Studying Strategic Thinking by Monitoring Search for Hidden Payoff Information

Miguel A. Costa-Gomes, University of Aberdeen

And

Vincent P. Crawford, University of California, San Diego

Cemmap/ELSE Workshop

“Experimental Analysis of Procedural Rationality in Games and Decisions”

University College London, 4 March 2009
Introduction

This talk concerns experiments that study strategic thinking by eliciting subjects’ initial responses to series of different but related games, while monitoring and analyzing the patterns of subjects’ searches for hidden but freely accessible payoff information along with their decisions.

The talk is based on three papers:

Other experiments that study strategic thinking via search patterns

Costa-Gomes, Crawford, and Broseta, “Cognition and Behavior in Normal-Form Games: An Experimental Study,” Econometrica 2001 (“CGCB”)

Camerer and Johnson, “Thinking about Attention in Games: Backward and Forward Induction,” in Isabel Brocas and Juan Carrillo (editors), The Psychology of Economic Decisions, Volume Two: Reasons and Choices, Oxford, 2004

Experiments that study strategic thinking via search durations

Adapting methods introduced to the experimental game theory literature by CJ and CGCB—previously used extensively to analyze decisions, for example by Payne, Bettman, and Johnson 1993—CGC elicited subjects’ initial responses to a series of 16 two-person guessing games designed for this purpose, while monitoring and analyzing the patterns of subjects’ searches for hidden but freely accessible payoff information.

Following CGCB, CGC then used an explicit, procedurally rational model of cognition to analyze subjects’ searches along with their decisions.
GCG’s analysis shows that with careful design, subjects’ search patterns can sometimes directly reveal the algorithms used to choose their decisions, in such cases making it possible to identify subjects’ decision rules even without observing their decisions.

The analysis also shows that decisions and search are complementary, together making it possible to identify subjects’ decision rules more precisely than would be possible even with unlimited decision data.

CGC’s analysis also illustrates some novel analytical and econometric issues that arise in analyzing process data.
Motivation

The topic of studying strategic thinking via information search raises two questions of motivation:

- Why study strategic thinking when even unthinking people are likely eventually to converge to equilibrium anyway?

- Why study strategic thinking by monitoring and analyzing process data if the goal is only to predict decisions?
Why study strategic thinking?

Strategic thinking is an essential part of human interaction, but one whose importance from a behavioral point of view has been downplayed.

Most applications of game theory in economics and game theory rely on Nash equilibrium.

But while equilibrium can be viewed as a model of strategic thinking, there are many applications for which it is not an adequate model of behavior.
Players’ strategies will be in equilibrium if they are rational and have the same beliefs about each other’s strategies.

Accepting rationality for the sake of argument, there are two possible justifications for the assumption that players have the same beliefs:

- **Thinking**: If players have perfect models of each other’s decisions, strategic thinking will lead them to have the same beliefs immediately, and so play an equilibrium even in their initial responses to a game.

- **Learning**: Even without perfect models, if players repeatedly play analogous games, experience may eventually allow them to predict each others’ decisions well enough to play an equilibrium in the limit.
In many applications the theoretical conditions for learning to converge to equilibrium are approximately satisfied, and in such settings both experimental and field evidence tends to support assuming that steady-state strategy choices are in equilibrium (with some qualifications).

In applications where only long-run outcomes matter, or where equilibrium is unique, or where equilibrium selection does not depend on the details of learning, analysis can safely rely entirely on equilibrium.
However, many other applications involve games played without clear precedents, so that the standard learning justification for equilibrium is unavailable.

In other applications, eventual convergence to equilibrium is assured, but initial as well as limiting outcomes matter (e.g. FCC Spectrum auction).

And in still other applications, convergence is assured and only long-run outcomes matter, but the equilibrium is selected from multiple possibilities via history-dependent learning dynamics.

All such applications depend on reliably predicting initial responses to games, which may require a non-equilibrium model of strategic thinking.
As will be seen, empirically successful models of strategic thinking normally allow equilibrium behavior, but do not assume equilibrium in all games.

Instead they assume that players follow strategic but non-equilibrium decision rules, which yield decisions that mimic equilibrium in simple games, but may deviate systematically in more complex games.

The models thereby provide a way to predict, in a given game, whether players’ responses are likely to deviate from equilibrium, and if so, how.
Why study process data?

An experimental design could, in principle, separate the decisions implied by different kinds of strategic thinking well enough to allow us to infer thinking entirely from decisions.

But in economically interesting games, our ability to distinguish among models of strategic thinking is near the limits of experimental feasibility.

For example, although CGC’s design, described below, is quite powerful from the standpoint of studying decisions alone, it leaves open some important questions regarding subjects’ decision rules.
If decision data were free, it might be optimal to address open questions just by gathering more decision data, perhaps in new environments.

But decision data are far from free, and existing methods for gathering them are fairly easily adapted to gather process data at the same time.

Further, with careful design, monitoring search for hidden payoff information can give us an independent “take” on strategic thinking, one that is more directly related to cognition than are decisions.

As will be seen, monitoring search sometimes allows us to directly observe the algorithms subjects use to make their decisions, and to distinguish mistakes from intended behavior.

Thus, exclusive reliance on gathering more decision data seems unlikely always to be optimal: At least for studying thinking, good research strategies should be open to process as well as decision data, even if this requires developing new methods of analysis.
Outline of the talk

The talk begins by summarizing CGC’s experimental design.

It then discusses CGC’s results for subjects’ decisions, introducing the model based on strategic thinking “types” that underlies their analysis and highlighting econometric issues that remain open.

It next raises some questions regarding subjects’ thinking that are not adequately resolved by analyzing decisions alone, but which might be resolved by analyzing decisions and information search.
The talk then turns to CGC’s analysis of cognition and search.

The types used to analyze decisions play an essential role in analyzing search.

CGC’s model of cognition and search takes a procedural view of decision-making:

In a given game, a subject’s type first determines his search, and his type and search then jointly determine his decision.

In the analysis, the types provide a basis for the enormous space of possible decision and search sequences, imposing enough structure to allow us to describe subjects’ behavior in a comprehensible way and to make it meaningful to ask how their decisions and searches are related.

The talk concludes by summarizing CGC’s results for information search and highlighting open econometric issues involving search.
CGC’s experimental design

CGC’s experiments randomly and anonymously paired subjects to play a series of two-person guessing games, with no feedback between games.

The design suppresses learning from experience and repeated-game effects in order to elicit subjects’ initial responses, game by game.

The goal is to focus on how people model others’ decisions by studying strategic thinking “uncontaminated” by learning from experience.

“Eureka!” learning remains possible, but CGC tested for it and found it to be rare.

(The results yield insights into cognition that also help us think about how to model learning from experience, but that’s another story.)
CGC’s design combines the variation of the games each subject played of CJ’s 1993 design and Stahl and Wilson’s 1995 *GEB* design with the very large strategy spaces of Nagel’s 1995 *AER* and Ho, Camerer, and Weigelt’s (“HCW”) 1998 *AER* designs.

This combination greatly enhances the design’s power:

A subject’s profile of guesses forms a “fingerprint” that identifies his strategic thinking more precisely than is possible by observing his responses to a series of different games with small strategy spaces or any single game, even with a very large strategy space.
In CGC’s two-person guessing games, each player has a lower and an upper limit, both strictly positive, each taking one of two possible values. However, players are not required to guess between their limits: Instead guesses outside the limits are automatically adjusted up to the lower or down to the upper limit as necessary—a trick to enhance the separation of decision rules via their information search implications.

Each player also has his own target, taking one of four possible values. A player’s payoff increases with the closeness of his adjusted guess to his target times the other player’s adjusted guess.

The targets and limits vary independently across players and 16 games, with targets either both less than one, both greater than one, or “mixed”. (In Nagel’s and HCW’s previous guessing game experiments, the targets and limits were always the same for both players, and they varied only across treatments with different subject groups, or not at all.)
For example, in game $\gamma 4\delta 3$ (#5 in CGC’s Table 3), player i’s limits and target are $[300, 500]$ and 1.5; and player j’s are $[300, 900]$ and 1.3.

