common across all settings, although the number of iterations 
 may vary across individuals or even settings.       
 
 



 20

 
These common features are representative of folk game theory: 
 
 
 
● One can also find quotations reflecting one or two steps of iterated (strict or weak) dominance in 

the normal form, or one or two steps of iterated (weak) dominance reflecting forward or 
backward induction in the extensive form. 

 
 
 
● But it is difficult (counterexamples welcome) to find quotations involving more than one or two 
 steps of iterated dominance. 
 
 
 
● And it is at least as difficult (impossible? counterexamples welcome) to find quotations that 
 illustrate the fixed-point reasoning that underlies equilibrium in games without dominance. 
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In Selten’s 1998 European Economic Review words (but generalizing about the results of game 
experiments, not about folk game theory): 

“Basic concepts in game theory are often circular in the sense that they are based on definitions 
by implicit properties…. Boundedly rational strategic reasoning seems to avoid circular 
concepts. It directly results in a procedure by which a problem solution is found.”         

 
 
To paraphrase:  

 “Real people don’t use fixed-point reasoning to decide what to do.” 
 
 
 
 
This is not to say that with enough experience in a sufficiently stationary setting, learning can’t 
make people converge to steady states that an analyst would need fixed-point reasoning to 
characterize. 
 
Selten’s point is simply that when equilibrium requires fixed-point reasoning, it may not be a good 
behavioral model of people’s cognition. 
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 Level-k models  

 
Although the number of logically possible non-equilibrium model seems daunting, both folk game 
theory and experimental evidence support a particular class of models called level-k or cognitive 
hierarchy (CH) models. 
 
Level-k models allow behavior to be heterogeneous, but assume that each player follows a rule 
drawn from a common distribution over a particular hierarchy of decision rules or types (as they are 
called in this literature; no relation to “types” as realizations of private information variables). 

 
 
Type Lk anchors its beliefs in a nonstrategic L0 type, which is meant to describe Lk’s model of 
others’ instinctive reactions to the game. 

 

 

The instinctive reactions may follow one of several principles depending on the setting, such as 
uniform randomness, salience, or truthfulness. 

 

 

Lk then adjusts its beliefs via thought-experiments with iterated best responses: L1 best responds to 
L0, L2 to L1, and so on. 
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Like equilibrium players, L1 and higher types are rational in that they choose best responses to 
beliefs, with perfect models of the game. 

 

Lk’s only departure from equilibrium is in replacing its perfect model of others’ decisions with 
simplified models that avoid the complexity of equilibrium. 

 

In applications it is usually assumed that L1 and higher types make errors, which are often taken to 
be logit with estimated precision as in LQRE. 

 

Thus the probability density of each type’s decision is increasing in its expected payoff, evaluated 
using the type’s model of others’ decisions: L2, for example, makes errors whose distribution is 
sensitive to the payoff costs of deviations, evaluated assuming that other players’ decisions are L1.  

 
Unlike LQRE, Lk types do not respond to the noisiness of others’ decisions. 

 
Even so, the deterministic structure of a level-k model captures the sensitivity of players’ deviations 
from equilibrium to out-of-equilibrium payoffs. 
 
(Level-k models are thus structural alternatives to models like quantal response equilibrium, which 
treat deviations from equilibrium entirely as players' responses to others' errors.)    
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The population type frequencies are treated as behavioral parameters, to be estimated from the data 
or translated or extrapolated from previous analyses. 

 

The estimated type distribution is typically fairly stable across games, with most weight on L1, L2, 
and perhaps L3. 

 

 

The estimated frequency of the anchoring L0 type is usually small. 

 

Thus, L0 “exists” mainly as L1’s model of others, L2’s model of L1’s model of others, and so on. 

 
 
 
Low frequencies of L0 are an important sign of health for a level-k model, in that high frequencies 
of L0 would reduce the model to a parameterized distribution of responses, thus describing the data 
rather than explaining it.     
 

Only when the strategic iteration of best responses plays a role can the model yield a useful 
explanation of the data. 
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Even though L0 normally has a low frequency, its specification is the main issue in defining a 
level-k model and the key to its explanatory power. 

 

As illustrated below, L0 needs to be adapted to the setting, and there is an emerging consensus 
about how to do this in particular applications.  
 
 
 
 
By contrast, the definition of L1, L2, and L3 via iterated best responses allows a simple, reliable 
explanation of behavior across different settings.  
 
 
 
  
Like equilibrium plus noise and QRE, level-k models are general models of strategic behavior, with 
small numbers of behavioral parameters. 
 

 

Like CH models, discussed below, level-k models make point predictions that depend only on L0 
and the estimated type distribution. 
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L1 and higher types make undominated decisions, and Lk complies with k rounds of iterated 
dominance and k–rationalizability (thanks to Robert Östling of Stockholm University for clarifying 
this relationship). 
 
 
Thus, a distribution of Lk types realistically concentrated on low levels of k mimics equilibrium in 
games that are dominance-solvable in a few rounds. 
 
 
But such a distribution deviates systematically from equilibrium in some more complex games, in 
predictable ways. 
 

 

These features allow level-k models to capture the sensitivity of deviations from equilibrium to out-
of-equilibrium payoffs. 

 

 

As a result, like LQRE, level-k (and CH) models often fit initial responses better than equilibrium 
plus noise. 
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Cognitive hierarchy (“CH”) models 

 

 

In Camerer, Ho, and Chong’s (2004 QJE) cognitive hierarchy (“CH”) model, a close relative of 
level-k models, Lk best responds not to Lk-1 alone but to an estimated mixture of lower-level types; 
and the type frequencies are not unrestricted, but instead are treated as a parameterized Poisson 
distribution. 

 
 
For an outside observer modeling behavior econometrically, this estimated- mixture specification 
seems more natural than the level-k specification. 

 

 

But which specification better describes people’s strategic thinking remains an empirical question 
(on which the jury is still not completely in). 
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A CH L1 is the same as a level-k L1, but CH L2 and higher types may differ.  
 
 
A CH L1 and higher types make undominated decisions, but unlike level-k types, but a CH Lk 
might not comply with k rounds of iterated dominance and k–rationalizability. 
 

 

 

Unlike in a level-k model, in a CH model L1 and higher types are usually assumed not to make 
errors. 

 

Instead the uniformly random L0, which has positive frequency in the Poisson distribution, doubles 
as an error structure for L1 and higher types. 

  

 
 
A CH model makes point predictions that depend only on L0 and the estimated Poisson parameter. 
 
In some applications the Poisson constraint, imposed as a simplifying restriction, is not very 
restrictive and the CH model fits as well as a level-k model; but in others the Poisson constraint is 
strongly binding. 
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Experimental evidence 

 

Level-k and CH models are now supported by a large body of experimental evidence on initial 
responses to games with various structures. 
 
Here I focus on two representative experiments with normal-form games: 
 
 
● Nagel’s 1995 AER experiments, which were directly inspired by Keynes’s Beauty Contest, and 
 which provide a simple introduction to the evidence and the class of models that it suggests. 
 
● Costa-Gomes and Crawford’s (CGC) 2006 AER experiments, which use a much more powerful 
 design to identify subjects’ strategic thinking more precisely. 
 
 
 
CGC’s conclusions are fully consistent with the conclusions of other studies of initial responses to 
abstract normal-form games, just more precise. 
 
 
 
With adjustments described below, CGC’s conclusions are also consistent with those of the studies 
of the other kinds of games mentioned above. 
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Nagel’s design and results 

 

In Nagel’s n-person guessing game design: 

 
● 15-18 subjects simultaneously guessed between [0,100]. 
 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3, say), times the group average 
 guess wins a prize, say $50. 
 
 
● The structure was publicly announced. 
 
 
If you have not already done so, please take a moment to decide what you would guess, in a group 
of non-game-theorists: 
 
● if p = 1/2, 
 
● if p = 2/3. 
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Nagel’s games have a unique equilibrium, in which all players guess 0. 
 
 
The games are dominance-solvable, so the equilibrium can be found by iteratively eliminating 
dominated guesses. 
 
 
 
For example, if p = 1/2: 
 
 
 
● It’s dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
 
 
 
● Unless you think that other people will make dominated guesses, it’s also dominated to guess 
 more than 25 (because 1/2 × 50 ≤ 25). 
 
 
 
● And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
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The rationality-based argument for this “all–0” equilibrium is stronger than many equilibrium 
arguments, because it depends only on iterated knowledge of rationality, not on the assumption that 
players have the same beliefs. 
 
   
 
However, even people who are rational are seldom certain that others are rational, or that others 
believe that others are rational. 
 
