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Econometrica, Vol. 50, No. 3 (May, 1982) 

PAIRWISE, t-WISE, AND PARETO OPTIMALITIES 

BY STEVEN M. GOLDMAN AND Ross M. STARR1 

An allocation is said to be t-wise optimal (for t a positive integer) if for every collection 
of t traders, there is no reallocation of their current holdings that will make some better off 
while making none worse off. The allocation is pairwise optimal if it is t-wise optimal for 
t = 2. A t-wise optimal allocation is the outcome of a trading process more decentralized 
than that of the Walrasian equilibrium. It represents the result of a variety of separate 
transactions in small groups without the (centralized) coordination provided by a single 
Walrasian auctioneer. 

Necessary conditions and sufficient conditions on allocations for t-wise optimality to 
imply Pareto optimality are developed. These generally require sufficient overlap in goods 
holdings among traders to ensure the presence of common support prices. This is 
formalized as indecomposability of a truncated submatrix of the allocation matrix. A 
necessary and sufficient condition remains an open question. 

0. INTRODUCTION 

OUR PRINCIPAL CONCERN in this inquiry is with the decentralization of the 
trading process. The analysis departs from the familiar Arrow-Debreu general 
equilibrium framework to examine the efficiency of economies deprived of the 
coordinating function of the Walrasian price mechanism. The alternative, pre- 
sented here, is to permit trade to take place only in small groups-say up to t 
traders in number. We envision an exchange economy wherein groups form and 
reform in order to barter-as individuals and as small coalitions. If all such small 
groups may form, then such a process might eventually converge to an equilib- 
rium from which no reallocation involving t or fewer traders could result in a 
Pareto preferable allocation. That is, an allocation which is t-wise optimal. The 
dynamics of pairwise barter trade to achieve a pairwise optimal allocation is 
thoroughly studied in Feldman [2]. The corresponding analysis for trade in larger 
groups represents an open research topic, though we certainly expect Feldman's 
analysis to generalize. 

It is by no means apparent that such a t-wise optimal allocation would be 
Pareto optimal. This reflects the difficulty of achieving a reallocation which is 
preferable for a large group through a sequence of weakly desirable small group 
trades. Since Pareto optimality is such an essential condition in welfare econom- 
ics, it is useful to discover under what circumstances the two optimality concepts 

'The authors are indebted to Andreu Mas-Colell for many helpful conversations about the 
contributions to an earlier draft, to R. Welch for research assistance, to the editor of this journal, and 
to an anonymous referee for useful comments. Remaining errors are the authors' responsibility. 

This research has been supported by National Science Foundation Grant SOC78-15429 to the 
University of California, Berkeley, Davis, and San Diego, by a John Simon Guggenheim fellowship, 
and by the Group for the Applications of Mathematics and Statistics to Economics, University of 
California, Berkeley. 

Any opinions, findings, and conclusions or recommendations expressed in this publication are 
those of the authors and do not necessarily reflect the views of the supporting groups. 
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coincide. Below, we investigate necessary and sufficient conditions for the 
equivalence of t-wise and Pareto optimality. 

A simple example can illustrate problems in relating the two optimality 
concepts. Consider a three-man, three-good economy with allocation 

xi= (xl,Xx1) = (1, 1,O), 

x2= (x1,x2,X3) = (0, 1, 1), 

x3= (x3,x3,x3) = (1,0, 1), 

and linear utility functions 

u1(x1) = 2x4 + x, 

u2(x2) = 2X2 + X2 

u3(x3) = x3 + 2x3 

We can represent the allocation schematically by the matrix 

A I 0 
A= 0 1 1 

1 0 1 

and preferences by the matrix of marginal utilities 

12 1 0' 
P= 0 2 1 

I 0 2 

Rows represent traders and columns indicate commodities. The allocation is 
pairwise optimal but not Pareto (3-wise) optimal. Each agent holds one unit of 
his favorite good and his second most desired good. There is one other holder of 
the favorite good, and he regards the other good the first agent holds as 
worthless. Hence, there is no room for pairwise improvement. 3-wise improve- 
ment is possible, since each agent can be given more of his favorite in exchange 
for his second choice. In particular, the reallocation matrix 

B e -e 2 
B- e 

-e 
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results in the Pareto preferable allocation 

A +B= O 1+E 1-e 
1e 0 1 + 

There is a utility increase of e for each agent resulting from the reallocation.2 
We are thus led to describe an allocation as pairwise optimal if for every 

possible pair of traders there is no reallocation of the pair's current holdings, 
between traders of the pair, that is weakly preferable to both traders with strict 
preference for at least one. Similarly, for a positive integer t, an allocation is said 
to be t-wise optimal if, for every group of t individuals, holdings are optimally 
allocated within the group. In an economy where trade takes place primarily 
among pairs or t-member groups of agents we expect the resulting allocation to 
be pairwise or t-wise optimal. It is then of interest to discover when pairwise or 
t-wise optimal allocations will be Pareto optimal as well. 