The product of targets $1.5 \times 1.3 > 1$, and players’ equilibrium adjusted guesses are determined (not always directly) by their upper limits:

i’s equilibrium adjusted guess equals his upper limit of 500, but j’s is below his upper limit at 650.

In the figure, guesses in the interval $R(k)$ are eliminated in round k of iterated dominance; thus the game is finitely dominance solvable.
CGC’s sixteen games are all finitely dominance-solvable, in from 3 to 52 rounds, with essentially (due to automatic adjustment) unique equilibria.

The way in which equilibrium is determined in game γ4δ3, by players’ upper limits (in the indirect sense illustrated in the example) when the product of their targets is greater than 1—or by their lower limits when the product is less than 1—is general in CGC’s games.

CGC’s design exploits the discontinuity of the equilibrium correspondence when the product of targets is 1 by including some games that differ mainly in whether the product is slightly greater, or slightly less, than 1.

Equilibrium responds strongly to such differences, but empirically plausible non-equilibrium decision rules are largely unmoved by them.

That equilibrium is jointly determined by both players’ payoff parameters also helps to separate search implications of equilibrium and other rules.
CGC’s types-based model of decisions

Following CGCB and other previous work in this area, CGC’s analysis of decisions uses a types-based structural non-equilibrium model.

The model assumes that each subject’s guesses are determined in all 16 games, up to logit errors, by a single decision rule or “type” (as they are called in this literature; no relation to private-information variables).

CGC’s types, listed on the next slide, all build in risk-neutrality and rule out social preferences, again following previous work.

Risk aversion and social preferences are somewhat implausible in this context, and the results and CGC’s specification test, explained below, suggest that they were not important factors in subjects’ decisions.

The list of types also excludes some others that might seem plausible, mainly because they did not show up significantly in earlier analyses; CGC’s specification test doesn’t find any empirically important omissions.
• \(L_0, L_1, L_2,\) and \(L_3,\) with \(L_0\) uniform random between a player’s limits, \(L_1\) best responding to \(L_0,\) \(L_2\) to \(L_1,\) and so on.

\((L_0\) represents a subject’s instinctive, nonstrategic reaction to the game, and usually has zero estimated population frequency. \(L_k\) for \(k > 0\) is rational, but deviates from equilibrium because it uses a simplified model of others’ decisions. It is \(k\)-rationalizable, and so coincides with equilibrium in games that are \(k\)-dominance solvable.\)

• \(D_1\) and \(D_2,\) which does one round (respectively, two) of iterated dominance and best responds to a uniform prior over its partner’s remaining decisions (a selection from the \(k\)-rationalizable strategies).

\((By\ a\ quirk\ of\ our\ notation,\ L_2\ is\ D_1’s\ cousin,\ and\ L_3\ is\ D_2’s.\ Those\ pairs’\ guesses\ are\ perfectly\ confounded\ in\ Nagel’s\ AER\ 1995\ games;\ and\ in\ two-person\ games\ L_k\ guesses\ are\ k-rationalizable,\ like\ D_k-1’s.\))

• \(Equilibrium,\) which makes its equilibrium decisions.

• \(Sophisticated,\) which best responds to the probabilities of others’ decisions, proxied by subjects’ observed frequencies.

\((Sophisticated\ is\ an\ ideal,\ included\ to\ learn\ if\ any\ subjects\ have\ an\ understanding\ of\ others’\ decisions\ that\ transcends\ mechanical\ rules.\)\)
CGC’s results for decisions

The large strategy spaces of CGC’s games and their variation of targets and limits greatly enhance the separation of types’ implications.

(In the table, a player’s lower limit, upper limit, and target are denoted $a_i, b_i,$ and p_i respectively; and his partner’s are denoted $a_j, b_j,$ and p_j.)

<table>
<thead>
<tr>
<th>Game</th>
<th>a_i</th>
<th>b_i</th>
<th>p_i</th>
<th>a_j</th>
<th>b_j</th>
<th>p_j</th>
<th>$L1$</th>
<th>$L2$</th>
<th>$L3$</th>
<th>$D1$</th>
<th>$D2$</th>
<th>Eq</th>
<th>So</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>900</td>
<td>1.5</td>
<td>300</td>
<td>500</td>
<td>0.7</td>
<td>600</td>
<td>525</td>
<td>630</td>
<td>600</td>
<td>611.25</td>
<td>750</td>
<td>630</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>300</td>
<td>500</td>
<td>1.5</td>
<td>520</td>
<td>650</td>
<td>900</td>
<td>617.5</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>780</td>
<td>900</td>
<td>900</td>
<td>838.5</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>900</td>
<td>0.7</td>
<td>100</td>
<td>900</td>
<td>1.3</td>
<td>350</td>
<td>546</td>
<td>318.5</td>
<td>451.5</td>
<td>423.15</td>
<td>300</td>
<td>420</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>500</td>
<td>1.5</td>
<td>100</td>
<td>500</td>
<td>0.7</td>
<td>450</td>
<td>315</td>
<td>472.5</td>
<td>337.5</td>
<td>341.25</td>
<td>500</td>
<td>375</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>500</td>
<td>0.7</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>350</td>
<td>105</td>
<td>122.5</td>
<td>122.5</td>
<td>122.5</td>
<td>100</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>500</td>
<td>0.7</td>
<td>100</td>
<td>500</td>
<td>1.5</td>
<td>210</td>
<td>315</td>
<td>220.5</td>
<td>227.5</td>
<td>227.5</td>
<td>350</td>
<td>262</td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>500</td>
<td>0.7</td>
<td>100</td>
<td>900</td>
<td>1.5</td>
<td>350</td>
<td>420</td>
<td>367.5</td>
<td>420</td>
<td>420</td>
<td>500</td>
<td>420</td>
</tr>
<tr>
<td>9</td>
<td>300</td>
<td>500</td>
<td>1.5</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>500</td>
<td>0.7</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>350</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>500</td>
<td>1.5</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>500</td>
<td>225</td>
<td>375</td>
<td>262.5</td>
<td>262.5</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>300</td>
<td>900</td>
<td>1.3</td>
<td>780</td>
<td>900</td>
<td>900</td>
<td>838.5</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>900</td>
<td>1.3</td>
<td>300</td>
<td>900</td>
<td>0.7</td>
<td>780</td>
<td>455</td>
<td>709.8</td>
<td>604.5</td>
<td>604.5</td>
<td>390</td>
<td>695</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>300</td>
<td>500</td>
<td>0.7</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>162</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>100</td>
<td>500</td>
<td>0.7</td>
<td>150</td>
<td>175</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td>100</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>900</td>
<td>0.5</td>
<td>100</td>
<td>500</td>
<td>1.5</td>
<td>150</td>
<td>250</td>
<td>112.5</td>
<td>162.5</td>
<td>131.25</td>
<td>100</td>
<td>187</td>
</tr>
</tbody>
</table>
Of the 88 subjects in CGC’s main treatments, 43 made guesses that complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of the games (20 L_1, 12 L_2, 3 L_3, and 8 Equilibrium).

For example, CGC’s Figure 2 (next slide) shows the strategic thinking “fingerprints” of the twelve subjects whose guesses conformed very closely (that is, with high rates of exact compliance) to L_2’s guesses.

72% (138) of these subjects’ 192 guesses were exact L_2 guesses; only their deviations are shown in Figure 2.
Figure 2. “Fingerprints” of 12 Apparent L2 Subjects

Notes: Only deviations from L2’s guesses are shown. Of these subjects’ 192 guesses, 138 (72 percent) were exact L2 guesses.
Given how strongly CGC’s design separates types’ guesses, and that guesses could take from 200 to 800 different rounded values in the games, these subjects’ exact compliance rates are far higher than could possibly occur by chance:

If a subject chooses 525, 650, 900 in games 1-3, both intuitively and econometrically we already “know” he’s an L_2.

Further, because CGC’s definition of L_2 builds in risk-neutral, self-interested rationality, we also know that with such high exact compliance, a non-$Equilibrium$ subject’s deviations from equilibrium are “caused” not by irrationality, risk aversion, altruism, spite, or confusion, but by his simplified (in this case L_1) model of others.
Guessmetrics

CGC’s other 45 subjects made guesses that conformed exactly to one of the types less frequently; analyzing their guesses requires econometrics.