 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
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Nagel’s subjects played these games repeatedly, but we can view their initial guesses as responses 
to games played as if in isolation if they treated their influences on the future as negligible, which is 
plausible in groups of 15 to 18. 
 
 
 
 
 
Nagel’s subjects never played their equilibrium strategies initially, and their responses deviated 
systematically from equilibrium. 
 
 
 
 
Instead there were spikes that suggest a distribution of discrete thinking “types,” respecting 0 to 3 
rounds of iterated dominance in each treatment (next slide). 
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Part of Nagel’s Figure 1: top of figure p = 1/2, bottom of figure p = 2/3. 
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The spikes’ locations and how they vary across treatments are roughly consistent with two 
plausible interpretations: 

 

● In one interpretation, called Dk, a player does k rounds of iterated dominance for some small 
number, k = 1 or 2, and then best responds to a uniform prior over other players’ remaining 
strategies (thus “completing” k-rationalizability by adding a specific selection as discussed 
below).  

 

● In another interpretation, “level-k” or “Lk,” a player starts with a naïve prior 
L0 over others’ strategies reflecting people’s instinctive reactions to the game, and then iterates 
best responses k times, with k = 1, 2, or 3.  

 

In abstractly framed games like Nagel’s, L0 is usually taken to be a uniform random distribution, 
reflecting a player’s understanding of the payoff function before he tries to model others’ decisions. 
(In games without dominance this makes Dk, k = 1,2,… coincide with L1.) 

(Although in these lectures I focus mainly on two-person games, in n-person games it matters 
whether L0 is independent across players or correlated, and the limited evidence (HCW, Costa-
Gomes, Crawford, and Iriberri 2009 JEEA) suggests that most people have highly correlated 
models of others. Here I take L0 to model all others’ average guess.) 
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In many games Dk and Lk+1 respond similarly to dominance, yielding k-rationalizable strategies. 
(The difference in indices is only a quirk of notation.) 

 

With a uniform random L0, in Nagel’s games Dk’s and Lk+1’s guesses are perfectly confounded, 
both tracking the spikes in Nagel’s data across her treatments (which had different subject groups): 

 

●  Dk guesses ([0+100pk]/2)p. 

●  Lk+1 guesses [(0+100)/2]pk+1. 

 

Either way, one aspect of the message is already clear: Subjects do not rely on indefinitely iterated 
dominance or indefinitely iterated best responses; instead their decisions respect k-rationalizability 
for at most small values of k. 
 
 
Despite the lack of separation of Dk’s and Lk+1’s guesses, many theorists interpret Nagel’s results 
as evidence that subjects explicitly performed finitely iterated dominance, the way we teach 
students to solve such games. 

In previous experiments, Dk’s and Lk+1’s guesses were weakly separated, and the results are 
inconclusive on this point; but in CGC’s experiments Dk’s and Lk+1’s guesses are strongly 
separated, and we will see that the results very clearly favor Lk over Dk rules. 
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Costa-Gomes and Crawford’s design and results 

 

In CGC’s design, subjects were randomly and anonymously paired to play a series of 16 different 
two-person guessing games, with no feedback. 

 

 

The design suppresses learning and repeated-game effects in order to elicit subjects’ initial 
responses, game by game, studying strategic thinking “uncontaminated” by learning. 

(“Eureka!” learning was possible, but it was tested for and found to be rare.) 

 

 

The design combines the variation of games of Stahl and Wilson’s 1995 GEB design with the large 
strategy spaces of Nagel’s 1995 AER design. 

 

This greatly enhances its power, and the profile of a subject’s guesses in the 16 games forms a 
“fingerprint” that helps to identify his strategic thinking more precisely than is possible by 
observing his responses to a series of games with small strategy spaces or a single game with large 
strategy space.  
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In CGC’s guessing games, each player has his own lower and upper limit, both strictly positive, 
implying finite dominance-solvability. 

 

(Players are not actually required to guess between their limits. Instead guesses outside the limits 
are automatically adjusted up to the lower limit or down to the upper limit as necessary: a trick to 
enhance separation of information search implications, not important for this discussion.)   

 

 

 

Each player also has his own target, and his payoff increases with the closeness of his guess to his 
target times the other’s guess. 

 

The targets and limits vary independently across players and games, with targets both less than one, 
both greater than one, or “mixed”. 

 

(In Nagel’s and HCW’s previous guessing experiments, the targets and limits were always the same 
for both players, and they varied at most across treatments with different subject groups.) 
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CGC’s guessing games have essentially unique equilibria (“essentially” due to the automatic 
adjustment), determined (not always directly) by players’ lower (upper) limits when the product of 
targets is less (greater) than one. 

 

 

 

 

 

The discontinuity of the equilibrium correspondence when the product of targets equals one stress-
tests equilibrium, which responds much more strongly to the product of the targets than alternative 
decision rules do; and enhances the separation of equilibrium from alternative rules. 

 

 

 

(It also reveals other interesting patterns; see Crawford, “Look-ups as the Windows of the Strategic 
Soul”.) 
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Consider a game in which players’ targets are 0.7 and 1.5, the first player’s limits are [300, 500], 
and the second’s are [100, 900].  

 

The product of targets is 1.05 > 1, and it can be shown that the equilibrium is therefore determined 
by players’ upper limits. (When the product of targets is < 1, the equilibrium is determined by their 
lower limits in a similar way.)  

 

 

In equilibrium the first player guesses his upper limit of 500, but the second player guesses 750 (= 
500 × his target 1.5), below his upper limit of 900. 

 

 

No guess is dominated for the first player, but any guess outside [450, 750] is dominated for the 
second player. 

 

Given this, any guess outside [315, 500] is iteratively dominated for the first player. 

 

Given this, any guess outside [472.5, 750] is dominated for the second player, and so on until the 
equilibrium at (500, 750) is reached after 22 rounds of iterated dominance. 
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Costa-Gomes and Crawford’s data analysis 

 

 

 

As suggested by previous work, CGC’s data analysis assumed that each subject’s guesses were 
determined, up to logit errors, by a single decision rule, or “type” as they are called in this literature 
(no relation to the use of “type” for the realization of a private information variable), in all 16 
games. 

 

 

 

This assumption was tested and found reasonable for almost all subjects. 
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Most of CGC’s data analysis restricted attention to a list of behaviorally plausible types whose 
relevance was suggested by previous work:  

● L0, L1, L2, and L3, with L0 uniform random between a player’s limits, L1 best responding to L0, 
 L2 to L1, and so on.  

● D1 and D2, which does one round (respectively, two) of iterated dominance and then best 

responds to a uniform prior over its partner’s remaining decisions (making a specific selection 
from k-rationalizable strategies). 

● Equilibrium, which makes its equilibrium decisions. 

(Note that because CGC’s games are all (finitely) dominance-solvable, traditional equilibrium 
refinements are not relevant in them.) 

● Sophisticated, which best responds to the probability distributions of others’ decisions, estimated 
 from the observed frequencies. 

(Sophisticated is an ideal, included to learn if any subjects have an understanding of others’ 
decisions that transcends mechanical rules.)  

 

The restriction to this list was also tested and found to be a reasonable approximation to the support 
of subjects’ decision rules. 
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CGC’s large strategy spaces and the independent variation of targets and limits across games 
greatly enhance the separation of types’ implications, to the point where many subjects’ types can 
be precisely identified from their guessing “fingerprints”: 

 

Types’ guesses in the 16 games, in (randomized) order played 
 L1 L2 L3 D1 D2 Eq. Soph. 
1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 
10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that complied exactly (within 0.5) 
with one type’s guesses in from 7 to 16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 

 

 

 

For example, CGC’s Figure 2 (next slide) shows the “fingerprints” of the 12 subjects whose 
guesses conformed most closely to L2’s; 72% of their guesses were exact L2 guesses; only their 
deviations are shown. 
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CGC’s Figure 2. “Fingerprints” of 12 Apparent L2 Subjects 

(Only deviations from L2’s guesses are shown. 

(Of these subjects’ 192 guesses, 138 (72%) were exact L2 guesses.) 
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The size of CGC’s strategy spaces, with 200 to 800 possible exact guesses in each of 16 different 
games, makes exact compliance powerful evidence for the type whose guesses are tracked: If a 
subject chooses 525, 650, 900 in games 1-3, intuitively and econometrically we already “know” 
he’s an L2. 

(By contrast, there are usually many possible reasons for choosing one of the strategies in a small 
matrix game; and even in Nagel’s large strategy spaces, rules as cognitively disparate as Dk and 
Lk+1 yield identical decisions.)       

 

 

Further, because CGC’s definition of L2 builds in risk-neutral, self-interested rationality, we also 
know that a subject’s deviations from equilibrium are “caused” not by irrationality, risk aversion, 
altruism, spite, or confusion, but by his simplified model of others. 

