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II. The Arrow-Debreu Model of Competitive Equilibrium
- Definition and Existence

B. Mathematics Refresher: Correspondences – Point to
set mappings

Overview: There are many settings where the economic re-

sponse to prices may not be unique, but rather set-valued. When

two perfect substitute consumptions are priced equally, the house-

hold demand is for any mix of the two goods totalling its desired

quantity. When a linear production technology is confronted by

prices generating a zero profit at a range of outputs, the firm’s

response is a range of output levels including zero. In this setting,

economic behavior is modeled as a point-to-set mapping, tradi-

tionally known to economists as a correspondence. The re-

lated continuity concepts are upper and lower hemicontinuity.

The analog to the Brouwer Fixed Point Theorem, for a convex-

valued upper hemicontinuous correspondence is the Kakutani Fixed

Point Theorem. The Theorem of the Maximum provides sufficient

conditions to describe optimizing behavior as an upper hemicon-

tinuous correspondence.

23.1 Correspondences

We will call a point-to-set mapping a correspondence. Let

A and B be nonempty sets. For each x ∈ A we associate a

nonempty set β ⊂ B by a rule ϕ. Then we say β = ϕ(x)

and ϕ is a correspondence; ϕ : A → B. Note that if x ∈ A
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and y ∈ B it is meaningless or false to say y = ϕ(x), rather we

say y ∈ ϕ(x). The graph of the correspondence is a subset of

A × B : {(x, y) | x ∈ A, y ∈ B and y ∈ ϕ(x)}.

23.2 Upper hemicontinuity (also known as upper semicontinuity)

Definition : Let ϕ : S → T , ϕ be a correspondence, and S and

T be closed subsets of RN and RK , respectively. Let xν , x◦ ∈
S, ν = 1, 2, 3, . . . ; let xν→x◦, yν∈ϕ(xν), for all ν=1, 2, 3, . . . , and

yν → y◦. Then ϕ is said to be upper hemicontinuous (also

known as upper semicontinuous) at x◦ if and only if y◦ ∈ ϕ(x◦).

Example 23.1 An upper hemicontinuous correspondence. Let ϕ(x)

be defined as follows. ϕ : R → R. For

x < 0, ϕ(x) = {y | x − 4 ≤ y ≤ x − 2}

x = 0, ϕ(x) = {y | −4 ≤ y ≤ +4}

x > 0, ϕ(x) = {y | x + 2 ≤ y ≤ x + 4}.

Note that ϕ(·) is convex valued. For each x ∈ R, ϕ(x) is a convex

set. (See Figure 23.2)

Example 23.2 A correspondence not upper hemicontinuous at 0. Let

ϕ(x) be defined much as in Example 23.1 but with a discontinuity
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at 0. ϕ : R → R. For

x < 0, ϕ(x) = {y | x − 4 ≤ y ≤ x − 2}

x = 0, ϕ(0) = {0}

x > 0, ϕ(x) = {y | x + 2 ≤ y ≤ x + 4}.

Note that ϕ(·) is convex valued. For each x ∈ R, ϕ(x) is a convex

set. (See Figure 23.3)

Theorem 23.1 : ϕ is upper hemicontinuous if and only if its graph

is closed in S × T .

23.3 Lower hemicontinuity (also known as lower semicontinuity)

Definition : Let ϕ : S → T , where S and T are closed sub-

sets of RN and RK , respectively. Let xν ∈ S, xν → x◦, y◦ ∈
ϕ(x◦), ν = 1, 2, 3, . . . . Then ϕ is said to be lower hemicontinuous

(also known as lower semicontinuous) at x◦ if and only if there

is yν ∈ ϕ(xν), yν → y◦. Lower hemicontinuity asserts the pres-

ence of a sequence of points in the correspondence evaluated at a

convergent sequence of points in the domain.

Intuitively, ϕ is lower hemicontinuous if, when it has caught a

value, ϕ must be able to sneak up on it.
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Example 23.3 : A lower hemicontinuous correspondence. Let ϕ(x)

be defined as follows. ϕ : R → R. For

x 6= 0, ϕ(x) = {y | x − 4 ≤ y ≤ x}

x = 0, ϕ(x) = {y | −3 ≤ y ≤ −1}.