As the example above suggests, corner solutions, the zeroes of the allocation 
matrix, play a pivotal role in the analysis. When traders' holdings have much in 
common with one another (i.e., when several positive entries coincide), the 
corresponding marginal rates of substitution will be equated across members of 
trading groups. Since the groups overlap, these MRS's will become common to 
all traders, hence leading to Pareto optimality. Conversely, if there is little 
overlap among agents' holdings the assurance of common MRS's is correspond- 
ingly weakened. Such a sparse overlap situation is likely to occur when there are 
many zeroes (corner solutions) in the allocation. This may lead, as in the 
example, to Pareto nonoptimality despite pairwise or t-wise optimality. 

Conversely, sufficient overlap in traders' holdings ensures equivalence of t-wise 
optimality and Pareto optimality. If there is a universally held good, providing 
one point of overlap for all traders, then it acts like "money" to ensure the 
equivalence of pairwise, t-wise, and Pareto optimalities. Similarly, a single trader 
who holds positive amounts of all goods has complete overlap with all traders. 
He acts as a universal intermediary resulting again in the equivalence of pairwise, 
t-wise, and Pareto optimalities. The results are formalized as Theorems 1.1 and 
1.2 below. 

The focus on corner solutions seems appropriate inasmuch as most individuals 
do not consume most goods. This is particularly true when we think of commodi- 
ties as differentiated by date, location, quality, and design. 

We have concentrated upon restrictions on the allocation matrix A rather than 
on the utility functions. This is motivated by the direct observability of alloca- 
tions (as compared with preferences) and forms the structure for Feldman [2] 
and Rader [9, 10] as well. Thus, it might be argued, statements of Pareto 

2In the example above, the zeroes of the allocation matrix A are essential to the analysis. The 
zeroes of the marginal utility matrix P are inessential. They could be replaced by small positive 
numbers so that the optimality properties of the allocation are retained. 
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optimality based on allocation and trade structure (i.e., t-wise optimality) are 
grounded in potentially verifiable observations. 

1. REPRESENTATION OF ALLOCATIONS AND PREFERENCES 

We consider allocations in a pure exchange economy of M consumers and N 
commodities. An allocation is an M X N nonnegative matrix, A = (a,,), where the 
jth entry, a,1, represents agent i's holding of good j. (Every row and column 

of A is assumed to have at least one positive entry.) Let the utility functions of 
the agents be represented by a vector of C2, quasi-concave functions u = 

(ul, . . , u M), where u': R N -e R. The linearized utility functions about A form a 
vector u = (ii' .. ., u where 

au'(ail, * * * l aim) -t N 

PUOa - and u (x) = p,x1. 
y = 

In the case (of considerable interest here) where a, = 0, we shall define 

au'(ai + kej) 
P =kl 0,+ ak 

where ai = (ai , ... , aiN) and ej is the jth unit vector. Marginal preferences are 
then described by the M x N nonnegative matrix P = (pa). Every row and 
column of P is assumed to have at least one positive entry. 

In what follows, we wish to characterize the efficiency of the economy (A, u) 
by that of its linear counterpart (A, u). It is rather straightforward to establish 
that if (A, u) is Pareto optimal then so is (A, u), since the optimality of (A, u) 
implies the existence of a price vector ( E R N where (A, u, () must be a competi- 
tive equilibrium. Then (A, u, t) must be a competitive equilibrium as well given 
the quasi-concavity and smoothness of u. 

But for the Pareto optimality of (A, u) to imply optimality for (A, R) is 
equivalent to requiring that (A, u) can be supported by a competitive-not 
merely compensated-equilibrium. Sufficient conditions for the existence of such 
a support have been extensively investigated (see McKenzie [7] or Arrow and 
Hahn [1]) and are generally stated in terms either of a minimum wealth 
constraint or resource relatedness and irreducibility. 

Still an alternative condition deals with a weakened version of monotonicity. 
For a given consumption bundle if an agent's marginal utility for a good is zero, 
we shall suppose that reducing his consumption of that good-the remainder of 
the allocation held fixed-will not reduce utility. That is, a marginal utility of 
zero is assumed to remain zero after large finite variations in the quantity of the 
good.3 Under this hypothesis, each of the following three statements implies the 
others: (i) (A, u) is Pareto optimal; (ii) (A, u) is Pareto optimal; (iii) (A, u) can be 

3Rader [10] assumes that a, > 0 if and only if uj(a,) > 0. 
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supported by a competitive equilibrium. This argument is present as Lemmas A. 1 
and A.2 and Theorem A.1 in the Appendix. 