Our econometric approach builds on Harless and Camerer 1994 *Econometrica*, El-Gamal and Grether 1995 *JASA*, Stahl and Wilson 1994 *JEBO* and 1995 *GEB*, and CGCB; but we estimate subject by subject, and because of the very high sample frequency of exact guesses, we use a maximum-likelihood error-rate model with “spike-logit” errors:

We assume that in each game, a subject makes his type’s guess exactly (within 0.5) with probability 1 - ε and otherwise makes logit errors; this gives extra likelihood credit for exact guesses, whose likelihood weight is discontinuously higher than guesses that are close but not within 0.5.

Estimating a mixture model as in CGCB and most other previous studies is often theoretically superior; but in an exploratory study of cognition, estimating subject by subject is safer and, comparing CGCB with subject-by-subject estimates in its earliest version, likely yields similar estimates.
Subject i's log-likelihood for guesses reduces to:

$$ (G - n_{ik}^i) \ln(G - n_{ik}^i) + n_{ik}^i \ln(n_{ik}^i) + \sum_{g \in N_i^k} \ln d_{g}^k (R_{g}(x_{g}^i), \lambda) - G \ln G, $$

where g indexes games and k types.

The first two terms concern exact guesses; $d_{g}^k (R_{g}(x_{g}^i), \lambda)$ is the standard logit term for non-exact guesses, with deviation costs measured using each type's beliefs; and λ is the logit precision.

The maximum likelihood estimate of ϵ is n_{ik}^i / G, the sample frequency of subject i's non-exact guesses for type k.

The maximum likelihood estimate of λ is the standard logit precision, restricted to non-exact guesses.

The maximum likelihood estimate of the subject's type k maximizes (7) over k, given the estimated ϵ and λ, trading off the count of exact guesses against the logit cost of deviations.
Estimation yields type estimates as in column 3 of Table 1: 43 $L1$, 20 $L2$, 3 $L3$, 5 $D1$, 14 $Equilibrium$, and 3 $Sophisticated$.

(Some of these estimates are called into question by CGC’s specification test as discussed below; see Table 1’s columns 4 and 5).

<table>
<thead>
<tr>
<th>Type</th>
<th>Apparent from guesses</th>
<th>Econometric from guesses</th>
<th>Econometric from guesses, excluding random</th>
<th>Econometric from guesses, with specification test</th>
<th>Econometric from guesses and search, with specification test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L1$</td>
<td>20</td>
<td>43</td>
<td>37</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>$L2$</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>$L3$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$D1$</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$D2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Eq.$</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>$Soph.$</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unclassified</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
The hypothesis that $\varepsilon = 1$ is rejected for all but seven of 88 subjects, so the spike is necessary.

The hypothesis that $\lambda = 0$ (payoff-insensitivity) is rejected for 34 subjects. Thus, payoff-sensitive logit errors significantly improve the fit over a spike-uniform model like CGCB’s for only $34/88 = 39\%$ of the subjects. The lack of significant payoff-sensitivity for most subjects suggests that most of their “errors” are either cognitive or due to misspecification.

The hypothesis $\{\lambda = 0$ and $\varepsilon = 1\}$ is rejected at the 5\% level for all but ten of 88 subjects (6 L1, 2 D1, 1 Equilibrium, 1 Sophisticated).

Thus, the model does significantly better than a completely random model of guesses for $78/88 = 89\%$ of the subjects.
Specification test

For those 45 subjects whose guesses conformed less closely to one of CGC’s types, there is room for doubt about whether CGC’s specification omits relevant types and/or overfits by including irrelevant types.

To test for this, CGC conducted a specification test comparing the likelihood of each subject’s econometric type estimate with the likelihoods of estimates based on 88 pseudotypes, each constructed from one of their subject’s guesses in the 16 games.
With regard to overfitting, for a subject's type estimate to be credible it should have higher likelihood than at least as many pseudotypes as it would at random: With 8 types, assuming approximately i.i.d. likelihoods, this suggests it should have higher likelihood than $87/8 \approx 11$ pseudotypes.

Some subjects’ type estimates do not pass this test, and so are left unclassified in columns 5 and 6 of CGC’s Table 1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Apparent from guesses</th>
<th>Econometric from guesses</th>
<th>Econometric from guesses, excluding random</th>
<th>Econometric from guesses, with specification test</th>
<th>Econometric from guesses and search, with specification test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L1$</td>
<td>20</td>
<td>43</td>
<td>37</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>$L2$</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>$L3$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$D1$</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$D2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Eq.$</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>$Soph.$</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unclassified</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
With regard to omitted types, imagine that CGC had omitted a relevant type, say $L2$ for concreteness.

The pseudotypes of CGC’s estimated $L2$ subjects would then outperform the non-$L2$ types estimated for them, and make approximately the same guesses.

Finding such a *cluster*, CGC diagnosed an omitted type, and studied what its subjects’ guesses had in common to reveal its decision rule.
CGC found five small clusters involving 11 of the 88 subjects, and the subjects in these clusters were also left unclassified in Table 1.

The paper and its web appendix discuss what these 11 subjects seemed to be doing; most of it appears quite idiosyncratic.

Because a cluster must contain at least two subjects, it is reasonable to anticipate finding more than the five CGC found in a larger sample.

But because any such clusters did not reach the two-subject threshold in CGC’s sample of 88, they are probably at most 2% of any larger sample, hence probably not worth modeling.

Table 1: Summary of Baseline and OB Subjects’ Estimated Type Distributions

<table>
<thead>
<tr>
<th>Type</th>
<th>Apparent from guesses</th>
<th>Econometric from guesses</th>
<th>Econometric from guesses, excluding random</th>
<th>Econometric from guesses, with specification test</th>
<th>Econometric from guesses and search, with specification test</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>20</td>
<td>43</td>
<td>37</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>L_2</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>L_3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D_1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_g</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Soph.</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unclassified</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
Taking the specification test into account (as in the right-most column of Table 1 above), econometric estimates of subjects’ types are concentrated on \(L_1, L_2, L_3, \) and \(\text{Equilibrium} \), in roughly the same proportions as the subjects whose types are apparent from their guesses.

<table>
<thead>
<tr>
<th>Type</th>
<th>Apparent from guesses</th>
<th>Econometric from guesses</th>
<th>Econometric from guesses, excluding random</th>
<th>Econometric from guesses, with specification test</th>
<th>Econometric from guesses and search, with specification test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1)</td>
<td>20</td>
<td>43</td>
<td>37</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>(L_2)</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>(L_3)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(D_1)</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(D_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eq.</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Soph.</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unclassified</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
Note that unlike the often-suggested interpretation of previous guessing results—that subjects are performing finitely iterated dominance—separating L_k from D_{k-1} reveals that D_k types don’t exist in any significant numbers, at least in this setting.

Further, CGC’s results for robot/trained subjects, discussed below, suggest that people find doing iterated dominance highly unnatural—as opposed to following L_k types that make k-rationalizable decisions, and so respect finitely iterated dominance without explicitly performing it.

Sophisticated, which is clearly separated from *Equilibrium* here, as it tends to be when not all subjects play equilibrium strategies, also doesn’t exist.
Econometric puzzles regarding CGC’s analysis of decisions

Although CGC’s specification test addresses the possibility of bias due to omitting relevant types and/or overfitting by including irrelevant types, it is reasonable to ask if there any way to estimate the distribution of subjects’ decision rules without imposing an a priori list of possible types.

However types are determined, they must be general decision rules that are meaningful in any new game.

That is, they cannot just be lists of predicted guesses in CGC’s 16 games.

There are at least three reasons for this:

● A worthy competitor to equilibrium must be a general decision rule.

● Allowing completely unrestricted types makes it possible to overfit by defining types like Miguel and Vince that just happen to do what Miguel and Vince did in the sample.

● Because a type’s search implications depend not only on what guesses it implies, but why, and types like Miguel and Vince give us no way to predict what they will do beyond the games we estimated them for.
But the space of possible types is enormous and it has little mathematical structure: Just to avoid ruling out equilibrium, it may have to allow all (even discontinuous) piecewise linear functions of the targets and limits.