(Even so, doubts remain about the subjects with high exact compliance with Equilibrium, who 
appear to be following hybrid types that only mimic equilibrium in the games with targets both less 
than one or both greater than one; see Crawford, “Look-ups as  the Windows of the Strategic 
Soul”.)    

 

 

That the level-k model is directly suggested by these subjects’ data (rather than via data-fitting 
exercises) is an important advantage over alternatives. 
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CGC’s other 45 subjects made guesses that conformed less closely to one of CGC’s types, but 
econometric estimates of their types are concentrated on L1, L2, L3, and Equilibrium, in roughly 
the same proportions. 

 

For those 45 subjects, there is some room for doubt about whether CGC’s specification omits 
relevant types and/or overfits by including irrelevant types. 
 
To test for this, CGC conducted a specification test, which suggests that the types estimated to be in 
the population are relevant and that any omitted types are at most 1-2% of the population, hence not 
worth modeling. 
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Lessons from the experiments for modeling strategic behavior  
 
 
First, Nagel’s 1995 AER subjects’ initial guesses resembled neither equilibrium plus noise nor QRE 
for any reasonable distribution. 
 
 
Nagel’s results also suggest that even rationalizability is too strong: most subjects’ guesses 
respected k–rationalizability only for small values of k. 
 
 
Finally, Nagel’s results call into question the common simplifying assumption that strategic 
thinking is homogeneous in the population.  
 
 
 
No model that imposes homogeneity, as equilibrium plus noise and QRE do, will do full justice to 
subjects’ behavior. Allowing heterogeneity of strategic thinking is essential for the explanations of 
Kahneman’s Entry Magic, Yushchenko, and Lake Wobegon proposed below. 
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CGC’s analysis significantly sharpens Nagel’s conclusions, confirming by direct and econometric 
evidence and a specification test that a level-k model with a uniform random L0 and only L1, L2, 
L3, and, possibly, Equilibrium subjects explains a large fraction of subjects’ deviations from 
equilibrium in their games. 
 
In particular: 

 

● There are no Dk subjects. CGC’s subjects respect iterated dominance to  the extent that Lk 
 types do, not because they explicitly perform it. 

 
● Although level-k subjects make decisions that, via the iterated best responses that govern 

their strategic thinking) respect k-rationalizability, their presence is limited to small values of k, 
so even the Lk types respect k-rationalizability for at most small values of k. 

 

● There are no Sophisticated subjects. Even the most sophisticated subjects seem to favor 
 rules of thumb over less structured strategic thinking. 

 (The jury is still out on the extent to which this conclusion generalizes.) 
 
● CGC’s evidence and analysis are more precise than previous studies of initial responses to 

normal-form games, but their conclusions are fully consistent with the results of earlier studies as 
well as folk game theory.   
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Illustration of level-k analyses of matrix games with unique mixed-strategy equilibria: 
M. M. Kaye’s The Far Pavilions 
 

 
I now give a simple example that illustrates applications of level-k models.  
 
 
 
 
In M. M. Kaye’s novel The Far Pavilions, the main male character, Ash, is trying to escape from 
his Pursuers along a North-South road. 
 
 
 
 
Ash and his Pursuers have strategically simultaneous choices between North and South—although 
their choices are time-sequenced, the Pursuers must make their choice irrevocably before they learn 
Ash’s choice. 



 51

If the Pursuers catch Ash, they gain 2 and he loses 2. But South is warm, and North is the 
Himalayas with winter coming. Thus both Ash and the Pursuers gain an extra 1 for choosing South, 
whether or not Ash is caught: 
 

  Pursuers 
  South (q) North 

South (p) 3 
-1 

0 
1 Ash 

North 1 
0 

2 
-2 

  Far Pavilions Escape! 

 

Escape! has a unique equilibrium in mixed strategies, in which: 

 

3p + 1(1 – p) = 0p + 2(1 – p) or p = 1/4, and 

–1q +1(1 – q) = 0q –2(1 – q) or q = 3/4. 

 

This equilibrium responds to the payoff asymmetry between South and North in a decision-
theoretically intuitive way for Pursuers (because q = 3/4 > the 1/2 of equilibrium without the payoff 
asymmetry) but counterintuitively for Ash (because p = 1/4 < 1/2).
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Although the equilibrium does not fully reflect intuition, experimental data from such games 
suggest that people’s decisions often do reflect intuition. 
 
E.g., Camerer reports informally gathered data for a perturbed Matching Pennies game (see also 
Rosenthal, Shachat, and Walker (2003 IJGT)): 
 

 L (33%) R (67%) 

T (72%) 0 
2 

1 
0 

B (28%) 1 
0 

0 
1 

 Perturbed Matching Pennies 
 

 
The equilibrium mixed-strategy probabilities are Pr{T} = Pr{B} = 0.5 for Row and Pr{L} = 0.33 
and Pr{R} = 0.67 for Column.  
 
Although Column players are “right on” the equilibrium mixture, Row players overplay their 
superficially more attractive strategy T, not realizing that this allows a sophisticated Column to 
neutralize Row’s advantage.  

(Perhaps unsurprisingly, because that realization may require fixed-point reasoning.) 
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and the novel continues…  
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and the novel continues…romantically…  
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes North. The Pursuers—
unimaginatively—go South, Ash escapes, and the novel continues…romantically…for 900 more 
pages. 

 

In equilibrium the observed outcome {Ash North, Pursuers South} has probability (1 – p)q = 9/16: 
a fit much better than random. 

But try a level-k model with a uniformly random L0: 

 
 Types Ash Pursuers 

L0 uniformly random uniformly random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 

Lk types’ decisions in Far Pavilions Escape! 
 
 
The level-k model precisely and correctly predicts the outcome provided that Ash is either L2 or L3 
and the Pursuers are either L1 or L2. 
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How do we know Ash’s type (L2 or L3)? One advantage of using fiction as data is that the narrative 
sometimes reveals cognition as well as decisions:  
 
 
Ash’s mentor—Koda Dad, played by Omar Sharif in the HBO miniseries—gives Ash the following 
advice (p. 97 of the novel): 
 
“…ride hard for the north, since they will be sure you will go southward where the climate is 
kinder…”). 
 
 
Koda Dad’s advice reflects the belief that the Pursuers think Ash is L1, so that Ash will go south 
because it’s “kinder” and that (assuming that the Pursuers are uniform random L0) the Pursuers are 
no more likely to catch him there. 
 
 
Thus Koda Dad must think the Pursuers are L2. 
 
 
Hence Koda Dad advises Ash to think like an L3, and go North. 
 
 
L3 ties my personal best k for a clearly explained level-k type in fiction. I suspect even postmodern 
fiction may have no Lks higher than L3: they wouldn’t be credible. I also doubt that one can find 
fixed-point reasoning.  
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Of course, most applications don’t come with an omniscient author identifying characters’ strategic 
thinking types for us.  
 
 
 
But if the game is clearly defined and we have enough data, we can specify a level-k model, derive 
its implications, and use them to estimate the population frequency distribution of types and their 
precisions, as illustrated below. 
 
 
 
Alternatively, we can calibrate the model using previous estimates for similar applications.  
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Returning to Camerer’s experiment, for example, an L1 Row plays T and an L1 Column plays L 
and R with equal probabilities (for logit or alternative payoff-driven error structures). An L2 Row 
plays T and an L2 Column plays R. An L3 Row plays B and an L3 Column plays R. 
 

 L (33%) R (67%) 

T (72%) 0 
2 

1 
0 

B (28%) 1 
0 

0 
1 

 Perturbed Matching Pennies 
 
With a plausible mixture of 50% L1s, 30% L2s, and 20% L3s in both player roles—it’s natural to 
impose symmetry when roles are filled randomly from the same population—the level-k model’s 
predicted choice frequencies are 80% T for Row and 25% L for Column: Not a perfect fit, but 
reasonable. 

The outcome resembles a “purified” mixed-strategy equilibrium.     
 
But the level-k model predicts choice frequencies that deviate from the equilibrium probabilities for 
Row, Pr{T} = Pr{B} = 0.5, in the intuitive direction.  
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Similarly, in Far Pavilions Escape!, even though Lk types don’t normally randomize, the 
heterogeneity of thinking reflected by the estimated distribution implies a mixture of decisions that 
reflects strategic uncertainty. 

    

  Pursuers 
  South (q) North 

South (p) 3 
-1 

0 
1 Ash 

North 1 
0 

2 
-2 

  Far Pavilions Escape! 

 

Suppose, for example, that each player role is filled from a 50-50 mixture of L1s and L2s and there 
are no errors. 