We will not specify a particular set of sufficient conditions here. Rather, we 
shall limit our further discussion to those economies where Pareto optima have 
competitive supports. Economies (A, u) fulfilling this condition can then be 
represented, without loss of generality, by their linear counterparts, (A, u). 

A reallocation is an M x N matrix Z so that A + EZ is an allocation for some 
e > 0 and =izu 

= 0 for each j. A pairwise reallocation is a reallocation so that 
Zi = O for all but two of i = 1, . ., M. A t-wise allocation (t = 2,. . . , N) is a 
reallocation so that zi = 0 for all but t of i = 1, . . . , M. Z is a t-wise improve- 
ment if pizi-' 0 for all i = 1, . . . , M with strict inequality for at least one i. 

A state is represented by (A, P). The state is t-wise optimal if there is no t-wise 
reallocation Z constituting a t-wise improvement. The state is said to be Pareto 
optimal if it is M-wise optimal. We wish to investigate the relationship between 
pairwise, t-wise, and Pareto optimality. In particular we will establish sufficient 
conditions and necessary conditions for pairwise and t-wise optimality to imply 
Pareto optimality. The characterization of conditions that are both necessary and 
sufficient remains an open question. 

For a given allocation A, we are interested in the sets of preferences for which 
(A, P) is t-wise or Pareto optimal. Specifically, let TI'(A) = {P I (A, P) is t-wise 
optimal) and ll*(A) = { P (A, P) is Pareto optimal). lt(A) is the set of prefer- 
ences such that an endowment of A would be an allocation unblocked by any 
coalition of size t or less. For some A, if we have LI'(A) = I*(A) then for that 
allocation, preferences consistent with t-wise optimality and Pareto optimality 
coincide and A is said to exhibit the t-wise equivalence property. Hence, if the 
state (A, P) is pairwise optimal and if we know II2(A)= H*(A) then the 
inference is that (A, P) is also Pareto optimal. We can restate the major 
straightforward results in this area then as the following theorems. 

THEOREM 1.1 (Rader [9]): Let A have a strictly positive row. Then 

I12(A) = Il*(A). 

THEOREM 1.2 (Feldman [2]): Let A have a strictly positive column. Then 

r12(A)= ll*(A). 

The intuition for these results is that strict positivity of a row or column allows 
the immediate introduction of a price system which supports the allocation. 

A strictly positive row (Theorem 1.1) represents a trader holding positive 
quantities of all goods. The corresponding price system is then the vector of this 
trader's marginal utilities. Pairwise optimality implies that all marginal rates of 
substitution of goods held in positive quantity coincide with those of the strictly 
positive row. Hence the price system established will support the allocation. 
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A strictly positive column represents a universally held good. If the good has 
positive marginal utility for any trader then pairwise optimality implies a positive 
marginal utility for all traders. Use the universal good as numeraire and establish 
prices for all other goods. For any two traders with two goods held by both, 
equality of their respective MRS's is guaranteed by pairwise optimality. For two 
goods held separately (one by each of two traders) that there should be a 
common supporting value of the MRS to use as a price ratio is guaranteed by the 
presence of the common good. That is, for commodities k and 1, traders h and i 
holding positive quantities of the two goods respectively with good c in common, 
we have 

MRSh I MRShC MRS, I MRSSC MRS' I MRS',. 

Setting Pk = MRSh c and Pi = MRSlc gives the required supporting prices. 

2. SYMMETRY 

The equivalence, if it occurs, of t-wise (or pairwise) efficiency and Pareto 
efficiency is symmetric across goods and traders. That is, consider a transpose 
economy where the names of traders and commodities are substituted for one 
another. Then t-wise optimality implies Pareto optimality in the original econ- 
omy if and only if it does so in the transpose economy. In the light of Theorems 
1.1 and 1.2 this observation is not surprising. It says that these two separate 
theorems are really special cases of a single and more general result. 

The intuition behind the symmetry argument is that efficient allocation may be 
considered alternatively as how a trader places his scarce purchasing power 
(when an efficient allocation is characterized by a market equilibrium) or how 
supplies of each good are allocated across traders. In the first case the allocation 
rule is to equate the marginal utility per dollar of expenditure across uses. In the 
second it is for each good to equate across traders the ratio of marginal utility of 
income to the marginal utility of that good. Let A' denote the transpose of A. 
Then we state the following theorem. 

THEOREM 2.1: Let A be an allocation. Then WI(A) = fl*(A) if, and only if, 
flt(A') = H*(A'). 

The proof appears in the Appendix. 

3. GENERALIZATION OF THE EARLY RADER/FELDMAN RESULTS 

The above cited results by Rader and Feldman may be generalized to the case 
of t-wise optimality. 