Further, conventional clustering analyses rely heavily on Euclidean distance, but without a priori types (whose beliefs imply deviation costs, as required for logit errors) it seems hard to find a credible definition of what it means for subjects’ decision patterns to be close.

(For this reason CGC’s specification test’s analysis of clusters gives more weight to qualitative and structure-dependent patterns of deviation from a reference pattern, such as the tendency, discussed below, of our *Equilibrium* subjects with the clearest fingerprints to deviate much more often in games with mixed targets, and always in the direction of $L3$.)

Finally, it is natural to ask if there is better way to do the specification test.
Questions left unresolved by CGC’s analysis of decisions

Some questions regarding subjects’ strategic thinking are not resolved by analyzing decisions, but might be resolved by analyzing searches.

Here it is necessary to distinguish CGC’s three kinds of treatment.

In the Baseline, subjects played the games with other subjects, looking up both subjects’ targets and limits via an interface as explained below.

Open Boxes (“OB”) was identical to the Baseline, except that both subjects’ targets and limits were continually displayed.

(All the analysis discussed above pooled the data from CGC’s Baseline and OB treatments, which did not differ significantly.)

Six different Robot/Trained Subjects (“R/TS”) treatments were identical to the Baseline, except subjects played against a “robot” (“the computer”) and the computer played according to a pre-specified, announced type, either L1, L2, L3, D1, D2, or Equilibrium; subjects were trained to identify that type’s guesses and paid for their payoffs against the computer.
Puzzle A. What are the Baseline “Equilibrium” subjects really doing?

Consider the 8 Baseline or OB subjects with near-Equilibrium fingerprints:

![Graph showing "Fingerprints" of Eight Apparent Equilibrium Subjects.](image)

Figure 4. “Fingerprints” of Eight Apparent Equilibrium Subjects

Notes: Only deviations from Equilibrium’s guesses are shown. Of these subjects’ 128 guesses, 69 (54 percent) were exact Equilibrium guesses.
Ordering the games by strategic structure as in CGC’s Figure 4, with the eight games with mixed targets (CGC’s Table 3, not reproduced here) on the right, shows that those 8 subjects’ deviations from equilibrium almost all (50 out of 59, or 85%) occurred in games with mixed targets.

Thus those subjects, whose exact compliance with Equilibrium guesses was off the scale by normal standards, are actually following a rule that only mimics Equilibrium, and that only in games without mixed targets.

Yet all of the ways we teach people to identify equilibria (best-response dynamics, equilibrium checking, or iterated dominance) work equally well with and without mixed targets: Whatever these subjects were doing, it’s something we haven’t thought of yet.

(And their debriefing questionnaires don’t tell us what it is.)

Whatever it is, it has some structure: All 44 of these subjects’ deviations from Equilibrium (solid line) when it is separated from L3 (dotted line) are in the direction of (and sometimes beyond) L3 guesses.

However, this structure could reflect nothing more than the fact that Equilibrium guesses are more extreme than other types’ guesses.
Equilibrium R/TS subjects’ compliance is as high with as without mixed targets, so training eliminates whatever the Baseline subjects were doing:

Fingerprints of 10 UCSD Equilibrium R/TS Subjects
(only deviations from Equilibrium’s guesses are shown)
Fingerprints of 18 York *Equilibrium* R/TS Subjects
(only deviations from *Equilibrium*’s guesses are shown)
Puzzle B. Why are L_k the only non-$Equilibrium$ types that exist?

Recall that a careful analysis of CGC’s decision data reveals many subjects of types L_1, L_2, $Equilibrium$, or hybrids of L_3 and/or $Equilibrium$, but no other types that do better than a completely random model of guesses for more than one of 88 Baseline/OB subject.

Why do these few rules predominate out of myriads of possible rules?

Why, for instance, aren’t there D_k subjects, closer to what we teach?

Answering this question may shed some light on bounded rationality.

We suggest possible explanations of both puzzles after discussing CGC’s analysis of information search.
CGC’s design for studying cognition via information search

In CGC’s design for studying cognition via information search, within a publicly announced structure each game was presented via MouseLab, which normally concealed the targets and limits but allowed subjects to look them up as often as desired, one at a time, by clicking on the boxes.

![CGC's Figure 6. Screen Shot of the MouseLab Display](image)

CGC's Figure 6. Screen Shot of the MouseLab Display
Details:

CGC used the click option in MouseLab, versus CJ’s use of the rollover option.

Thus, opening and closing boxes both required conscious decisions.

Subjects were not allowed to write, and the data strongly suggest that subjects did not memorize the targets and limits.

With search costs as low as subjects’ searches make them seem, free access made the entire structure effectively public knowledge, so the results can be used to test theories of behavior in complete-information versions of the games.

The design also maintains control over subjects’ motives for search by making information from previous plays irrelevant to current payoffs.
From the point of view of studying cognition via search, CGC’s normal-form design combines the strengths of CJ’s extensive-form design and CGCB’s matrix-game design.

CJ’s extensive-form design allows subjects to search for a small number of hidden payoff parameters (pies in alternating-offers bargaining) within a simple, publicly announced structure.

However, it also makes subjects’ search patterns essentially one-dimensional, and so less informative than they could be.
CGC’s design maintains the simplicity of CJ’s design, allowing subjects to focus on predicting others’ decisions without getting lost in the details of the structure.

Unlike CJ’s design but like CGCB’s, CGC’s design makes search higher-dimensional, hence more informative.

Like CGCB’s design, CGC’s design also independently separates types’ implications for search and decisions, revealing relationships between them.

But unlike CGCB’s design, CGC’s makes types’ search implications almost independent of the game, an important convenience in analysis.
Search data for representative R/TS and Baseline subjects

We start by comparing search data for representative R/TS and Baseline subjects whose guesses conform closely to their assigned or estimated type with the implications of CGC’s theory of cognition and search.

Eyeballing compliance with the types’ search implications will suggest that there is some usable structure in the data, and provide some hints about how to model it.

We will then explain CGC’s (and CGCB’s) theory of cognition and information search, show how the search implications were derived, and show how to use them to model subjects’ searches econometrically.

(Because CGC’s theory is close to CGCB’s, it was almost completely specified before these data were generated).

But first….
Speak rodent like a native in one easy lesson!

<table>
<thead>
<tr>
<th>LOWER LIMIT</th>
<th>TARGET</th>
<th>UPPER LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Your Limits & Target

Enter your guess (a number from 0 to 1000).

MouseLab box numbers

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>p</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>You (j)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>S/he (j)</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Selected R/TS Subjects’ Information Searches and Assigned Types’ Search Implications

<table>
<thead>
<tr>
<th>MouseLab box</th>
<th>Types’ Search Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>${[4,6],2}$</td>
</tr>
<tr>
<td>L_2</td>
<td>${([1,3],5),4,6,2}$</td>
</tr>
<tr>
<td>L_3</td>
<td>${([4,6],2),1,3,5}$</td>
</tr>
<tr>
<td>D_1</td>
<td>${(4,[5,1],(6,[5,3]),2}$</td>
</tr>
<tr>
<td>D_2</td>
<td>${(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}$</td>
</tr>
<tr>
<td>Eq</td>
<td>${[2,5],4}$ if pr. tar. < 1, ${[2,5],6}$ if > 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>904</th>
<th>1716</th>
<th>1807</th>
<th>1607</th>
<th>1811</th>
<th>2008</th>
<th>1001</th>
<th>1412</th>
<th>805</th>
<th>1601</th>
<th>804</th>
<th>1110</th>
<th>1202</th>
<th>704</th>
<th>1205</th>
<th>1408</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type(#rt.)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L3</td>
<td>D1</td>
<td>D1</td>
<td>D1 (3)</td>
<td>D2</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq (16)</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Alt.(#rt.)</td>
<td>late</td>
<td>often</td>
<td>early</td>
<td>often</td>
<td>early</td>
<td>Early</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>2</td>
<td>123456</td>
<td>123456</td>
</tr>
</tbody>
</table>

Notes: The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it.