Then Ash goes South with probability 0.5 > 1/4 (the equilibrium probability) and the Pursuers go 
South with probability 1 > 3/4 (the equilibrium probability). 

Although the implied mixture of decisions again somewhat resembles a “purified” equilibrium, the 
model again deviates from equilibrium in the direction that intuition suggests: this time for both 
player roles. 
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Kahneman’s Entry Magic: asymmetric coordination via structure in entry games  
 
 
I now use a simple level-k model to suggest an explanation of Kahneman’s Entry Magic. 
 
 
In market-entry experiments, n subjects choose simultaneously between entering (“In”) and staying 
out (“Out”) of a market with given capacity. 
 
For simplicity, assume that Out yields zero profit, no matter how many subjects enter. 
 
In yields a given positive profit if no more subjects enter than a given market capacity; but a given 
negative profit if too many enter. 
 
 
I will simplify Camerer, Ho, and Chong’s (2004 QJE, Section III.C) CH analysis of n–person entry 
games to a level-k analysis of two-person Battle of the Sexes games, which are like two-person 
market-entry games with capacity one, and which makes the central points as simply as possible.    
 
(Goldfarb and Yang (2008 Journal of Marketing Research) give a CH analysis of field data on 
analogous technology adoption games.) 
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Because players have no way to distinguish their symmetric roles, it is not sensible to predict 
systematic differences in behaviour across roles.  
 
 
The natural equilibrium benchmark prediction is the symmetric mixed-strategy equilibrium, in 
which each player enters with a probability that makes all players indifferent between In and Out. 
 
 

 In Out 

In  0 
0 

1 
a 

Out a 
1 

0 
0 

 Battle of the Sexes 
 
 
 
In Battle of the Sexes with a > 1, the unique symmetric equilibrium has  

 
 

p ≡ Pr{In} = a/(1+a) for both players. 
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This mixed-strategy equilibrium yields an expected number of entrants roughly equal to market 
capacity (2a/(1+a) ≈ 1, at least for a close to 1), but there is a positive probability that either too 
many or too few will enter.         
 
 
With p ≡ Pr{In} = a/(1+a) for both players, the equilibrium expected coordination rate is 2p(1 – p) 
= 2a/(1+a)2. 
 
 
Players’ equilibrium expected payoffs are a/(1+a), which is < 1 when a > 1: worse for each player 
than his worst pure-strategy equilibrium. 
 
 
 
 
Even so, Kahneman's  subjects regularly had better ex post coordination (number of entrants 
stochastically closer to market capacity) than in the symmetric equilibrium. 
 
 
This led Kahneman to remark, “…to a psychologist, it looks like magic.” 
 
(But no one would be at all surprised by this unless he believed in equilibrium, so Kahneman 
should have said, “…to a game theorist, it looks like magic.”)  
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Now consider a level-k model in which each player follows one of four types, L1, L2, L3, or L4, 
with each role filled by a draw from the same distribution. 
 
Assume for simplicity that the frequency of L0 is 0, and that L0 chooses its action uniformly 
randomly, with Pr{In} = Pr{Out} = 1/2. 
 
L1s mentally simulate L0s’ random decisions and best respond, thus, with a > 1, choosing In; L2s 
choose Out; L3s choose In; and L4s choose Out. 
  

 In Out 

In  0 
0 

1 
a 

Out a 
1 

0 
0 

 Battle of the Sexes 
 
 

Type pairings L1 L2 L3 L4 
L1 In, In In, Out In, In In, Out 
L2 Out, In Out, Out Out, In Out, Out 
L3 In, In In, Out In, In In, Out 
L4 Out, In Out, Out Out,In Out, Out 
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The predicted outcome distribution is determined by the outcomes of the possible type pairings and 
the type frequencies. 
 
 
If both roles are filled from the same distribution, players have equal ex ante payoffs, proportional 
to the expected coordination rate.  
 
 
L3 behaves like L1, and L4 like L2. Lumping L1 and L3 together and letting v denote their total 
probability, and lumping L2 and L4 together, the expected coordination rate is 2v(1 – v). 
 
This is maximized at v = ½, where it takes the value ½. 
 
 
Thus for v near ½, which is behaviorally plausible, the coordination rate is close to ½. (For more 
extreme values the rate is worse, → 0 as v→ 0 or 1.) 
 
 
By contrast, the mixed-strategy equilibrium expected coordination rate, 
2a/(1 + a)2, is maximized when a = 1, where it takes the value ½. 
 
As a → ∞, 2a/(1 + a)2 → 0 like 1/a. Even for moderate values of a, the level-k coordination rate is 
higher than the equilibrium rate. 
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The analysis illustrates the importance of the structured heterogeneity of strategic thinking a level-k 
model allows. 
 
The level-k model, and the closely related CH model, yield a completely different view of 
asymmetric coordination via structure than a traditional refined-equilibrium model: 
 
 
● Neither equilibrium nor refinements play any role in players’ thinking. 
 
 
● Coordination, when it occurs, is an accidental (though statistically predictable) by-product of 
 players’ non-equilibrium decision rules.  
 
 
● Even though decisions are simultaneous and there is no communication or observation of the 

other’s decision, the predictable heterogeneity of strategic thinking allows more sophisticated 
players such as L2s to mentally simulate the decisions of less sophisticated players such as L1s 
and accommodate them, just as Stackelberg followers would. 

 
 
● This mental simulation doesn’t work perfectly, because an L2 is as likely to be paired with 

another L2 as an L1. Neither would it work if strategic thinking were homogeneous. But it’s very 
surprising that it works at all. 
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Yuschenko and Lake Wobegon: Framing effects in zero-sum two-person games 

 

Consider Rubinstein, Tversky, and Heller’s 1993, 1996, 1998-99 (“RTH”) experiments with zero-
sum, two-person “hide-and-seek” games with non-neutral framing of locations, analyzed by 
Crawford and Iriberri 2007 AER. 

 

A typical seeker’s instructions (a hider’s instructions are analogous): 

Your opponent has hidden a prize in one of four boxes arranged in a row. The boxes are marked as 
shown below: A, B, A, A. Your goal is, of course, to find the prize. His goal is that you will not find 
it. You are allowed to open only one box. Which box are you going to open? 
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RTH’s framing of the hide-and-seek game is non-neutral in two ways: 
 
 
● The “B” location is distinguished by its label.  
 
 
● The two “end A” locations may be inherently focal. 
 
 
 
 
This gives the “central A” location its own brand of uniqueness as the “least salient” location. 
 
 
Mathematically this “negative” uniqueness is analogous to the “positive” uniqueness of “B”. 
 
 
However, Crawford and Iriberri’s (2007 AER) analysis shows that its psychological effects are 
completely different. 
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RTH’s design is important as a tractable abstract model of a non-neutral cultural or geographic 
frame, or “landscape.” 

 

Hide-and-seek games are often played on such landscapes, even though traditional game theory 
rules out any influence of the landscape by fiat. 

 

This is well illustrated by the Yuschenko and Lake Wobegon quotations: 

 

“Any government wanting to kill an opponent…would not try it at a meeting with government 
officials.” 
 
“…in Lake Wobegon, the correct answer is usually ‘c’.” 
 
 
Yuschenko’s meeting with government officials is analogous to RTH’s B, although in that example 
there’s nothing like RTH’s end locations. 
 
With four possible choices arrayed left to right in the zero-sum game between a test designer 
deciding where to hide the correct answer and a clueless test-taker trying to guess where it is, the 
Lake Wobegon example is very close to RTH’s design. 
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RTH’s hide-and-seek game has a clear equilibrium prediction, which leaves no room for framing to 
systematically influence the outcome. 
 
 
The traditional theory of zero-sum two-person games is the strongpoint of noncooperative game 
theory, where the arguments for playing equilibrium strategies are immune to most of the usual 
counterarguments. 
 
 
Yet framing has a strong and systematic effect in RTH’s experiments, qualitatively the same 
around the world, with Central A (or its analogs in other treatments, as explained in the paper) most 
prevalent for hiders (37% in the aggregate) and even more prevalent for seekers (46%). 
 
 
In this game any strategy, pure or mixed, is a best response to equilibrium beliefs. Thus one might 
argue that deviations do not violate the theory. 
 
However, systematic deviations of aggregate choice frequencies from equilibrium probabilities 
must (with very high probability) have a cause that is partly common across players. They are 
therefore symptomatic of systematic deviations from equilibrium. 
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Crawford and Iriberri’s Table 1 
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RTH’s results raise several puzzles: 
 
 
● Hiders’ and seekers’ responses are unlikely to be completely non-strategic in such simple games. 
 So if they aren’t following equilibrium logic, what are they doing? 
 