THEOREM 3.1: Let A be an allocation matrix with some row (or column) having 
t - 2 or fewer zero entries. Then It(A) = HI*(A). 

The proof appears in the Appendix. 
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Intuitively, if there is a single individual who consumes all but t - 2 of the 
commodities then that agent's MRS's form "enough" of a price system to 
preclude cycles of size t + 1 or larger. By virtue of Theorem 2.1 this argument is 
equally applicable to a commodity consumed by all but at most t - 2 agents. 
Theorem 3.1 includes as special cases (for t = 2) Theorems 1.1 and 1.2. 

4. RADER'S CONDITION FOR SUFFICIENCY 

Rader [10] advances a considerably more general condition for equivalence 
than found in Theorem 1.1 and Theorem 1.2 above. This gain is offered at the 
expense however of a further limitation on the allowable space of preferences. 
Specifically, attention is confined to those cases where each individual has a zero 
marginal utility for any commodity which does not appear in his allocation 
bundle. We will denote this restriction as Condition R. Essentially, Rader's 
condition requires that agents may be ordered in such a way that a supporting 
price system can be constructed from their MRS's by a process of extension. 
With considerable license, we shall restate these results here. 

Let X be a symmetric N x N matrix [xij] and y c { 1, .. . , N}, where y has n 
members. Then define [X proj y] as the n x n matrix [fxi] where Vi, jE y, x 

Starting from an allocation matrix A we are going to apply this matrix 
operation to the product matrix A'A. A positive ith entry in A'A indicates that it 
is possible to find a single agent who holds goods i and j. When [A'A ] is 
positive, then pairwise optimality involves a direct determination of a supporting 
MRS for goods i andj. Now, for an N-vector a, let a + C { 1, . . . , N } denote the 
set of indices i so that i E a + <-* ai > 0. Consider [A'A proj a+ ]. A positive yth 
entry here indicates that [A'A ]ij is positive for some i and j for which the a 
entries are positive. 

Finally, we consider whether [A'A proj a+ ] is reducible (or decomposable), 
that is, whether by identical rearrangements of rows and columns that matrix can 
be represented as block diagonal. If not, it is said to be irreducible. 

What does the irreducibility of [(A'A)proj a + ] indicate? For any two goods in 
a + it means that there is a finite sequence of consumers in A so that the first and 
last elements of the sequence each hold one of the two goods and successive 
members of the sequence are related to common holdings of other goods in a +.4 
Hence, if we augment A by a, no independent determination of an MRS would 
be added to the system. 

Conversely, reducibility indicates that there are at least two goods for which 
there is no implicit determination of an MRS using only goods in a+. 

LEMMA 4.1: Let A be an allocation matrix such that fl2(A) = Il*(A) and let a 
be an individual allocation vector such that [(A'A)proj a+ ] is irreducible. Then, if 

4The matrix [(A'A)proj a+] is analogous to the transition matrix of a Markov process. There, 
irreducibility allows the transition between two states with positive probability after finitely many 
steps (see, for example, Kemeny and Snell [5]). Here, irreducibility permits the inference of an 
implicit MRS between two commodities from a sequence of agents. 
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preferences are restricted as per condition R above, the allocation A augmented by 
a, say D, also displays the pairwise equivalence property, i.e., 172(D) = IH*(D) and 
D is called an R-extension of A. The proof is a special case of Lemma 5.1. 

THEOREM 4.2 (Rader [10]): Assuming Condition R, a matrix which may be 
constructed through successive R-extensions from a single initial row will satisfy the 
pairwise equivalence property. 

The proof follows immediately from Lemma 4.1. 
Below we propose an extension of these results to the case of t-wise efficiency 

and with the removal of the Condition R. Heuristically, we shall propose a 
condition for extension such that the new individual will be supported by any 
price system supporting the previous allocation. Then, observing from the earlier 
symmetry condition that both rows and columns may be added to an economy, 
we shall present the appropriate generalization of 4.2. The removal of Condition 
R is accomplished by modifying the extension rule slightly to provide that new 
individuals must not desire unconsumed commodities too much. 

5. A GENERALIZATION OF RADER'S SUFFICIENCY CONDITION 

LEMMA 5.1: Let A be an allocation matrix such that Ht(A) = HI*(A) and let a 
be an individual allocation vector such that [(A'A)t- 'proj a + U { k}] for all k _ N, 
is irreducible. Then A augmented by a, denoted A +, exhibits the t-equivalence 
property. 

In the above Lemma, the new allocation A + is called an extension of A. 
The proof is offered in the Appendix. 

THEOREM 5.1: An allocation matrix which may be constructed by successive 
extensions of the 1 x 1 matrix A = (1) by rows and/or columns will satisfy the 
t-wise equivalence property. 