<table>
<thead>
<tr>
<th>Subject</th>
<th>904</th>
<th>1716</th>
<th>1807</th>
<th>1607</th>
<th>1811</th>
<th>2008</th>
<th>1001</th>
<th>1412</th>
<th>805</th>
<th>1601</th>
<th>804</th>
<th>1110</th>
<th>1202</th>
<th>704</th>
<th>1205</th>
<th>1408</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type(#rt.)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L3</td>
<td>D1</td>
<td>D1</td>
<td>D1 (3)</td>
<td>D2</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq (16)</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Alt.(#rt.)</td>
<td>late</td>
<td>often</td>
<td>early</td>
<td>often</td>
<td>early</td>
<td>Early</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>2</td>
<td>123456</td>
<td>123456</td>
</tr>
</tbody>
</table>

Notes: The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it.

<table>
<thead>
<tr>
<th>Subject</th>
<th>904</th>
<th>1716</th>
<th>1807</th>
<th>1607</th>
<th>1811</th>
<th>2008</th>
<th>1001</th>
<th>1412</th>
<th>805</th>
<th>1601</th>
<th>804</th>
<th>1110</th>
<th>1202</th>
<th>704</th>
<th>1205</th>
<th>1408</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type(#rt.)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L3</td>
<td>D1</td>
<td>D1</td>
<td>D1 (3)</td>
<td>D2</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq (16)</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Alt.(#rt.)</td>
<td>late</td>
<td>often</td>
<td>early</td>
<td>often</td>
<td>early</td>
<td>Early</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>2</td>
<td>123456</td>
<td>123456</td>
</tr>
</tbody>
</table>

Notes: The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it.

<table>
<thead>
<tr>
<th>Subject</th>
<th>904</th>
<th>1716</th>
<th>1807</th>
<th>1607</th>
<th>1811</th>
<th>2008</th>
<th>1001</th>
<th>1412</th>
<th>805</th>
<th>1601</th>
<th>804</th>
<th>1110</th>
<th>1202</th>
<th>704</th>
<th>1205</th>
<th>1408</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type(#rt.)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L1 (16)</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L3</td>
<td>D1</td>
<td>D1</td>
<td>D1 (3)</td>
<td>D2</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq</td>
<td>Eq (16)</td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>Alt.(#rt.)</td>
<td>late</td>
<td>often</td>
<td>early</td>
<td>often</td>
<td>early</td>
<td>Early</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>2</td>
<td>123456</td>
<td>123456</td>
</tr>
</tbody>
</table>

Notes: The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it.
Selected Baseline Subjects’ Information Searches and Estimated Types’ Search Implications

MouseLab box

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>You (i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>S/he (j)</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Types’ Search Implications

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>D1</th>
<th>D2</th>
<th>Eq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{4,6,2}</td>
<td>{1,3,5,4,6,2}</td>
<td>{4,6,2,1,3,5}</td>
<td>{4,5,1,6,5,3,2}</td>
<td>{(1,2,4),(3,2,6),(4,5,1),(6,5,3),5,2}</td>
<td>{(2,5,4) if pr. tar.<1, {(2,5,6) if > 1}</td>
</tr>
</tbody>
</table>

Subject Type

<table>
<thead>
<tr>
<th>Subject</th>
<th>Type#rt.</th>
<th>Alts.#rt.</th>
<th>Est. style</th>
<th>Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1 (15)</td>
<td>L1 (15)</td>
<td>early/la</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L1 (14)</td>
<td>L2</td>
<td>early</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L1 (14)</td>
<td>L2</td>
<td>early/la</td>
<td></td>
</tr>
</tbody>
</table>

|= 101 118 413 108 206 309 405 210 302 318 417 404 202 310 315 |
These data suggest the following conclusions:

(i) Search is so heterogeneous and noisy that we should study it at the individual subject level.

(ii) There is little difference between the look-up sequences of R/TS and Baseline subjects of a given type (assigned type for R/TS, apparent type for Baseline), except that the R/TS look-up sequences are usually shorter than the Baseline ones. (Perhaps the small difference is unsurprising, because R/TS subjects were not trained in search strategies.)

(iii) A subject’s type’s predicted look-up sequence is unusually dense in his searches, at least for types $L1$ and $L2$, and one can quickly learn to read the algorithms many subjects are using directly from the data.

(iv) For some subjects search is an important check on decisions; for example, Baseline subject 309, with 16 exact $L2$ guesses, missed some of $L2$’s relevant look-ups in the first few games, avoiding deviations from $L2$ only by luck. (S/he had a Eureka! moment between games 5 and 6, and from then on complied perfectly.) This recalls CJ’s finding that in their alternating-offers bargaining games, 10% of the subjects never looked at the last-round pie and 19% never looked at the second-round pie.
How does cognition show up in information search?

In studying cognition via information search, CJ followed the tradition in the psychology literature, giving roughly equal weight to look-up durations and to the numbers of look-ups of each pie ("acquisitions") and the transitions between pies.

Gabaix, Laibson, Moloche, and Weinberg, “Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model,” AER 2006, focused on acquisitions and considered aspects of look-up order too.

Rubinstein EJ 2007, which considers some matrix games, considered only durations.

These analyses were mostly conducted at a high level of aggregation, both across subjects and over time.
By contrast, CGC, following CGCB, took it as a given that cognition is sufficiently heterogeneous and search sufficiently noisy that they are best studied at the individual level.

CGC and CGCB also assumed that which look-ups subjects make, in which order, are at least as revealing as look-up durations or acquisition frequencies.

(CGC and CGCB made no claim that durations are irrelevant, just that they don’t deserve the top priority they have been given.

CGCB present some results on durations, “gaze times” in their Table IV.)

CGC’s views were shaped by simple-minded theories of cognition, CJ’s R/TS searches, and CGCB’s *Equilibrium* Trained Subjects’ searches.
Thinking types as models of cognition and search

CGC’s (and CGCB’s) models of cognition, search, and decisions are based on a procedural view of decision-making, in which a subject’s type determines his search, and type and search then determine his decision.

Each type is naturally associated with algorithms that process payoff information into decisions. (As noted above, because a type’s search implications depend not only on what decisions it specifies, but why, something like a types-based model seems necessary here.)

The analysis uses the algorithms as models of cognition, deriving a type’s search implications under simple assumptions about how cognition determines search.

The types then provide a basis for the enormous space of possible decision and search sequences, imposing enough structure to describe subjects’ behavior in a comprehensible way, and to make it meaningful to ask how subjects’ decisions and searches are related.
How Does Cognition Determine Search?

Without further assumptions, nothing precludes a subject’s scanning and memorizing the information and then “going into his brain” to figure out what to do, in which case his searches will reveal nothing about cognition.

But inspecting the sample of actual searches above suggests that there are strong regularities in search behavior, and that subjects’ searches might therefore contain a lot of information about cognition.

The goal in analyzing search is to add enough assumptions to make it possible to extract the signal from the noise in subjects’ look-up sequences; but not so many that they distort the meaning of the signal.

CGC’s (and CGCB’s) assumptions are conservative, resting on types’ minimal search implications and adding as little structure as possible.
Types’ Search Implications

CGC derived types’ minimal search implications from their ideal guesses, those they would make if they had no limits. (With automatic rounding of guesses and quasiconcave payoffs, ideal guesses are all that subjects need to know, and all that matters for minimal search implications.)

Evaluating a formula for a type’s ideal guess requires a series of operations, some of which are basic in that they logically precede any other operation.

For example, \(\frac{a' + b'}{2} \) (averaging the partner’s limits) is the only basic operation for \(L 1' \)’s ideal guess, \(p'\frac{a' + b'}{2} \).

CGC derived types’ search implications assuming that subjects perform basic operations one at a time via adjacent look-ups, remember their results, and otherwise rely on repeated look-ups rather than memory.

These empirically-based assumptions seem to yield a reasonably accurate model of most subjects’ search behavior.
The left side of Table 4 on the next slide lists the formulas for types’ ideal guesses in CGC’s games.

The right side of Table 4 lists types’ minimal search implications, derived as just explained: first in terms of our notation, then in terms of the box numbers in which MouseLab records the data.

Basic operations are represented by adjacent look-up pairs that can appear in either order, but cannot be separated by other look-ups. Such pairs are grouped within square brackets, as in \([a^j, b^j], p^i\) for \(L1\).