● On average hiders are as smart as seekers, so hiders tempted to hide in central A should realize  

that seekers will be just as tempted to look there. Why do hiders allow seekers to find them 32% 
of the time when they  could hold it down to 25% via the equilibrium mixed strategy? 

 
● Further, why do seekers choose central A (or its analogs) even more often (46% in Table 3 
 below) than hiders (37%)?   
 
 
 
Note that although the payoff structure of RTH’s game is asymmetric, QRE ignores labeling and 
(logit or not) coincides with equilibrium in the game, and so does not help to explain the 
asymmetry of choice distributions. 
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The role asymmetry in subjects’ behavior and how it is linked to the game’s payoff asymmetry 
points strongly in the direction of a level-k or CH model, and is a mystery from the viewpoint of 
other theories I am aware of. 
 
 
In constructing such a model, defining L0 as uniform random would be unnatural, given the non-
neutral framing of decisions and that L0 describes others’ instinctive responses. 
 
(It would also make Lk the same as Equilibrium for k > 0.) 
 
 
But a level-k model with a role-independent L0 that probabilistically favors salient locations yields 
a simple explanation of RTH’s results. 
 
 
Assume that L0 hiders and seekers both choose A, B, A, A with probabilities p/2, q, 1– p – q, p/2 
respectively, with p > ½ and q > ¼. 
 
L0 favors both the end locations and the B location, equally for hiders and seekers, but the model 
lets the data decide which is more salient.  
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For behaviorally plausible type distributions (estimated 0% L0, 19% L1, 32% L2, 24% L3, 25% 
L4—almost hump-shaped), a level-k model gracefully explains the major patterns in RTH’s data, 
the prevalence of central A for hiders and its even greater prevalence for seekers:  
 
 
 
● Given L0’s attraction to salient locations, L1 hiders choose central A to avoid L0 seekers and L1 

seekers avoid central A searching for L0 hiders (the data suggest that end locations are more 
salient than B).  

 
● For similar reasons, L2 hiders choose central A with probability  between 0 and 1 (breaking 
 payoff ties randomly) and L2 seekers choose it with probability 1. 

 
● L3 hiders avoid central A and L3 seekers choose it with probability  between zero and one 
 (breaking payoff ties randomly).  

 
● L4 hiders and seekers both avoid central A. 
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Crawford and Iriberri’s Table 3 
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Note that only a heterogeneous population with substantial frequencies of L2 and L3 as well as L1 
(estimated 0% L0, 19% L1, 32% L2, 24% L3, 25% L4) can reproduce the aggregate patterns in the 
data. 
 
(Even though there is a nonnegligible estimated frequency of L4s, they don’t really matter here 
because they never choose central A (Table 2 above), hence they are not implicated in the major 
aggregate patterns. 
 
For the same reason, their frequency is not well identified in the estimation.)  

 

 

For example, Crawford and Iriberri estimate (Table 3 above, row 5) that the salience of an end 
location is greater than the salience of the B (p > 2q). 
 
 
Given this, a 50-50 mix of L1s and L2s in both player roles would imply (Table 2 above, right-most 
columns in each panel) 75% of hiders but only 50% of seekers choosing central A, in contrast to 
the 37% of hiders and 46% of seekers who did choose central A. 
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In Crawford and Iriberri’s analysis of RTH’s data, the role asymmetry in aggregate behavior 
follows naturally from the asymmetry of the game’s payoff structure, via hiders’ and seekers’ 
asymmetric responses to L0’s role-symmetric choices. 

 

 

Allowing L0 to vary across roles as in Bacharach and Stahl 2000 GEB, although it yields a small 
improvement in fit (Table 3), would beg the question of why subjects’ responses were so role-
asymmetric. 

 

Crawford and Iriberri’s analysis also suggests that allowing L0 to vary across roles leads to 
overfitting.   
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RTH took the main patterns in their data as evidence that their subjects did not think strategically: 
 
 
 
● “The finding that both choosers and guessers selected the least salient alternative suggests little 
or no strategic thinking.” 
 
 
 
● “In the competitive games, however, the players employed a naïve strategy (avoiding the 
endpoints), that is not guided by valid strategic reasoning. In particular, the hiders in this 
experiment either did not expect that the seekers too, will tend to avoid the endpoints, or else did 
not appreciate the strategic consequences of this expectation.” 
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RTH could have said the same thing about the Yuschenko quotation: 
  

● “Any government wanting to kill an opponent…would not try it at a meeting with government 
 officials”, 

 

to which a game theorist would (almost involuntarily) respond: 

 

● “If that’s what people think, a meeting with government officials is exactly where I would try to 
 poison Yushchenko.” 
 
 
 
But strategic thinking need not be equilibrium thinking. 
 
 
Crawford and Iriberri’s analysis suggests that RTH’s subjects were actually quite strategic and in 
fact more than usually sophisticated (with many L3s and even some L4s, even though in most 
settings L1s and L2s are more common)—they just didn’t follow equilibrium logic. 
 
 
Crawford and Iriberri’s analysis suggests that the Yushchenko quotation simply reflects the 
reasoning of an L1 poisoner, or equivalently of an L2 investigator reasoning about an L1 poisoner. 
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Crawford and Iriberri tested for portability by using the leading alternative models, estimated from 
RTH’s data, to “predict” subjects’ initial responses in the closest relative of RTH’s games in the 
literature, O’Neill’s (1987 PNAS) famous card-matching game. 

O’Neill’s game raises the same kinds of strategic issues as RTH’s games, but with more complex 
patterns of wins and losses and different framing. 

In O’Neill’s card-matching game, players simultaneously and independently choose one of four 
cards: A, 2, 3, J. 

One player, say the row player—but the game was presented to subjects as a story, not a matrix—
wins if there is a match on J or a mismatch on A, 2, or 3; the other player wins in the other cases. 

 

 A 2 3 J 

A 1 
0 

0 
1 

0 
1 

1 
0 

2 0 
1 

1 
0 

0 
1 

1 
0 

3 0 
1 

0 
1 

1 
0 

1 
0 

J 1 
0 

1 
0 

1 
0 

0 
1 

O’Neill’s card-matching game 
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O’Neill’s game is like a hide-and-seek game, except that each player is a hider (h) for some 
locations and a seeker (s) for others.  
 
 
A, 2, and 3 are strategically symmetric, and equilibrium (without payoff perturbations) has Pr{A} = 
Pr{2} = Pr{3} = 0.2, Pr{J} = 0.4. 
 
 
 

 A (s) 2 (s) 3 (s) J (h) 
A 
(h) 

1 
0 

0 
1 

0 
1 

1 
0 

2 
(h) 

0 
1 

1 
0 

0 
1 

1 
0 

3 
(h) 

0 
1 

0 
1 

1 
0 

1 
0 

J (s) 1 
0 

1 
0 

1 
0 

0 
1 

O’Neill’s card-matching game 
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The portability test directly addresses the issue of whether level-k models allow the modeler too 
much flexibility.  
 
With regard to the flexibility of L0, first consider how to adapt our “psychological” specification of 
L0 from RTH’s to O’Neill’s game. 
 
“Anyone” should agree on the right kind of L0: 

● A and J, “face” cards and end locations, are more salient than 2 and 3, but the specification 
 should allow either A or J to be more salient. 
 
 
That the RTH estimates suggested that their end locations are more salient than the B label does not 
dictate whether A or J is more salient, though it does reinforce that they are both more salient than 
2 and 3. 
 
 
This is a psychological issue, but because it is “only” a psychological issue, it is easy to gather 
evidence on it from different settings, and such evidence is more likely to yield convergence than if 
it were partly a strategic issue.     
 
 
Further, because all that matters about L0 is what it makes L1s do in each role, the remaining 
freedom to choose L0 allows only two models. 
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With regard to the flexibility of the type frequencies, empirically plausible frequencies often imply 
severe limits on what decision patterns a level-k model can generate.   
 
 
Readers of the first version of Crawford and Iriberri (2007 AER) often asked if the model could 
explain behavior in games other than RTH’s. 
 
 
O’Neill’s game was the most natural choice in the experimental literature. 
 
 
We did not have his data, but discussions of it (e.g. McKelvey and Palfrey (1995 GEB)) had been 
dominated by an “Ace effect”: aggregated over all 105 rounds, row and column players played A 
with frequencies 22.0% and 22.6%, significantly above the equilibrium 20%. 
 
(O’Neill speculated that this was because “…players were attracted by the powerful connotations 
of an Ace”. 