The proof follows immediately from Lemma 5.1. 
Irreducibility of [(A'A )t -proj a + U { k}] indicates that for any two entries in 

a+ or an entry in a+ and k there is a sequence of traders related by common 
holdings along the sequence so that the first and last traders have holdings of the 
specified goods. The common goods relating adjacent members of the sequence 
are in a + U { k) with the possible exception of subsequences of length no greater 
than t - 1. Thus augmentation of A by a + will involve no independent determi- 
nation of an MRS not already implied in A. 

6. NECESSITY 

All of the results offered thus far have dealt with sufficiency. We shall now 
direct our attention toward necessary conditions for equivalence. There is a 
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bootstrap property to the relationship between t-wise and Pareto optimality. For 
an allocation A to exhibit the equivalence property, there must be a coincidence 
of all intermediate degrees of optimality. Now it is immediately apparent that 
fH'(A) D fH*(A). Indeed, this is a simple consequence of the definition. We will 
prove that, in essence, if A is not t-equivalent then there exists some preference 
ordering which is t-wise optimal for A but allows for a Pareto improving trade 
among t + 1 agents. 

THEOREM 6.1: HI'(A) = fH*(A) if, and only if, H71(A)= =t+'(A). 

The proof is contained in the Appendix. 
Theorem 6.1 can be illustrated by a simple example for t = 2. If (A, P') is 

pairwise optimal but not Pareto optimal then the theorem assures us that there is 
P" so that (A, P") is pairwise but not 3-wise optimal. The following example 
gives us precisely this case: 

1 10 0 2 1 0 0 2 1 0 2 

A= 0 1 1 , P' 0 2 I 0 P, = 2 1 0 
0 011'I ~ 002 1 0 02 
1 0 0 1 10 0 2 1 O 21 

We have shown in Theorem 5.1 that the extension process will always create 
an allocation with the equivalence property. Further we will argue that a 
necessary condition for A to have the equivalence property is that A be an 
extension of the (sub)allocation consisting of A with any row or column deleted. 

THEOREM 6.2: Suppose that fHt(A) = Il*(A) and that A - denotes A with some 
row vector, say a for agent v, removed. If (A - 'A ) is irreducible, then for all 
k N, [(A - 'A - )t 'proj a + U { k}] is irreducible. 

The proof is contained in the Appendix. 
The necessity of the irreducibility condition posited in Theorem 6.2 can be 

directly illustrated for t = 2. If irreducibility of [(A - 'A - )proj a + ] is not fulfilled 
then, reordering rows and columns, we can represent A as 

v + + 0 

#0 0 #0 

0 #0 #0 

If we then choose P to look like 

2 1 1-0 

1 0 2 
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we have an expanded version of the familiar three-man-three-good example, so 
that P E fl2(A) but P 4 Il*(A). 

Theorems 5.1 and 6.2 suggest that the irreducibility of [(A - 'A - )t- 1proj a + U 
{ k)}] is very nearly a necessary and sufficient condition for t-equivalence. The 
gap between the necessary and sufficient conditions is those allocation matrices 
that fulfill the irreducibility property (necessity) but cannot be constructed by the 
irreducible extension process (sufficiency). Hence a typical counterexample to 
the conjecture that the condition is both necessary and sufficient would be 

'1 I 0 
1 1 0 

A- 0 1 1 
101 
1 0 1 
1 0 1, 

a multiple version of the three-man-three-good example we started with. A -'A- 

is strictly positive for any deleted row so the irreducibility condition is trivially 
fulfilled. Nevertheless, as in the original example, pairwise optimality does not 
imply Pareto optimality. 

University of California, Berkeley 
and 

University of California, San Diego 

Manuscript received June, 1980; revision received March, 1981. 

APPENDIX: PROOFS 

REPRESENTATION OF A CONVEX ECONOMY BY ITS LINEAR COUNTERPART 

LEMMA A. 1: Suppose (i) (A, u) is Pareto optimal, and (ii) if p, = 0 then u (a,) = u (b,) Vb,, 
b,k = a,k, 1k 7#j. Then (A, u) is Pareto optimal and 3O E R N such that, taking ai as i's endowment, 
(A, u, S) is a competitive equilibrium. 

PROOF OF LEMMA A. 1: We shall first prove, by contradiction, that 3O such that (A, ii, u) is a 
competitive equilibrium. Suppose not. Then, from Gale [3], there exists a "super self sufficient" subset 
of agents, S, and complement, S', where (a) Vs E S, Vs' E S', psj > 0 -asJ = 0; (b) 3s E S, 
3j E { 1, . . ., N }, V t E S asj > O but p,1 = 0. Now psj = 0 implies, by hypothesis (ii), that a reduction 
in asj will leave agent s unaffected. But since 3s' E S' such that psj > 0, then a small transfer of good 
j from s to s' would be preferred by s'. Thus (A, u) would not be Pareto optimal. Therefore 3t, such 
that (A, iu, S) is a competitive equilibrium, and then (A, iu) is Pareto optimal. Q.E.D. 