Other operations can appear in any order and their look-ups can be separated. Such operations are represented by look-ups grouped within curly brackets or parentheses.

A type’s operations are listed in the order that seems most natural, if there is one; but this is not a requirement of the theory.
<table>
<thead>
<tr>
<th>Type</th>
<th>Ideal guess</th>
<th>Relevant look-ups</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L1$</td>
<td>$p^i \frac{[a^i + b^i]}{2}$</td>
<td>${[a^i, b^i], p^i} \equiv {[4, 6], 2}$</td>
</tr>
<tr>
<td>$L2$</td>
<td>$p^i R(a^i, b^i, p^i [a^i + b^i]/2)$</td>
<td>${([a^i, b^i], p^i), (a^i, b^i, p^i)} \equiv {([1, 3], 5), 4, 6, 2}$</td>
</tr>
<tr>
<td>$L3$</td>
<td>$p^i R(a^i, b^i, (p^i [a^i + b^i]/2))$</td>
<td>${([a^i, b^i], p^i), (a^i, b^i, p^i)} \equiv {([4, 6], 2), 1, 3, 5}$</td>
</tr>
<tr>
<td>$D1$</td>
<td>$p^i (\max{a^i, p^i a^i} + \min{p^i b^i, b^i})/2$</td>
<td>${(a^i, [p^i, a^i]), (b^i, [p^i, b^i]), p^i} \equiv$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${(4, [5,1]), (6, [5,3]), 2}$</td>
</tr>
<tr>
<td>$D2$</td>
<td>$p^i [\max{\max{a^i, p^i a^i}, \max{a^i, p^i a^i}}$ + $\min{p^i \min{p^i b^i, b^i}, \min{p^i b^i, b^i}}]$</td>
<td>$\equiv {(1, [2,4]), (3, [2,6]), (4, [5,1]), (6, [5,3]), 5, 2}$</td>
</tr>
<tr>
<td>$Eq.$</td>
<td>$p^i a^i$ if $p^i p^i < 1$ or $p^i b^i$ if $p^i p^i > 1$</td>
<td>${[p^i, p^i], a^i} \equiv {[2, 5], 4}$ if $p^i p^i < 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or ${[p^i, p^i], b^i} \equiv {[2, 5], 6}$ if $p^i p^i > 1$</td>
</tr>
<tr>
<td>$Soph.$</td>
<td>[no closed-form expression, but</td>
<td>${(a^i, [p^i, a^i]), (b^i, [p^i, b^i]), (a^i, [p^i, a^i]), (b^i, [p^i, b^i]), p^i, p^i}$</td>
</tr>
<tr>
<td></td>
<td>CGC took its search implications to be the same as $D2$s]</td>
<td>$\equiv {(1, [2,4]), (3, [2,6]), (4, [5,1]), (6, [5,3]), 5, 2}$</td>
</tr>
</tbody>
</table>

CGC's Table 4. Types' Ideal Guesses and Relevant Look-ups

(p is a target; a (b) is a lower (upper) limit; i and j are the player and his partner; and $R(\cdot)$ is the automatic adjustment function.)
L1’s search implications
(Unlike in this picture, subjects could never open more than one box at a time.)

L1’s ideal guess: $\hat{p}(\hat{a} + \hat{b})/2 = 750$. L1’s search implications: $\{[\hat{a}, \hat{b}], \hat{p}\} \equiv \{[4, 6], 2\}$.

(L1 does not need to look up its own limits because it can enter its ideal guess and rely on automatic adjustment to ensure that its adjusted guess is optimal. Thus this design even separates L1 from a Solipsistic type that only looks up its own parameters.)
L2’s search implications: first step
(Unlike in this picture, subjects could never open more than one box at a time.)

L2’s model of its partner’s L1 guess: \(p'[a' + b']/2 = 300. \)
Search implications: \([a', b', p'] \equiv [1, 3, 5].\)

(L2 needs to look up its own limits only to predict its partner’s L1 guess; like L1 it can enter its ideal guess and rely on automatic adjustment to ensure its adjusted guess is optimal.)
L2’s search implications: second step
(Unlike in this picture, subjects could never open more than one box at a time.)

L2’s ideal guess: \(p^i R(a^i, b^i; p[(a^i+b^i)/2]) = 450. \)

L2’s search implications: \(\{([a^i, b^i], p^i), a^i, b^i, p^i\} \equiv \{(1, 3), 5\}, 4, 6, 2\}. \)

(L2 needs to look up its partner’s limits \(a^i = 4 \) and \(b^i = 6 \) to predict its partner’s L1 adjusted guess.)
Aside on types’ search implications

$L1, L2, L3, D1, D2$ search implications are easy to derive from the formulas in Table 4.

Note that although most theorists instinctively identify Lk with $Dk-1$, etc., they are cognitively very different:

Lk starts with a naïve prior over the other’s decisions and iterates the best-response mapping; $Dk-1$ starts with reasoning based on iterated knowledge of rationality and closes the process with a naïve prior.

This difference shows up clearly in their search implications in Table 4:

$$\{(a^i,b^j),p^i\}, \{a^i,b^j,p^i\} \equiv \{(1, 3), 5), 4, 6, 2\} \text{ for } L2$$

versus

$$\{(a^i,[p^i,a^j]),(b^j,[p^j,b^i]),p^j\} \equiv \{(4, [5,1]),(6,[5,3]),2\} \text{ for } D1.$$
Equilibrium can use any workable method to find its ideal guess; we allow any method, and seek the one with minimal search requirements.

Equilibrium-checking (conjecturing guesses and checking them for consistency with equilibrium) is less demanding than other methods, but requires more luck than almost all of our subjects appeared to have.

Accordingly, we allow Equilibrium to use both targets to determine whether the equilibrium is High or Low, and then to enter its own target times its partner’s lower (upper) limit when the product of targets is \(<\) (\(>\)) 1, which CGC’s Observation 1 shows ensures its adjusted guess is in equilibrium.

This has the same search requirements as equilibrium-checking except that it requires the targets to be adjacent; and thereby avoids the need for luck.

(Unlike in CGCB’s and CJ’s designs, Equilibrium’s search implications are just as simple as \(L1\)’s, and simpler than other boundedly rational types’!)

(End of aside)
Searchmetrics

CGC’s econometric analysis of guesses and search extends CGC’s (and CGCB’s) maximum likelihood error-rate models of decisions to explain search compliance as well as decisions, treating search as just another kind of decision as much as possible.

The main econometric problem is extracting signals from subjects' highly idiosyncratic, noisy look-up sequences, without a well-tested model that implies strong restrictions on how cognition drives search.

Among other things, subjects vary in the location of look-ups relevant to their types in their sequences.

CGC filter this out via subject-specific nuisance parameters called style (“early” or “late”), assumed constant across games for each subject.

(58 of 71 Baseline subjects’ estimated styles are early, 10 are late, and 3 are tied.)
CGC summarize a subject’s compliance with a type’s search implications in a game by the density of the type’s look-up sequence in the relevant part (as determined by estimated style) of the subject’s look-up sequence.

If, for example, style is early, a subject’s search compliance for a given type is defined by starting at the beginning of his look-up sequence and continuing until the type’s relevant sequence (Table 4) is first completed. Compliance is then the length of the relevant sequence divided by the length of the sequence that first completed it.

This definition filters out irrelevant look-ups (except if they separate the adjacent look-ups required for a basic operation) in a simple way, while making compliance meaningfully comparable across games and styles.
CGC assume that a subject’s type and style determine his search and guess in a given game, each with error.

They further assume that, given type and style, errors in search and guesses are independent of each other and across games.

(This strong but useful simplifying assumption makes the log-likelihood separable across guesses and search, avoiding complications in CGCB.)