 

But—we thought—what about the equally powerful connotations of the Joker and its unique payoff 
role? They seem to make Joker even more salient than Ace, but in the aggregate data row subjects 
chose Joker with frequencies of only 36%, and column subjects with frequencies of only 43%.) 
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We also knew that with a plausible specification of L0 and the resulting types’ decisions in 
O’Neill’s game (Tables A3 and A4 from the paper’s web appendix, reproduced on the next two 
slides), no behaviorally plausible level-k model could make a row player (“Player 1”) play A more 
than the equilibrium 20%: 
 
 
Tables A3 and A4 show that, excluding L0s (which normally have 0 estimated frequencies) and 
restricting attention to Player 1, when A is more salient (3j – a < 1) only L4 chooses A, and that 
with probability at most 1/3 (Table A3); and that when A is less salient (3j – a > 1) only L3 chooses 
A, and that with probability at most 1/3 (Table A4).  
 
 
This is logically possible, but in the first case it would require a population of 60% or more L4s, 
and in the second case it would require 60% or more L3s: in each case behaviorally extremely 
unlikely on the available evidence. 
 
 
 
Thus, despite the flexibility of the estimated type distribution, the level-k model’s structure and the 
principles that guide the specification of L0 imply a strong restriction: that row players play A less 
than the equilibrium 20%.
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Despite our fear that our explanation of RTH's results would be discredited by O'Neill's Ace Effect, 
we decided to order and analyze O’Neill’s data, speculating, based on the level-k model’s success 
in RTH's and other games, that his subjects’ initial responses must not have had an Ace effect. 
 
The initial responses were:  

● 8% A, 24% 2, 12% 3, 56% J for rows, and 

● 16% A, 12% 2, 8% 3, 64% J for columns. 
 
No Ace effect!  
 
On the contrary, for initial responses there was a huge Joker effect, an order of magnitude stronger 
than the Ace effect in the time-aggregated data (but never before mentioned in the literature). 

(An order of magnitude stronger because (56 - 40)% and (64 - 40)% are respectively roughly ten 
times larger than (22 - 20)% and (22.6 - 20)%.) 
 
 
Unlike the putative Ace effect, the actual Joker effect (and the other frequencies) can be explained 
by a level-k model with a plausible L0 that probabilistically favors the salient A and J cards.  
 
(The analysis also suggests that the Ace effect in the time-aggregated data was an accidental by-
product of how subjects learned, not of salience at all.) 
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Crawford and Iriberri’s Table 5 
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Importantly, Crawford and Iriberri’s analysis traces the portability of the level-k model (in contrast 
to the alternative explanations considered in the paper)  to the fact that L0 is psychological rather 
than strategic, and that it is based on simple and universal intuition and evidence.  
 
 
 
If L0 were strategic, it would interact with the strategic structure in new ways in each new game, 
and it would be a rare event when one could extrapolate a specification from one game to another 
as Crawford and Iriberri did from RTH’s games to O’Neill’s. 
 
 
 
Thus, the definition of L0 as an instinctive, nonstrategic response is more that a convenient 
cognitive categorization: it is important for portability. 
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Adaptive Learning 
 
 
Experimental evidence strongly suggests that whenever people have opportunities to observe other 
people's decisions in analogous games, strategic thinking is eclipsed by adaptive learning.     
 
Learning models describe how players adjust their decisions over time in response to experience. 
 
The learning process is usually modeled as repetition of a fixed “stage game,” so that the analogies 
are perfect. 
 
The stage game is played either by a small group randomly selected from one or more 
populations—for example, random pairing to play a two-person game, with player roles filled 
either from the same or from identifiably separate populations—or sometimes by the entire 
population at once (as in Van Huyck, Cook, and Battalio’s (1997 JEBO) game discussed above). 
  
Players view decisions in the stage game as the objects of choice, and the dynamics of their 
decisions are modeled (either directly, or indirectly in terms of their beliefs) as adjusting in a 
direction that would increase payoffs, other things equal, given the current state of the system.  
 
Players’ decisions and roles are distinguished by commonly understood labels: the “language” in 
which they encode their experience, and in which any convention that emerges will be expressed. 
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Convergence and equilibrium selection via learning in Van Huyck, Battalio, and Beil’s (1990 
AER, 1991 QJE, 1993 GEB) coordination experiments 
 
VHBB’s 1990 and 1991 designs 
 

Repeated play of player-role-symmetric coordination games in populations of subjects, interacting 
all at once (“large groups”) or in pairs drawn randomly (“random pairing”). 
 
Subjects chose simultaneously among 7 efforts, with payoffs and ex post optimal choices 
determined by own efforts and an order statistic, the population median or minimum effort in large 
groups or the current pair’s minimum with random pairing. 
 
There were five leading treatments, varying the order statistic (minimum in 1990, median in 1991), 
the size of the subject population, and the patterns in which they interact (minimum games were 
played either by the entire population of 14-16 or by random pairs, median games were played by 
the entire population of 9). 
 
Explicit communication was prohibited throughout, the order statistic was publicly announced after 
each play (with random pairs told only pair minima), and the structure was publicly announced at 
the start, so subjects were uncertain only about others’ efforts. 
 
The subject populations were large enough that subjects treated own influences on order statistic as 
negligible (the smallest “large” number in behavioral game theory is around four or five). 
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VHBB’s Leading Median and Minimum Payoff Tables 
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The random-pairing and large-group minimum games are larger versions of two-effort Stag Hunts. 
  
 

 Other Player   All Other Players 
  

Stag 
 

Rabbit 
   

All-Stag 
Not 

All-Stag 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit 0 
1 

1 
1 

 Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 

 
 
The stage games all have seven strict, symmetric, Pareto-ranked equilibria, with players’ best 
responses an order statistic of the population effort distribution. 
 
The games are like a meeting that can’t start until a given quorum is achieved—100% in the large-
group minimum game, 50% in the large-group median games. 
 
Intuitively, efficient coordination is more difficult, the larger the quorum or the larger the group, 
other things equal; but traditional equilibrium analysis and refinements don’t fully reflect this.  
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The games are also closely related to Larry Summers's Bank Runs example:  
“A crude but simple game, related to Douglas Diamond and Philip Dybvig’s (1983 JPE) celebrated 
analysis of bank runs, illustrates some of the issues involved here. Imagine that everyone who has 
invested $10 with me can expect to earn $1, assuming that I stay solvent. Suppose that if I go 
bankrupt, investors who remain lose their whole $10 investment, but that an investor who 
withdraws today neither gains nor loses. What would you do? Each individual judgment would 
presumably depend on one's assessment of my prospects, but this in turn depends on the collective 
judgment of all of the investors. 

Suppose, first, that my foreign reserves, ability to mobilize resources, and economic strength are so 
limited that if any investor withdraws I will go bankrupt. It would be a Nash equilibrium (indeed, a 
Pareto-dominant one) for everyone to remain, but (I expect) not an attainable one. Someone would 
reason that someone else would decide to be cautious and withdraw, or at least that someone would 
reason that someone would reason that someone would withdraw, and so forth. This…would likely 
lead to large-scale withdrawals, and I would go bankrupt. It would not be a close-run thing. 
…Keynes’s beauty contest captures a similar idea. 

Now suppose that my fundamental situation were such that everyone would be paid off as long as 
no more than one-third of the investors chose to withdraw. What would you do then? Again, there 
are multiple equilibria: everyone should stay if everyone else does, and everyone should pull out if 
everyone else does, but the more favorable equilibria seems much more robust.”—Lawrence 
Summers, “International Financial Crises: Causes, Prevention, and Cures,” (2000 AER). 

An n-person coordination game with Pareto-ranked equilibria. Summers presumes that some 
equilibrium will emerge, but his model of the influence of fragility on equilibrium selection may 
implicitly invoke initial responses to shocks followed by adaptive learning (although he cites 
Morris and Shin’s (1998 AER) non-adaptive “global games” analysis). 
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The game Summers describes can be represented by a payoff table as follows: 

 

  Summary statistic 
  In Out 

In  1 -10 Representative 
player Out 0 0 

  Bank Runs 

 

The summary statistic is a measure of whether or not the required number of investors stays In. 

 

In Summers’s first example, all investors must stay In to prevent the bank from collapsing, so the 
summary statistic takes the value In if and only if all (but the representative player) stay In.  

In his second example two-thirds of the investors need to stay In, so the summary statistic takes the 
value In if and only if (adding in the representative player) this is the case. 

 

In each example there are two pure-strategy equilibria: “all-In” and “all-Out”. 
 
(There is also a mixed-strategy equilibrium in which the probability that the summary statistic 
equals In just balances the benefits of In and Out; but this equilibrium is behaviorally implausible.)    
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Aside: Initial responses in Summers's Bank Runs game 
 
What happens depends on players' initial responses to the game as shaped by their strategic 
thinking: which equilibrium's basin of attraction, “all-In” or “all-Out”, the initial responses fall into.   
 
