Problem Set 1

Feel free to collaborate with classmates on problem sets.

This problem set deals with a Robinson Crusoe economy with two factors of production and two commodities.

Let there be two factors: land denoted T, and labor denoted L. The resource endowment of T is T₀; the resource endowment of L is L₀.

Let there be two goods, x and y.

Robinson has a utility function u(x, y). There is no utility from leisure.

The prevailing wage rate of labor is w, and the rental rate on land is r.

Good x is produced in a single firm by the production function
\[f(L^x, T^x) = x, \]
where \(L^x \) is L used to produce x, \(T^x \) is T used to produce x.

\[f(L^x, T^x) \geq 0 \text{ for } L^x \geq 0, T^x \geq 0; f(0,0)=0. \]

Good y is produced in a single firm by the production function
\[g(L^y, T^y) = y \]
where \(L^y \) is L used to produce y, \(T^y \) is T used to produce y.

\[g(L^y, T^y) \geq 0 \text{ for } L^y \geq 0, T^y \geq 0; g(0,0)=0. \]

The price of good x is \(p^x \). The price of good y is \(p^y \). Profits of firm x are \(\Pi^x = p^x f(L^x, T^x) - wL^x - rT^x \). Profits of firm y are \(\Pi^y = p^y g(L^y, T^y) - wL^y - rT^y \).

Robinson's income then is \(wL + rT + \Pi^x + \Pi^y \).

Assume f, g, u, to be strictly concave, differentiable. Assume all solutions are interior solutions. Subscripts denote partial derivatives. That is, \(u_x = (\partial u/\partial x) = \) marginal utility of x, ..., \(f_L = (\partial f/\partial L) = \) marginal product of labor in x,

The production frontier consists of those x - y combinations that efficiently and fully utilize \(L^0 \) and \(T^0 \) in producing x and y. The marginal rate of transformation of x for y, \(MRT_{x,y} \) is defined as \(-dy/dx\) along this frontier. \(MRT_{x,y} \) is the additional y available from efficiently reallocating inputs of T and L to producing y while sacrificing one unit of x. At a technically efficient (efficient in allocation of inputs on the production side) allocation, we have
\[-(dy/dx) = MRT_{x,y} = (\partial y/\partial L^y)/(\partial x/\partial L^x) = g_L/f_L. \]

The marginal rate of transformation of x for y equals the ratio of marginal products.

(continued next page)
A (Pareto) efficient allocation in the economy is characterized by maximizing $u(x,y)$ subject to the technology and resource constraints. Thus a Pareto efficient allocation corresponds to values of x,y,L^x,L^y,T^x,T^y maximizing the Lagrangian, Λ, with Lagrange multipliers a, b, c, d:

$$\Lambda = u(x,y) + a(x-f(L^x,T^x)) + b(y-g(L^y,T^y)) + c(L^o-L^x-L^y) + d(T^o-T^x-T^y) \quad (1)$$

1. Differentiate Λ with respect to x, y, T^x, T^y, and set the derivatives equal to 0. That gives first order conditions for an extremum of Λ, a Pareto efficient allocation. Let (2) be your first order condition with respect to x, (3) with respect to y, (4) with respect to T^x, (5) with respect to T^y.

2. Show that Pareto efficiency requires that the marginal rate of substitution of x for y be the marginal rate of transformation (as computed with respect to T). That is, Pareto efficiency requires that

$$\frac{u_x}{u_y} = \frac{g_T}{f_T} \quad (6)$$

Hint: You can demonstrate (6) by combining (2), (3), (4) and (5) appropriately. Explain in words what (6) means. Why does it make sense as an efficiency condition?

3. Differentiate Λ with respect to L^x, L^y, to characterize first order conditions for a Pareto efficient allocation of labor.

4. Repeat exercise 1 with respect to L. That is, show that Pareto efficiency requires that $\frac{u_x}{u_y} = \frac{g_L}{f_L}$.

5. Show that Pareto efficiency requires that marginal rates of technical substitution of L for T are the same for both firms. That is, Pareto efficiency requires $\frac{g_L}{g_T} = \frac{f_L}{f_T}$. Explain in words what this expression means.

(continued next page)
6. First order conditions for profit maximization and for utility maximization subject to budget constraint are:

\[w = p_x f_L = p_y g_L; \quad (7) \]
\[r = p_x f_T = p_y g_T; \quad (8) \]
\[\frac{p_x}{p_y} = \frac{u_x}{u_y} \quad (9). \]

These conditions (7), (8), (9), will be fulfilled in a competitive equilibrium. Show that these equilibrium conditions lead to fulfillment of the efficiency conditions in 2, 3, 4, and 5.