To avoid stronger distributional assumptions CGC discretized compliance into three categories: $C_H ≡ [0.67, 1.00]$, $C_M ≡ [0.33, 0.67]$, and $C_L ≡ [0, 0.33]$.
Subject i's guesses-and-search log-likelihood is:

\[
\sum_c \left[m^\text{isk}_c \ln(\xi^c) + (m^\text{isk}_c - n^\text{isk}_c) \ln(1 - \varepsilon) + n^\text{isk}_c \ln(\varepsilon) + \sum_{g \in N^\text{isk}_c} \ln d^k_g \left(R^i_g(x^i_g), \lambda \right) \right] \equiv \\
(G - n^i_k) \ln(G - n^i_k) + n^i_k \ln(n^i_k) + \sum_{g \in N^i_k} \ln d^k_g \left(R^i_g(x^i_g), \lambda \right) - G \ln G + \sum_c m^\text{isk}_c \ln m^\text{isk}_c - 2G \ln G,
\]

where \(m^\text{isk}_c \) is the number of games for which subject i has type-k style-s compliance c.

The search term is convex in the \(m^\text{isk}_c \), and therefore favors types for which compliance varies less across games, because such types "explain" search behavior better. See CGCB, Section 4.D.
The maximum-likelihood estimates of \mathcal{E} and ζ_c, given k and s, are n_{ik}/G and m_{isk}/G, the sample frequencies with which subject i's adjusted guesses are non-exact for that k and i has compliance c for that k and s.

The maximum likelihood estimate of λ is the standard logit precision.

The maximum likelihood estimate of subject i's type k maximizes the above log-likelihood over k and s, given the estimated ε and λ.

Note that the model favors such types without regard to whether compliance is high or low.

This seems appropriate because compliance is neither meaningfully comparable across types (as opposed to across games and styles); nor is it guaranteed to be high for the “true” type (which could be cognitively very difficult).

But it means that CGC need to rule out estimates where a type wins simply because its compliance is very low in all games.
Most guesses-and-search type estimates, especially those for subjects whose guess fingerprints were clear, reaffirm guesses-only estimates.

Thus, overall, incorporating search into the econometric analysis confirms our conclusions, including the absence of significant numbers of subjects of types other than $L1$, $L2$, $Equilibrium$, or hybrids of $L3$ or $Equilibrium$.

Incorporating search does refine and sharpens our conclusions in some ways; and a few subjects’ type estimates change (Table 1, 7A, and 7B).

<table>
<thead>
<tr>
<th>Type</th>
<th>Apparent from guesses</th>
<th>Econometric from guesses</th>
<th>Econometric from guesses, excluding random</th>
<th>Econometric from guesses, with specification test</th>
<th>Econometric from guesses and search, with specification test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L1$</td>
<td>20</td>
<td>43</td>
<td>37</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>$L2$</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>$L3$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$D1$</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$D2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Eq.$</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Soph.</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unclassified</td>
<td>45</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
For some subjects the guesses-and-search estimate resolves a tension between guesses-only and search-only estimates in favor of a type other than the guesses-only estimate.

The search part of the likelihood has weight only about 1/6 of the guesses part, because our theory of search makes much less precise predictions than our theory of guesses—a necessary evil, given the noisiness and idiosyncrasy of search behavior.
For other subjects the guesses-only type estimate has 0 search compliance in 8 or more games, and so CGC rule it out a priori.

For example, Baseline 415, with apparent type \(L1\) with 9 exact guesses, had 0 \(L1\) search compliance in 9 of the 16 games because s/he had no adjacent \([a^j,b^j]\) pairs as required for \(L1\).

However, her/his sequences were unusually rich in \((a^j,p^j,b^j)\) and \((b^j,p^j,a^j)\) triples, in those orders. Because the sequences were not rich in such triples with other superscripts, we conclude that 415 was a true \(L1\) who was more comfortable with several numbers in working memory than our characterization assumes, or than our other subjects were comfortable with.

But because this violated our assumptions on search, this subject was “officially” estimated to be a \(D1\).

(This is why we downplay the official estimate above.)
Many subjects’ types can be reliably identified from search alone (Table 7A):

<table>
<thead>
<tr>
<th>ID</th>
<th>Dom.</th>
<th>in L</th>
<th>k</th>
<th>Exact</th>
<th>λ</th>
<th>Search only</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7A—Continued:

<table>
<thead>
<tr>
<th>ID</th>
<th>Dom.</th>
<th>in L</th>
<th>k</th>
<th>Exact</th>
<th>λ</th>
<th>Search only</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A guesses-only type identified superscripted ♦ means the subject’s estimated type was not significantly better than a random model of guesses (λ = 0, k = 1) at the 5 percent (or 1 percent) level. A guesses-only type identified superscripted + means the estimated type had lower likelihood than 12 or more pseudotypes, more than expected at random. A guesses-only type identified superscripted A, B, or D signifies membership in a cluster. A guesses-only type identified in bold indicates that the subject is classified as that type in Table 1, column 5, by the criteria used in the test. An estimated type superscripted **(*) means that A ≠ 0 is rejected at the 1 percent (5 percent) level. A type superscripted † indicates that both single and dual likelihoods and C in search-only types (in addition to the types that is estimated to have the highest likelihood for each subject) and C in search-only types are significant at the 1 percent (5 percent) level. A type superscripted + indicates that both single and dual likelihoods and C in search-only types are significant at the 1 percent (5 percent) level. A type superscripted ♦ means that A ≠ 0 is rejected at the 1 percent (5 percent) level. A type superscripted ♦ means that A ≠ 0 is rejected at the 1 percent (5 percent) level.
And most subjects’ types can be more precisely identified by decisions and search than by decisions or search alone (Table 7B):
Econometric puzzles regarding CGC’s analysis of search

Are there better ways to do the search analysis econometrically?

Our search analysis has so far focused on the order of look-ups. How can we incorporate duration data while retaining order information?

Can we say more about types’ cognitive difficulty using duration data?

To what extent can Baseline subjects’ guess “errors” be explained by a more detailed analysis of search?
Can we separate the effects of training from the strategic-uncertainty-eliminating effects of robot treatments?

Conditional on style, how does search differ between Baseline subjects with clear fingerprints (Equilibrium, L1, L2, or L3) and successful R/TS subjects of same type?

(Baseline subjects with high compliance for some type are like robot untrained subjects, which don’t usually exist because you can’t tell robot subjects how they will be paid without teaching them how the robot works, and so training them. Thus we can separate the effects of training and strategic uncertainty, by comparing Baseline and R/TS subjects:

Either Equilibrium is natural with mixed targets, but untrained subjects don’t see it; or Equilibrium is unnatural, and/or subjects don’t believe even trained others will make Equilibrium guesses with mixed targets.)
Possible answers via search to puzzle A. What are those Baseline “Equilibrium” subjects really doing?

(i) Can we tell how Baseline *Equilibrium* subjects find equilibrium in games without mixed targets: best-response dynamics, equilibrium checking, iterated dominance, or something else that doesn’t “work” with mixed targets?

The absence of Baseline Dk subjects suggests that they are not using iterated dominance.

Best-response dynamics, perhaps truncated after 1-2 rounds, seems more likely.

Can check by refining characterization of *Equilibrium* search and redoing the searchmetrics, separately with and without mixed targets.

(At the very end of these slides is a refined characterization of *Equilibrium* search.)
(ii) Is there any difference in Baseline Equilibrium subjects’ search patterns in games with and without mixed targets? If so, how does the difference compare to the differences for $L1$, $L2$, or $L3$ subjects?

(Our 20 Baseline apparent $L1$ subjects’ compliance with $L1$ guesses is almost the same with and without mixed targets (CGC’s Figure 1, below), unsurprisingly because the distinction is irrelevant to $L1$.

But our 12 apparent $L2$ and 3 apparent $L3$ (CGC’s Figures 2-3, below) subjects’ compliance with their apparent types’ guesses is lower with mixed targets. This is curious, because for $L2$ and $L3$, unlike for Equilibrium, games with mixed targets require no deeper understanding.)
Figure 1. “Fingerprints” of 20 apparent L1 subjects.

Notes: Only deviations from L1’s guesses are shown. Of these subjects’ 320 guesses, 216 (68 percent) were exact L1 guesses.
Figure 2. "Fingerprints" of 12 apparent L2 subjects

Notes: Only deviations from L2's guesses are shown. Of these subjects' 192 guesses, 138 (72 percent) were exact L2 guesses.

CGC's Figure 2
FIGURE 3. “FINGERPRINTS” OF THREE APPARENT L3 SUBJECTS

Notes: Only deviations from L3’s guesses are shown. Of these subjects’ 48 guesses, 23 (48 percent) were exact L3 guesses.