LEMMA A.2: Suppose (A, u) is Pareto optimal. Then (A, u) is also Pareto optimal. 

PROOF OF LEMMA A.2: iu satisfies condition (ii) in Lemma A. 1 above. Therefore, there exists ( such 
that (A, iu, S) is a competitive equilibrium. 

Then (A, u, S) is also a competitive equilibrium. Suppose not. Then 3i E { 1, M } and z, E R N 

such that (zl _ 0, u'(ai + z) > u'(ai). 
By, quasi-concavity of u', EN lP Zy > 0 but since (zl _ 0 this contradicts competitive equilibrium 

of (A, ii, S) and, as argued above, also the Pareto optimality of (A, ii). 
Thus, (A, u, S) is a competitive equilibrium and (A, u) is Pareto optimal. Q.E.D. 
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THEOREM A. 1: Let u', i = 1, . M, fulfill condition (ii) of Lemma A.1. Then (A, u) is a Pareto 
optimum if and only if (A, u) is a Pareto optimum. (A, u, () is a competitive equilibrium if and only if 
(A, u, () is a competitive equilibrium. 

PROOF OF THEOREM A. 1: The theorem follows directly from Lemmas A. 1 and A.2. 

PROVING THEOREM 2.1 

We will find the following lemma useful: 

LEMMA A.3: Let U E JH'(A); then U' E IT'(A'). 

PROOF OF LEMMA A.3: Let U E IJF(A), V = U'; suppose contrary to the assertion of the theorem 
V : IT(A'). A proof by contradiction will be used in order to avoid consideration of all t-member 
subsets. t-optimality of (U, A) means that each t-member subeconomy in (U, A) is Pareto efficient. 
V : IT'(A') implies that there is some t-element subeconomy of (V, A') whose allocation is inefficient 
and, hence, for which there are no supporting prices. Let the t traders of that subeconomy be 
J c { 1, . . .}, N}. By Lemma A.4 there is a t-good reallocation representing a Pareto improvement for 
J. Let the t goods be the t-element subset I c { 1, . . .}, M}. The contradiction will be established by 
showing that the presence of supporting prices for I in (U, A) imply support prices for J in ( V, A'). 

Consider the traders I in (U, A). U E rFJ(A) implies that there is p E R N supporting A. 
Let X, = max_ l NuJ/p]. We know uj/1 < Xi= a. = 0. Or, for all i, j so that a, > 0 we have 

uI/pJ = X, and u,j/X, = pJ. 
Now consider the t traders J in (V, A'), and the t goods I which can be advantageously 

redistributed. We have for each j E J, vi,/X, = u,/X1 = p1 for all goods i so that a, > 0. Thus, 
= (X,),e is a vector of support prices for the allocation (ay)j 1,EI of goods I among traders J. But 

the presence of these prices implies that (aY)jEj,,E, is a Pareto efficient allocation, which is a 
contradiction. 

t-wise optimality of (U,A) implies the presence of support prices for the allocation of every 
t-member subeconomy in ( V, A'). Hence ( V, A') is t-optimal; V E rI'(A'). Q.E.D. 

LEMMA A.4: flM(A) = rIN(A). 

PROOF OF LEMMA A.4: Two simple proofs are available. (i) Madden notes that if there is any 
blocking coalition, there is one of size N (Madden [6, Theorem 2]), or equivalently Graham, 
Jennergen, Peterson, and Weintraub argue that N-wise optimality implies Pareto optimality (Gra- 
ham, Jennergen, Peterson, and Weintraub [4, Corollary 2]). 

(ii) Equivalently, Lemma A.5 implies that an allocation that is blocked, is blocked by coalitions of 
size no greater than N. 

LEMMA A.5: Let Z be a t-improving allocation for (A, P). Then Z can be expressed as the sum of no 
more than tN t-improving reallocation matrices Zh where Zh has no more than one positive entry in each 
row and column. 

PROOF OF LEMMA A.5: Ostroy-Starr [8, Lemma 2]. 

We now have sufficient machinery to prove Theorem 2.1. 

PROOF OF THEOREM 2.1: From Lemma A.4 we have rlM(A) = HN(A). By Lemma A.1, U 
E rIN(A) = riM(A) if and only if U' E rIN(A'). So U E flM(A) if and only if U' E rIN(A'). 

By Lemma A.3 U E rF'(A) if and only if U' E rI'(A'). Thus, rFJ'(A) = H1M(A) if and only if 
rII (A') = rIN (A'). But rl*(A) )--IJ (A). Q. E. D. 

