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The Shapley-Folkman theorem and its corollaries [ 1, 2, 3, 4, 5, 6, 81 
provide strong bounds on the distance between the sum of a family of non- 
convex sets and the convex hull of the sum. Proofs of the theorem are non- 
constructive, and require moderately advanced analysis. The proof developed 
below is based on elementary considerations. It provides an approximation 
sequentially with the successive addition of sets to the sum. The approx- 
imation is not so close as that provided by the Shapley-Folkman theorem, 
but for any given point of the convex hull we will find a specific point in the 
sum within a previously determined bound on the distance between the two. 

Particular virtues of the bounds associated with the Shapley-Folkman 
theorem are the relatively tight approximation developed and its behavior as 
the number of summands becomes large. The bounded distance between the 
sum and its convex hull depends not on the number of sets summed (denoted 
m) as this number becomes large, but rather on the dimensionality of the 
space (denoted N). Thus as the number of summands becomes large, the 
average discrepancy between the sum and its convex hull converges to 0 as 
l/m. The bounds developed below, on the contrary, vary as m”* so that the 
average discrepancy converges to 0 as l/m”*. The virtue of the results here 
is their comparative ease of proof and the sequential construction making it 
relatively easy to find a point of the sum nearby to any chosen point of the 
convex hull. 

For S CR”‘. S compact, we define several measures of size and non- 
convexity. con S denotes the convex hull of 5’. 

* A sketch of the analysis of this paper was developed in 1965 in an early draft of 181. It 
was not published then, since it seemed to be superseded by the Shapley-Folkman theorem. 
Subsequent discussions have convinced me of its independent interest, particularly in relation 
to theorem I of 141 and the theorem of [ 71. 
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APPROXIMATION OF THE CONVEX HULL 

The radius of S is 

315 

rad(S) = ,‘E”,f s,yt Ix - y (. 

rad(S) is the radius of the smallest sphere that can fully contain S. 
The inner radius of S is 

r(S) = sup inf rad(T). 
rccons i-cs 

r SDBIISI 

r(S) is the smallest radius of a ball centered in con S so that the ball is 
certain to contain points of S that span its center. r(S) is a measure of the 
size of the nonconvexities (holes) in S. 

The inner diameter of S, d(S) is simply twice the inner radius; 

d(S) = 2r(S). 

Note that a sphere centered at any point, y, of con S with radius d(S) 
contains a set of points spanning y. We make use of this property to prove 

LEMMA. Let U c RN, U compact, v E R”, y E con U. Then there is x E U 
such that Jx - y I< d(U) and v . (x - y) < 0. 

ProoJ: There are xj E U, j = I,..., ( a most N + 1 points xj are required) t 
so that for some ai > 0, .Zaj = 1, .?Zajxj = y and (xi - y ( < d(U). We then 
have 

Caj(x’ - y) = 0, 

v - Ca’(x’ - y) = 0, 

227% * (x.’ - y) = 0, 

so for some j, u . (xj - y) < 0. Let this xi be the required x. Q.E.D. 

Let S’ be a countable collection of compact subsets of RN. Further, let 
d(S’) <D for all i. Describe y as CT=1 yi, where y’ E con S’. Choose x’ in 
S’ so that 1 y’ -x1 1 Q D. Find x2 E S* so that (y’ -x1) . (y’ -x2) < 0 and 
1 y* -x2( <D. The lemma assures us that there is such x2. Since (y’ -x2) 
meets (y’ -x1) at an acute angle, ) CT=, yi - Ct=, xi I2 < Cf= I ) yi - xi 12. 
This is argued more completely in the proof of the Proposition. Hence 
/c;=, y’ - Et=, xi1 < D(2)“*. Proceeding sequentially, xk is chosen in Sk 
within a distance D of yk and at an acute angle to (C:z: yi - C”:: xi). The 
lemma assures that this is possible. This gives ]cF_, yi - xi”_, xi/ Q D(k)“*. 
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Setting k = m, 1 CT=, y’ - Cy=, xi 1 < D(m)“‘. Cy=, xi is the desired point in 
Cr=i S’ relatively near to y. Further, as the number of sets summed, m, 
increases, the average discrepancy of the approximation D(m)“‘/m 
converges to 0 as l/(m)“‘. 

PROPOSITION. Let x E con x7=, S’. Then there are xi E S’, so that 

lx-i:, ( _1 xi < D(m)“‘. 

Prooj The proof is by induction on m. The lemma is trivially true for 
m = 1. Suppose it is true for m - 1, we must demonstrate it for m. 

x = u + w for some U, w so that u E con Cj’.;’ S’, w E con S”. By the 
inductive hypothesis there are xi E S’, i = I,..., m - 1 so that 
Iu - Cy=;’ xi1 < D(m - l)“*. Then by the lemma there is x”’ E S” so that 
(u’ - xm ] < &Y’) < D and (x” - w) . (CjV1’ xi - U) < 0. We then have 

c xi - (u + w) 

2 

,r1 

= 
i Cx’-((ufw) . I( f xi - (u + w) 

i=l i-1 ) 

=[(~~‘x~-~)+(x~-w)].[(~,‘xi-,)+(x~-w)~ 

= 1pu I2 +Ixm-w/*+(Xm-w). (gxi-u) 

< Ipu /1 + jxm - w(’ < D’m. Q.E.D. 

COROLLARY. r(Cyz, S’) ,< D(m)“‘. 

The Corollary’s bound is not so tight as that of the Shapley-Folkman 
theorem and corollaries, where it is shown that r(Cy’, S’) < 
(l/2) D(min(m, N))“‘. It is derived, however, from a peculiarly simple 
analytic basis and proof. The Proposition and Corollary are similar to 
Theorem 1 of 141. The use of statistical independence there corresponds to 
the possible orthogonality of (x” - w) to (Cy=-,’ xi-u) above. The 
sequential structure of the analysis here may make this approach particularly 
suitable for computational use. 
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