CGC’s Figure 3
(iii) Can we tell how R/TS Equilibrium subjects with high compliance manage to find their Equilibrium guesses even with mixed targets? How does their search in those games differ from Baseline Equilibrium subjects’ search?

CGC strove to make the R/TS Equilibrium training as neutral as possible, but something must come first.

CGC taught them equilibrium checking first, then best-response dynamics, then iterated dominance (some were taught only one method).

To the extent that subjects used one of those methods, it explains why they have equal compliance with mixed targets.

If subjects used something else, and it deviates from equilibrium in games with mixed targets, it might provide a clue to what CGC’s Baseline Equilibrium subjects did.

Does it help to know which Understanding Test questions an R/TS Equilibrium subject missed?
R/TS *Equilibrium* subjects’ exact compliance is sensitive to the method that subjects were taught.

These average rates are for exact compliance, and so are quite high.

R/TS Subjects’ Exact Compliance according to Equilibrium Method

<table>
<thead>
<tr>
<th></th>
<th>Eq.(N/A)</th>
<th>Eq.(A)</th>
<th>EF</th>
<th>BR</th>
<th>ID</th>
<th>EqC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>29</td>
<td>50</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>% Compliance</td>
<td>Passed UT2</td>
<td>70.3</td>
<td>78.4</td>
<td>88.1</td>
<td>86.1</td>
<td>62.5</td>
</tr>
<tr>
<td>% Failed UT2</td>
<td>19.4</td>
<td>27.5</td>
<td>0.0</td>
<td>0.0</td>
<td>27.8</td>
<td>51.9</td>
</tr>
</tbody>
</table>
Possible answers to puzzle B. Why are L_k the only types other than Equilibrium with nonnegligible frequencies?

(i) Most R/TS subjects could reliably identify their type’s guesses, even Equilibrium or D_2.

These average rates are for exact compliance, and so are quite high.

Individual subjects’ compliance was usually bimodal within type, on very high and very low.

<table>
<thead>
<tr>
<th>R/TS Subjects’ Exact Compliance with Assigned Type’s Guesses and Duration</th>
<th>$L1$</th>
<th>$L2$</th>
<th>$L3$</th>
<th>$D1$</th>
<th>$D2$</th>
<th>Eq.(N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>25</td>
<td>27</td>
<td>18</td>
<td>30</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>% Compliance</td>
<td>Passed UT2</td>
<td>80.0</td>
<td>91.0</td>
<td>84.7</td>
<td>62.1</td>
<td>56.6</td>
</tr>
<tr>
<td>% Failed UT2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>5.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Duration (seconds)</td>
<td>45.4</td>
<td>54.9</td>
<td>79.2</td>
<td>77</td>
<td>120.5</td>
<td>96.3</td>
</tr>
</tbody>
</table>
(ii) But there are noticeable signs of differences in difficulty across types:

(a) No one ever failed an Lk Understanding Test, while some failed the Dk and many failed the *Equilibrium* Understanding Tests.

(b) For those who passed, compliance was highest for Lk types, then *Equilibrium*, then Dk. This suggests that Dk is harder than *Equilibrium*, but could be an artifact of more stringent screening of the *Equilibrium* Test.

(c) Among Lk and Dk types, compliance was higher for lower k as expected, except $L1$ was lower than $L2$ or $L3$ compliance.

(We suspect that this is because $L1$ best responds to a random $L0$ robot, which some subjects think they can outguess; $L2$ and $L3$ best respond to a deterministic $L1$ or $L2$ robot, which doesn’t invite “gambling” behavior.)
(d) Remarkably, 7 of 19 R/TS $D1$ subjects passed the $D1$ Understanding Test, in which $L2$ answers are wrong; and then “morphed” into $L2$s when making their guesses, significantly reducing their earnings (next slide).

(Recall that it is $L2$ that is $D1$’s cousin.)

For example R/TS $D1$ subject 804 made 16 exact $L2$ (and so only 3 exact $D1$) guesses. Her/his search also suggests $L2$ rather than $D1$ thinking.

\[
\begin{array}{|c|c|c|}
\hline
\text{Subject} & \text{Type/Alt}^a & \text{Game 1}^b \\
\hline
804 & D1 (3)/L2 (16) & 1543465213 \quad 5151353654623 \\
\hline
\end{array}
\]

This kind of morphing, in this direction, is the only kind of morphing that occurred: compelling evidence that Dk types are unnatural.

However, a comparison of Lk’s and Dk-1’s search and storage requirements may add something, as Dk-1 needs more memory than Lk.

87
Fingerprints of 7 R/TS Subjects who morphed from D1 to L2

(only deviations from D1's guesses are shown)

Game Numbers

Guesses

D1

L2

Eq.

802 (2,2)

804 (3,16)

809 (3,11)

1213 (1,3)

1401 (4,10)

1509 (6,11)

1511 (3,15)

(number of exact D1 guesses, number of exact L2 guesses)
Aside: Refined characterization of *Equilibrium* search

Equilibrium’s ideal guess can be identified by (1) evaluating a formula, (2) equilibrium-checking, (3) iterated dominance, or (4) best-response dynamics.

(1) Two ways to evaluate a formula: using *Equilibrium*’s ideal guess, or using Observation 1’s proxy for *Equilibrium*’s ideal guess.

Because they are logically related, our theory cannot distinguish them. The latter is less stringent, and yields requirements:

(1) \([p^\prime, p], a\) \equiv \{[2, 5], 4\} if \(p^\prime p < 1\) or \([p^\prime, p], b\) \equiv \{[2, 5], 6\} if \(p^\prime p > 1\).

(2) Equilibrium-checking’s requirements are almost the same, usually requiring both of the partner’s limits but excluding one in some cases, depending on luck.

I omit the requirements here, noting only that this method also requires \([p^\prime, p]\).
(3) Iterated dominance we assume requires one or more complete rounds, stopping when there is a clear up-or-down direction in which dominance eliminates guesses, enough to guess whether the equilibrium is High or Low.

Once the required rounds are completed, the player can use CGC’s Observation 1’s proxy for Equilibrium’s ideal guess; this adds a p^i times either a^i (Low equilibrium) or b^i (High) to his sequence.

As it happens, the search requirements for k rounds are independent of k; thus, the search requirements for iterated dominance are like CGC’s characterization for $D2$ ($D2$, not $D1$, because unlike $D1$, a k-round iterated-dominance player must delete k rounds of dominated guesses for himself too).

(3) $\{(a^i, [p^i, a^i]), (b^i, [p^i, b^i]), (a^i, [p^i, a^i]), (b^i, [p^i, b^i]), p^i, p^i\}$
\[\equiv \{(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2\}.\]
(4) For best-response dynamics we assume the subject does only one complete round: that is, starting with a trial guess for one player, best-responding for the other, and then best-responding back for the first player.

We also assume the subject can infer from whether the iterated best response goes up or down (if it changes) whether equilibrium is High or Low.

(4) \{([a^i, p^j] \text{ or } [b^i, p^j] \text{ or } [a^j, p^i] \text{ or } [(b^j, p^i)], p^i, p^j, (\text{all but at most one of } a^i, b^i, a^j, \text{ and } b^j)\}.

The main difference among Equilibrium methods is that methods 1 and 2 have a \([p^i, p^j]\) requirement and methods 3 and 4 do not.

We know from the absence of Baseline \(Dk\) subjects in CGC’s guesses-and-search estimates that method 3’s requirements don’t fit the data well.
Its also seems, from the data, that $[\rho^i, \rho^j]$ are comparatively rare for Baseline apparent *Equilibrium* subjects, and even for R/TS *Equilibrium* subjects.

Thus searchmetrics may favor best-response dynamics, truncated 1-2 rounds.

(CGCG strove to make the R/TS *Equilibrium* training as neutral as possible, but something must come first. A subset of the R/TS subjects were taught equilibrium-checking first, then best-response dynamics, then iterated dominance; another subset was taught only one of the methods. To the extent that they used one of those methods, it explains why they have equal compliance with and without mixed targets. If they used something else that deviates from equilibrium with mixed targets, it might be a clue to what Baseline *Equilibrium* subjects did.)

(End of aside.)