PROOF OF THEOREM 3.1: Let A denote those traders who hold m, B denote those who do not. 
Suppose the theorem is false. Then there is an improving reallocation Z. Without loss of generality 
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(by Theorem 6.1, Lemma A.5) we can take Z to have: (a) precisely t + 1 non-zero rows; (b) each 
non-zero row has precisely two non-zero entries; (c) each non-zero column has precisely two non-zero 
entries (summing to zero). There are at least three elements of A among the rows with non-zero 
entries in Z, but not all of Z's non-zero rows correspond to elements of A (by Theorem 1.2). Let 1 be 
an element of A who receives, under Z, a good from some element of B denoted 4. That is, zl, > 0, 
Z4n < 0; I E A, 4 E B. 

Consider the following enumeration procedure in Z. Starting at zin > 0 find the entry in z1, 

Z1n' < 0. Follow this column to its non-zero entry Z,n' > 0, find the other non-zero entry in the row 
Zin, < 0, and so forth. This procedure will eventually return to zln. Before it does so denote as 2 the 
final element of A in the procedure. Z2n* < 0, Z3n* > 0 for some element 3 E B. Without loss of 
generality, we may take 4 to be the sole net beneficiary of Z. Denote the set of elements of B between 
3 and 4, i.e., 3,4 and those elements of B not previously enumerated as B*, 

Define X., j = 1 . . . , N, as X =?= maxiEA (Py /Pin)- X (X. XN). Note that X = pilpl. for all 
iEA A, a > 0. 

Construct the matrix Y as follows. Letylm = Z1n', Xn` =-Y2m'Yln = Zln,Y2n* = Z2n* (N.B.: in the 
case where n, n* is in the m and n, n* entry areas). Lety = 0 for all i E A, i #& 1, 2. Let y = z for 
i E B*. Then Y is an improving reallocation and there are only u -' t non-zero rows in Y. This is a 
contradiction. Q. E. D. 

PROOF OF LEMMA 5.1: If the ijth element of (A'A)'- 1 is positive, then there is a chain of no more 
than t - 1 individuals linking commodities i and j. 

If the matrix formed from (A'A)'-1 by deleting the rows and columns for which a is zero is 
irreducible, then for all i and j such that a,, a > 0 there exists a chain of individuals linking i and j, 
which "returns" to the set of commodities for which a is positive at least every t - 1 steps. 

For every P + E rl'(A + ), let P denote P + restricted to agents 1, . . ., M. (i) P E II'(A); (ii) 3p 
such that (A, P, p) is a competitive equilibrium. Claim: (A +, P +, p) is a C.E. 

Since [(A'A)'- la + U { i}] is irreducible, there is a chain in the first M agents connectingj to i (for 
all ] where aM + I J> 0), which returns to the set of goods that M + 1 holds every t - 1 steps or less. 
Call these links. 

In the following argument we will show (a) that PM+ Ij.v/PM+I p-p/p,, for any x, y 
E [1. N] where aM+ Iv > 0 and [(A'A)'] , > 0, and (b) that PM+ 1,/PM+ Ip /p, for any 
i, j [1. N] where aM+ ,J > 0. (a) Now, if x, y are two commodities with aM+ I, > 0 
and [(A'A)tI- ]x > 0 then there is a sequence of t - 1 agents, m1, . . ., m, 1, and a sequence of t 
goods, n1 ..., n, where n, = x and n, = y such that VI E [O, t - 1] 

a,i,i,, am,nl+ I > 0. 

Then Pm,nl/ Pm,nl+ 1 = pnl/pn,+' for all 1 E [0, t - 1]. Suppose PM+ I,X/PM+ . Y < p/py Then pick Z 
so that Zm ,n, = E/pIA, Zml,nl+l = - /Pnl+, , and ZM+ Ix -E/Px, ZM+ ,y E/pY. 

The change in ml's utility is given by 

Pm1nj Pmlnl+ I 
E= _ =0. 

Pn, Pn,+ l 

The change in M + I's utility, however, is 

PM+I,Y PM+IX 
e _ ,X >O. 

Py Px 

Thus the trade vector Z improves a group of size t; 
Therefore PM+ I,x/PM+ ,Y> 

- 
px/py. 

(b) Take i, j E [ 1, . . .N N] where aM + ,J > O. Since [(A'A )'proj a + U {i is irreducible, there 
exists a sequence n1, . . , nQ E [1, ..., N] where (i) (A'A)t I+ > 0; (ii) n1 =j and nQ = i; (iii) 
aM+If L>OforqE[1, ., Q-1]. 