The graph of ϕ(·) is shown in Figure 23.4. Note that ϕ(·) is

convex valued. For each x ∈ R, ϕ(x) is a convex set. For all

x◦ ∈ R, ϕ(·) is lower hemicontinuous at x◦. The only point where

this requires some care is at x◦ = 0. Let xν → 0, y◦ ∈ ϕ(0). To

demonstrate lower hemicontinuity, we must show that there is

yν ∈ ϕ(xν) so that yν → y◦. Note that −3 ≤ y◦ ≤ −1. But for

ν large, there is yν ∈ ϕ(xν), so that yν = y◦. Hence, trivially,

yν → y◦. Note that ϕ(·) is not upper hemicontinuous at x◦ = 0.

This follows simply because y = −4 is the limit of a sequence of

values in ϕ(xν) but −4 6∈ ϕ(0).

Example 23.4 An upper hemicontinuous correspondence that is not

lower hemicontinuous. This example is merely Examples 23.1 and

23.2 revisited. ϕ(·) in both Examples 23.1 and 23.2 is not lower

hemicontinuous at x◦ = 0. In both cases 0 ∈ ϕ(0) but for a

typical sequence xν → 0, there is no yν ∈ ϕ(xν) so that yν → 0.
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23.4 Continuous correspondence

Definition : Let ϕ : A → B, with ϕ a correspondence. ϕ(·)
is said to be continuous at x◦ if ϕ(·) is both upper and lower

hemicontinuous at x◦.

Example 23.5 A continuous correspondence. The following cor-

respondence, ϕ(·), is both upper and lower hemicontinuous through-

out its range and hence is a continuous correspondence. For

x < 0, ϕ(x) = {y | 2x ≤ y ≤ −x}

x = 0, ϕ(x) = {0}

x > 0, ϕ(x) = {y | −2x ≤ y ≤ −x} ∪ {y | 3x ≤ y ≤ 4x}.

Note that if ϕ is point valued (i.e., a function) with a compact

range then upper hemicontinuity, continuity (in the sense of a

function), and lower hemicontinuity are equivalent.

23.6 Optimization subject to constraint: Composition of correspondences; the

Maximum Theorem

Maximization subject to constraint Let f(·) be a real-valued func-

tion, and let ϕ(·) be a correspondence intended to represent an

opportunity set. Then we let µ(·) represent the correspondence

consisting of the maximizers of f(·) subject to choosing the max-

imizer in the opportunity set ϕ(·). Formally, we state
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The Maximum Problem : Let T ⊆ RN , S ⊆ RM , f : T → R,

and ϕ : S → T , where ϕ is a correspondence, and let µ : S → T ,

where µ(x) ≡ {y◦ | y◦ maximizes f(y) for y ∈ ϕ(x)}. (See Figure

23.6)

Theorem 23.3 (The Maximum Theorem) Let f(·), ϕ(·), and µ(·)
be as defined in the Maximum Problem. Let f be continuous on T

and let ϕ be continuous (both upper and lower hemicontinuous)

at x◦ and compact-valued in a neighborhood of x◦. Then µ is

upper hemicontinuous at x◦.

Example 23.6 Applying the Maximum Theorem. Let S = T =

R. Let f(y) = y2. Let

ϕ(x) = {y | −x ≤ y ≤ x} for x ≥ 0

ϕ(x) = {y | x ≤ y ≤ −x} for x < 0.

Then µ(x) = {x,−x}, since µ(x) is the set of maximizers of y2 for

y ∈ ϕ(x). Note that ϕ(x) is both upper and lower hemicontinuous

throughout R and is convex valued. µ(x) is upper hemicontinuous

by the Maximum Theorem. It is not, however, convex valued.

23.7 Kakutani Fixed-Point Theorem

Theorem 23.4 (Kakutani Fixed-Point Theorem) Let S be an N-

simplex. Let ϕ : S → S be a correspondence that is upper

hemicontinuous everywhere on S. Further, let ϕ(x) be a convex

set for all x ∈ S. Then there is x∗ ∈ S so that x∗ ∈ ϕ(x∗).
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Example 23.7 Applying the Kakutani Fixed-Point Theorem. Let

ϕ : [0, 1]→[0, 1]. Let

ϕ(x)={1 − x/2} for 0 ≤ x < .5

ϕ(0.5)=[.25, .75]

ϕ(x)={x/2} for 1 ≥ x > .5,

where ϕ is upper hemicontinuous and convex valued. The fixed

point is x◦ = 0.5. (See Figure 23.10.)

Corollary 23.1 Let K ⊆ RM , K 6= ∅, be compact and convex. Let

Ψ : K → K, with Ψ(x) upper hemicontinuous and convex valued

for all x ∈ K. Then there is x∗ ∈ K so that x∗ ∈ Ψ(x∗).