The leading models of initial responses for games like this in traditional game theory are Harsanyi 
and Selten's notions of payoff- and risk-dominance.     
 
Payoff-dominance favors equilibria that are Pareto-superior to other equilibria, hence here uniquely 
favors the all-In equilibrium, for any value of the population size n and any value of the deviation 
costs which here equals -10. This seems behaviorally quite unlikely even for small n and small -10.  
 
The basic idea of risk-dominance (the precise formalization is controversial) is to choose the 
equilibrium with the largest “basin of attraction” in beliefs space.  
 
In 2x2 symmetric two-person games, this amounts to selecting the equilibrium that results if each 
player best responds to a uniform random prior over the other’s strategies (just as L1 does when L0 
is uniform random). 
 
Thus for population size 2, risk-dominance favors the all-Out equilibrium. 
 
In 2x2 symmetric games for population n > 2, risk-dominance again favors the equilibrium with the 
larger basin of attraction in beliefs space. Assuming independence, with Summers’s payoffs risk-
dominance favors the all-Out equilibrium for any n > 2, even if only two-thirds need to stay In. 
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Now consider a level-k model. 
 
 
In a realistic application L0 would have to reflect market psychology, but to illustrate how the 
model works, I assume a uniform random L0.  
 
 
In n-person games it is also possible to define a level-k model in which L0 is correlated across 
players instead of independent.  

(Risk-dominance is usually defined assuming independence, but correlation is possible there too. 
Correlation is irrelevant in defining payoff-dominance.) 
 
 
In Summers’s first example, where the summary statistic takes the value In only when all stay In, 
L1's decision is Out with either independent or correlated L0. 
 
In Summers’s second example, where the summary statistic takes the value In when two-thirds or 
more stay In, L1's decision is still Out in either case. 
 
 
In all cases L2 and higher types also stay Out, so if the frequency of L0 is 0, the outcome is 
observationally equivalent to the all-Out equilibrium. 
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Now consider an example like Bank Runs in which the summary statistic takes the value In when 
one-third or more of the investors stay In. 
 
 
If, say, n = 6, then given a choice of In by the representative player himself, the summary statistic 
will be In unless all five other players stay Out. 
 
 
If L0 is independent, L1 assigns all others staying Out probability 1/25 ≈ 0.03. 
 
 
If L0 is correlated, L1 assigns all others staying Out probability ½. 
 
 
 
In the former case, L1 and therefore all higher Lk types stay In, and the outcome is observationally 
equivalent to the all-In equilibrium. 
 
 
In the latter case, L1 and therefore all higher Lk types stay Out, and the outcome is observationally 
equivalent to the all-Out equilibrium. 
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In each of these symmetric coordination games, the level-k model derives the outcome from 
strategic responses to instinctive reactions to the game. 
 
 
 
Unlike traditional coordination refinements, the level-k approach is easy to combine with richer 
models of market psychology, via L0.   
 
 
And because such an L0 is a psychological rather than a strategic concept, it is easier to extrapolate 
its specification across games, as illustrated below. 
 
 
 

Again neither equilibrium nor refinements play any role in players’ thinking. 

 

 

And coordination, when it occurs, is again an accidental by-product of players’ non-equilibrium, 
level-k decision rules.  
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Because in these symmetric coordination games L1 responses to a uniform random L0 are in 
equilibrium, there is no “magic”: 
 
 
 
The level-k model reduces to an equilibrium selection device, which coincides here with risk-
dominance, but need not do so in general. 
 
 
 
In 2×2 symmetric coordination games L1 responses to a uniform random L0 also coincide with the 
equilibrium selected by a global games analysis. 
 
 
 
Selecting an equilibrium via L1 responses seems empirically more promising, because L1 responses 
are less cognitively taxing and are directly suggested by experimental evidence. 
 
 
End of aside 
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VHBB’s 1990 and 1991 results 
 
The five leading treatments all evoked similar initial responses (table from Crawford (1991 GEB)). 

 
Inexperienced subjects’ initial strategic thinking doesn’t react strongly to order statistic or group 
size. 
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Thus the strong treatment effects in subsequent outcomes are due to the dynamics of learning.     
Subjects almost always converged to some equilibrium. 
 
But the dynamics varied with the treatment variables (order statistic, group size, interaction 
pattern), with large differences in drift, history-dependence, rate of convergence, and equilibrium 
selection: 
 
 
● In 12 out of 12 large-group median trials, there was near-perfect “lock-in” on the initial median 
 (even though it varied across runs and was usually inefficient) 

 
 

● In 9 out of 9 large-group minimum trials, there was very strong downward drift, with subjects 
 always approaching the least efficient equilibrium 
 

 
● In 2 out of 2 random-pairing minimum trials, there was very slow convergence, no discernible 
 drift, and moderate inefficiency 
 
 
Comparing the first two reveals an “order statistic” or “robustness” effect, with coordination less 
efficient the smaller the groups that can disrupt desirable outcomes. 
 
Comparing the last two reveals a “group size” effect, in which coordination is less efficient in 
larger groups (holding the order statistic constant, measured from the “bottom”). 
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VHBB’s 1993 design and results 
 
 
VHBB’s (1993 GEB) design was the same as their 1991 design, with repeated play of one of the 
1991 median games, but with the right to play auctioned each period to the highest 9 bidders in a 
population of 18 (an English clock auction, with the same price paid by all winning bidders). 
 
 
The market-clearing price was publicly announced after each period’s auction, the median was 
publicly announced after each period’s play, and the structure was publicly announced at the start. 
 
 
The stage game has a range of symmetric equilibria, in which all bid the payoff of some 
equilibrium of the median game and play that equilibrium, unless others bid differently. 
 
 
In 8 of 8 trials, subjects quickly bid the price to a level that could only be recouped in the most 
efficient equilibrium and then converged to that equilibrium: strong, precise selection among a 
wide range of equilibria. 
 
 
Auctioning the right to play had a strong efficiency-enhancing effect via focusing subjects’ beliefs 
on more efficient ways to coordinate—a new and potentially important mechanism by which 
competition promotes efficiency. 
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Explaining VHBB’s 1990 and 1991 results 
 
 
"Rational learning" 
 
 
One possible source of explanations of VHBB's results is a rational learning model, which models 
the learning process as an equilibrium in the repeated game that describes the entire learning 
process.   
 
 
  
Rational learning is unhelpful in explaining VHBB’s 1990 and 1991 results because any pattern of 
perfectly coordinated jumping from one pure-strategy equilibrium to another over time is a rational 
learning equilibrium. 
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Deterministic evolutionary dynamics 
 
VHBB’s results can be mostly (but not entirely) understood via a simple evolutionary basin of 
attraction story proposed in Crawford (1991 GEB). 
 
In deterministic evolutionary dynamics, a large population or populations of players repeatedly 
play a game, without or with distinguished roles. 
 
Individual players normally play only pure actions, with payoffs determined by their own actions 
and the population action frequencies. 
 
Players in a given player role are identical but for their actions.  
 
In biology the law of motion of the population action frequencies is derived, usually with a 
functional form known as the replicator dynamics, from the assumption that players inherit their 
actions unchanged from their parents, who reproduce at rates proportional to their current payoffs. 
 
In economics similar dynamics are derived from plausible assumptions about individual 
adjustment.    
 
The usual goal is to identify the locally stable steady states of the dynamics. 
 
If the dynamics converge, they converge to a steady state in which the actions that persist are 
optimal in the stage game, given the limiting action frequencies; thus, the limiting frequencies are 
in Nash equilibrium. 
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Even though players’ actions are not rationally chosen—indeed,  not even chosen—the population 
collectively “learns” the equilibrium as its frequencies evolve, with selection doing the work of 
rationality and strategic sophistication. 
 

 

Deterministic evolutionary dynamics have two advantages over traditional equilibrium analyses 
(including rational learning models) for the purpose of explaining results like VHBB’s: 

 

 

Together with the dispersion of initial responses, the effect of the order statistic on the sizes of the 
basins of attraction begins to capture the interaction between strategic uncertainty and learning 
dynamics. 

 

 

And the dynamics give a rudimentary account of history-dependent equilibrium selection, in which 
the population always converges to the equilibrium whose basin of attraction includes its initial 
state.  
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Imagine that there are only two efforts as in Stag Hunt, not seven: 
 
 

 Other Player   All Other Players 
  

Stag 
 

Rabbit 
   

All-Stag 
Not 

All-Stag 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit 0 
1 

1 
1 

 Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 

 
 
Graph the expected payoffs of high (Stag) and low (Rabbit) effort against the population frequency 
of high effort in the random pairing and large-group minimum games and the large-group median 
game. 
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In the large-group median game, the all-Stag and all-Rabbit equilibria are both locally stable. 
 