By (1) above, 

PM+ lnq Pnq PM+1,nQ_ PnQ- 
=PM+ 1 nandP,nQ PnQ 

PM+1.nq+i pn4q+l PM+l,nQ PflQ 



OPTIMALITIES 605 

Thus PM+ I J /PM+ p P/P, and p supports the M + 1st agent as well. 
Therefore (A +, P +, p) is a competitive equilibrium and rl'(A + ) = rl*(A +). Q.E.D. 

PROOF OF THEOREM 6.1: 1'(A) H JI'+'(A) implies trivially Il'(A) r HM(A). Thus, riM(A) 
=I'(A) =X> '(A) = I'+ '(A). We must show 

Il = r`(A)=r'(A) - '+l(A) 

To do this we will prove 

I:t(A ) SIIm(A ) =: Il'(A ) 7TII + '(A ). 

Search HI(A)\IIM(A) for P* with the smallest possible blocking coalition S to A. SI = t + k, k ' 1. 
If k = 1, we are done. Suppose k > 1. Let Z be a t + k-improving reallocation on S involving t + k 
goods with no more than one positive entry in each row and column (A can be so restricted without 
loss of generality by Lemma A.5). 

Denote the elements of S by 'I i2, ... ., i+k and the goods for which they have negative (i.e., 
supply) entries in Z by i I j2 . ... tjt+k respectively. For further notational convenience order the 
elements so that 

z,,- I,< O, z,lJ1+A > O, 

z12J2 < 0 Zi2jI > 0, 

Zi3,3 < 0, z,312 > 0, and so forth. 

We may, without loss of generality, arrange the magnitudes of the trade so that agent il receives all 
of the benefits and 

(i) P,,11;,1,,+ P,jJ, ,z,,1, , =0 for lI . 

Consider P,*3J, i3'S marginal utility for goodjl (the good that i2, not i3, receives under Z). Now if 
Z + P,13z1313 0 then let Z be identical with Z except for 2z131 =z,2J, and 02J. =2,212 =0? 

But then Z is a t + k - 1 improving reallocation for P*, a contradiction. Therefore P,*JIz,21, + 
PI*z < 0. 

13 2 
13J3 13J3 

Let P be P* with P,31 replacing P,*3, where 

(ii) F,Jz,,+PI3Z3J-? 

Since Z would be a t + k - 1 improving reallocation for F-a contradiction-then P T Fl'(A). 
Thuis, there is Y a t-improving reallocation for (P, A), where y,3j > 0, and for some other good j3, 

Y3j3 < 0. 
Without loss of generality, we may scale Y so that 

(iii) y,3i I = 
Zi2J I 

and arrange the trade so that 

(iv) P'3J 1 Yi3j I + P,13j Yi33 = 0. 

Consider Y identical to Y except that y'31, = O, 

Y =3j2 
= 

Z3J2 = Y2J2 Zi2j2' Yi2JI, =Y3J 1 Z=2J I'- 

Now, from (i) (for 1= 3) and (ii) 

(v) Pi* z~~~~~~r 
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and by (v) and (iii) 

(vi) P,'3j2z13J2 
= 

P,3j1 Yl3J1 

and by (vi) and (iv) 

P* + P*~~,1 = 0. 
Pi3J2 3J2 

+ 
1l'Y3j3 

' 
Yl3J3 

Since Y,3J2= Z13j2 and y6313 
= y313, then 

3j2Y.3j2 
+ 

P6hyi3fij 
= 0, 

So i3 neither benefits nor loses by Y. 
Since y,2j, = yi3,j = zi2j, and 

Yi212 
= 

Zi212' 

then by (i) for I = 2 

Pi2Iy2jI 
+ 

P,12 Y12J2 
=0 

and i2 neither benefits nor loses by Y. 
The remaining trades of Y are the same as Y, a t-improving reallocation for (P, A). But P* and P 

are the same except for P,3f, and yp3j =0. Therefore, Y is a t + 1 improving reallocation for (P*, A). 
This is a contradiction and implies k = 1. Q.E.D. 

PROOF OF THEOREM 6.2: Suppose not. Then there are two commodities i and j at least one of 
which is positive in a (say j) such that the ith element of [(A -'A -)-proj a+ U { i) ] equals zero 
for all x > 0. Assign utility weights as follows. Marginal utilities equal 1 for all agents other than v 
and all commodities. For agent v, marginal utility equals 2 for good i and any other good k which v 
nolds for which there exists some x such that the ikth element of [(A - 'A - )'- 'proj a + U { i}]- > 0. 
Consider a chain of agents (not v) connecting i andj (possible by assumption that A - is irreducible). 
The chain involves at least t agents since [(A -'A -)' proj a+ U {i}],j= 0. Consider a transfer 
around the chain from commodityj. Transfer a unit of i from the last one in the chain to v and a unit 
of] from v to the first in the chain. The trade is Pareto improving involving at least t + 1 traders. 

Q.E.D. 
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