 
By symmetry, random shocks are neutral, equally likely to flip the population from all-Stag to all-
Rabbit or vice versa. 
 
With random initial conditions, the population would be equally likely to converge to all-Stag or 
all-Rabbit. If the initial conditions (strategic thinking) favor one equilibrium, then its probability of 
being selected is higher. 
 
In the seven-effort version of the game that VHBB studied, if learning always makes subjects 
adjust their efforts toward the current value of the median, then the population converges to the 
median without changing it (a general property of order statistics like the median). 
 
Even with random shocks, the median is just as likely to go up as it is to go down. 
 
Either way, the learning dynamics have no up or down trend; and (given the dampening effect of 
the median on shocks) the population is very likely to “lock in” on the initial median, as it did in 
VHBB’s median experiments. 
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In the random-pairing minimum game, the all-Stag and all-Rabbit equilibria are again both locally 
stable. 

 
Random shocks are again neutral; and with random initial conditions, the population would be 
equally likely to converge to all-Stag or all-Rabbit. 
 
 
Crawford (1995 Econometrica) shows that in the seven-effort version of this game that VHBB 
studied (i.e. for their payoffs), it’s actually optimal for a (risk-neutral) player to set his effort equal 
to his forecast of the median effort in the entire population.  
 
Thus, just as in the large-group median game, the learning dynamics have no up or down trend and 
the population is likely to “lock in” on the initial median. 
 
 
However, with random pairing a subject samples only a small fraction of the population effort 
distribution each period (his current partner’s effort is an estimate of the population median, but a 
very noisy one), so convergence will be much slower, as it was in VHBB’s experiments. 
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Finally, in the large-group minimum game, the all-Rabbit equilibrium is locally stable but the all-
Stag equilibrium is locally unstable. Starting from all-Stag, any shock, however small, will make 
the population converge to all-Rabbit.  
 

 
 
This makes the strong convergence to the equilibrium with lowest effort VHBB observed in the 
large-group minimum game plausible, but in this case the story is more complicated. 

 
 
In the seven-effort large-group minimum game, if learning always made subjects adjust their efforts 
toward the current value of the minimum, then the population would converge monotonically to the 
initial minimum without ever changing it.  
 
 
This result, formalized in Proposition 1 of Crawford, “Learning Dynamics…”, is general across 
group sizes and order statistics in this class of games and evolutionary models.   
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However, in VHBB’s experiments the initial minimum was above one in five out of seven sessions, 
but it always converged quickly down to one. E.g.: 
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Crawford (1995 Econometrica) shows that this happens because in the large-group minimum game, 
random shocks (which represent subjects’ inability to perfectly predict others’ adjustments) are not 
neutral as they were in the median game: 

 

 

Instead they tend to make the minimum go down, to an extent that can be approximately quantified.  
 
 
 
 
As in our intuition about the effect of a larger quorum or group suggests, the downward trend is 
stronger, the larger the group or the closer the order statistic (below the median) is to the minimum. 
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Adaptive learning models  
 
 
Crawford (1995 Econometrica), summarized in Crawford, “Learning Dynamics…”, shows that the 
dynamics and limiting outcomes in VHBB’s (1990 AER, 1991 QJE) games can be more fully 
understood via an adaptive learning model with heterogeneous beliefs. 
 
 
 
The model assumes that players ignore their individual influences on the order statistic, learn to 
predict it, and independently choose their optimal efforts. 
 
 
 
Learning is beliefs-based, which seems closest to what the evidence suggests here. 
 
 
 
But learning is characterized in the style of the adaptive control literature, with players’ beliefs 
represented by the optimal efforts they imply. 
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The form of the learning rules and the “evolutionary” structure of VHBB's designs allow a simple 
statistical characterization of the dynamics of players’ beliefs and efforts.  
 
The model is a Markov process with nonstationary transition probabilities, whose long-run steady 
states coincide with pure-strategy stage-game equilibria. 
 
Its recursive structure and i.i.d. shocks rule out unmodeled coordination (as by deduction); 
coordination can occur only via independent responses to common observations of the order 
statistic. 
 
The key difference from stochastic evolutionary dynamics is that the heterogeneity of players’ 
beliefs, modeled as i.i.d. random perturbations about a common mean, converges to zero over time, 
rather than remaining with variance constant over time.   
 
This makes adaptive learning inherently nonstationary and nonergodic, allowing the extreme form 
of history-dependence seen in the data, in which the dynamics lock in on a particular equilibrium in 
the stage game. 

 
A full analysis normally depends on the values of behavioral parameters; the model provides a 
framework in which to estimate them, using data from the experiments, and allowing different 
parameter values in each treatment. 
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The estimated models give an adequate statistical summary of subjects’ behavior, and generate 
dynamics and limiting outcomes in each treatment whose probability distributions closely resemble 
the empirical frequency distributions in the experiments. 
 
 
 
Unless the heterogeneity of beliefs is eliminated very slowly, the learning dynamics converge, with 
probability 1, to one of the symmetric equilibria of the coordination game. 

 
 
 
The model’s implications for equilibrium selection can be summarized by the prior probability 
distribution of the limiting equilibrium, which is normally nondegenerate due to the persistent 
effects of strategic uncertainty. 
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The limiting outcome is determined by the cumulative drift before learning eliminates strategic 
uncertainty (faculty meeting example with varying quorum and group size). 
 
 
 
The form of the learning rules and the “evolutionary” structure of VHBB’s designs allow a closed-
form solution for players’ behavior as functions of the behavioral parameters, the treatment 
variables, and the shocks that represent strategic uncertainty, which shows how the outcome is built 
up period by period from the shocks that represent strategic uncertainty, whose effects persist 
indefinitely. 
 
 
Persistence makes the limiting outcome depend on empirical behavioral parameters. 
 
This dependence is eliminated in other approaches only by ruling out either significant strategic 
uncertainty (as in equilibrium analyses) or its persistent effects (as in long-run equilibrium 
analyses). 
 
 
Paraphrase of quotation [about optimality, not equilibrium] in Stephen Jay Gould’s Wonderful Life: 
 
“Equilibrium covers the tracks of history.”  
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Overall, the analysis yields the following conclusions: 
 
● Perfect history-dependence in 1991 median treatments is due to no drift and small variance; but 

convergence to initial median in 12 of 12 trials may overstate history-dependence: initial median 
“explains” 46-81% of variance of final median. 

 
● Lack of history-dependence in large-group minimum treatment is due to strong downward drift, 

which yields convergence to lower bound with very high probability; but convergence in 9 of 9 
trials may understate the difficulty of coordination: in simulations it occurred in 500 of 500 trials. 

 
● Slow convergence, weak history-dependence, and lack of trend in the random-pairing minimum 

treatment are due to no drift and subjects' observation of only their current pair's minimum, 
which is a very noisy estimate of the population median that determined their best responses. 

 
The analysis yields qualitative comparative dynamics conclusions about the direct effects of 
changes in treatment variables, holding the behavioral parameters constant: 
 
● Coordination is less efficient the lower the order statistic (the smaller the subsets of the 

population that can adversely affect the outcome), because small numbers of deviations are more 
likely than large numbers. 

 
● Coordination is less efficient in larger groups (holding the order statistic constant, measured from 
 the bottom) because it requires coherence among more independent decisions. 
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Explaining VHBB’s 1993 results  
 
Crawford and Broseta (1998 AER), following Crawford (1995 Econometrica), show that this effect 
can be understood as following from effects that formalize “order statistic,” “optimistic subjects,” 
and “forward induction” intuitions. 
 
The optimistic subjects and order statistic effects together have approximately the same magnitude 
in VHBB’s environment (where the right to play a nine-person median game was auctioned in a 
group of 18) as the order statistic effect in an 18-person coordination game without auctions in 
which payoffs and best responses are determined by the fifth highest (the median of the nine 
highest) of all 18 players’ efforts. 
 
Auctioning the right to play a 9-person median game in a group of 18 effectively turns the game 
into a “75th percentile” game (0.75 = 13.5/18), whose order statistic effect contributes a large 
upward drift as Crawford’s (1995) analysis suggests there would have been in such a game without 
auctions. 
 
Crawford and Broseta’s analysis attributes the other half of the efficiency-enhancing effect of 
auctions in VHBB’s environment to a strong forward induction effect.   
 
The analysis shows that coordination is more efficient with more intense competition for the right 
to play, because it yields higher prices for a given level of dispersion in bidding strategies, and it 
increases the optimistic subjects effect. 
 
This effect should extend to related environments, but may not always yield full efficiency. 


