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Abstract 

 

This paper examines the endogenous emergence of a commodity money in a trading 

post economy.  The commodity money is defined as the common medium of exchange and 

is determined by the equilibrium pattern of exchange.  The long run equilibria are analyzed 

using an evolutionary style model.  Agents follow a simple adaptive process, generating 

dynamics that are reduced to a Markov process.  Examples are given where the economy 

spends almost all the time in one or more of the monetary equilibria.  Properties that favor 

the selection of one good as the commodity money are high trading volume and low trading 

cost. 
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1. Introduction 

 

Most economic models take the existence (or non-existence) of money as given.  

These models are appropriate for economies in which the use of a particular money is 

legislated, such as the dollar in the United States or the pound in Great Britain.  In other 

economies, legislation may simply have ratified the outcome of a spontaneous historical 

process, as in the adoption of gold and silver coins.  However in some economies no 

medium of exchange is legislated, as in the use of the US dollar as a vehicle currency in the 

foreign exchange markets (Portes and Rey 1998), or the use of cigarettes as a medium of 

exchange in prison camp economies (Radford 1945).  This paper examines the endogenous 

emergence and resulting stability of commodity money in such settings.  We allow any 

commodity to be used as the common medium of exchange.  Our analysis allows us to 

perform comparative statics that demonstrate that low trading costs and high initial trading 

volumes favor the use of a particular commodity as the medium of exchange. 

Two kinds of model have been used to study the spontaneous emergence of a 

medium of exchange.  One is the search theoretic approach used in Kiyotaki and Wright 

(1989), in which agents meet randomly and trade whenever it is mutually advantageous.  

Each agent chooses a trading plan to minimize his or her expected search cost for acquiring 

a desired good given the plans in use by the other agents.  Agents consider both storage cost 

and salability when deciding on a medium of exchange.  Rocheteau and Wright (2005) 

include a recent review of the search literature. 

This paper takes an alternative approach, in which trade is structured through pre-

existing trading posts, modeled, following Clower (1995), as places where agents can 

gather expecting that everyone will be interested in trading two specific goods.  The 

advantages of trading posts are shown in Iwai (1996) and in Rocheteau and Wright’s (2005) 

competitive search equilibrium.  Unlike the search-theoretic models, trading post models 

build in the cost-reducing trading patterns that presumably precede the emergence of a 

commodity money. 

Specifically, we consider a pure exchange economy with trading posts.  Households 

gather at specific trading posts to exchange a given pair of goods.  A household may trade 

directly for a desired consumption good.  Alternatively the household may trade indirectly, 

first trading for an intermediate good and then trading that good for a desired consumption 
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good.  We call the intermediate good a medium of exchange.  When the trading posts have 

economies of scale, the models have multiple equilibria.  These equilibria are characterized 

by the pattern of exchange.  A barter equilibrium is an equilibrium where all households 

trade directly.  A monetary equilibrium is defined as an equilibrium where all households 

use a common medium of exchange.  There is one such monetary equilibrium for each 

possible good. 

In pure-exchange trading post economies each agent goes only to the trading posts 

needed to trade his endowment for his desired consumption goods.  Agents thus avoid 

search costs, but instead must cover the costs of operating the trading posts.  Previous 

work, including Clower (1995), Starr and Stinchcombe (1999) and Starr (2003 a, b), 

addresses the existence of monetary and barter equilibria and their local stability but has 

little to say about equilibrium selection. 

Equilibrium selection has been studied using computer simulations by Marimon, 

McGrattan and Sargent (1990) and by Howitt and Clower (2000) and through experiments 

by Brown (1996), Duffy and Ochs (1999) and Newhouse (2004).  Similar to Johnson 

(1997), we study equilibrium selection with a model of adaptive learning in the style of 

Kandori, Mailath and Rob (1993), henceforth KMR.  This approach provides a basis for 

assessing the stability and relative likelihood of barter and monetary equilibria in the long 

run, independent of initial trading conditions.  Johnson demonstrates that a fiat monetary 

equilibrium is the most likely limit point of adaptive dynamics when the number of goods 

in an economy is large.  We show analytically how the likelihood of a specific commodity 

monetary equilibrium is influenced by the costs of trading the various goods and the 

number of each type of agent.  In other words we determine properties that favor the 

selection of a particular good as the medium of exchange in an economy. 

 This paper is organized as follows.  Section 2 presents the model and explains how 

the Nash equilibrium used in this paper gives rise to properties we expect from general 

equilibrium theory.  Section 3 explains how the long run equilibrium selection process 

developed by KMR is applied in this analysis.  Section 4 presents two theorems that 

demonstrate properties that favor the use of a particular good as a medium of exchange.  

Section 5 gives detailed results for two specific examples of three good trading post 

economies, both of which result in long run monetary equilibria.  Section 6 concludes. 
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2. The Model 

 

The model discussed in this paper is adapted from Shapley and Shubik (1977); it is 

a multi-period, pure exchange, trading post model.  Each period, adaptive agents receive 

endowments and then visit one or more trading posts to trade for their desired consumption 

goods, as explained below.  This paper considers the simplest interesting case, the case of 

three, perfectly divisible consumption goods.  Three is the minimum number of goods that 

allows both barter and monetary equilibria.  Analyzing three goods limits both the number 

of agents' choices and the number of possible equilibria to provide clear analytical results. 

 

2.1. Agents 

 

Each agent is characterized by an endowment of one of the three goods each period 

and by a desire to consume a different good.  In all there are six types of agents, one type 

for each permutation of three goods taken two at a time.  These agents’ types are labeled as 

Xij for i, j ∈ {a, b, c} where Xij is endowed with good i and desires to consume good j.  An 

agent of type Xij has a utility function equal to ( )ijU j j=  (the amount of good J consumed 

by that agent).  There are nij agents of each type Xij.  Each period, each agent receives 1 unit 

of his endowment good and then goes to one or more trading posts to trade for his desired 

consumption good.  Agents can only trade goods with trading posts, not directly with each 

other. 

 

2.2. Trading Posts 

 

There is a unique trading post for each pair of consumption goods.  The trading 

posts do not act strategically; each mechanically sets its bid-ask spread so that it will break 

even.  This average cost pricing rule simplifies the accounting by eliminating monopoly 

profits and can be justified due to either potential entry or regulation. 

Each trading post is characterized by the goods it trades, its fixed cost, and a cost-

sharing rule.  Trading post Yij trades consumption goods i and j.  The order of the subscripts 

for posts does not matter; trading post Yij is the same as Yji.  Trading post Yij must pay a 

fixed cost of Fij each period that it operates.  Post Yij also has a cost-sharing rule that 
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specifies what percentage of Fij it will pay for with good i (denoted αi
ij) and what 

percentage it will pay for with good j (αj
ij) with αi

ij  + αj
ij  = 1.  Trading posts follow a 

pricing rule where the quantity of I that Yij will give for 1 unit of J is denoted by qij, 
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Iij refers to the total amount of good I brought to Yij and Jij refers to the total amount 

of good J brought to Yij.  Trading post Yij returns all units of good i that it receives less the 

amount it uses to cover its fixed cost.  The amount it returns to each agent is proportional to 

the amount of good j that that agent brought to the trading post.  The quantities qij and qji 

can be converted to bid and ask prices for good I.  The bid price for good I at trading post 

Yij is the amount of good J that the firm will give to an agent for 1 unit of I, or simply qji.  

The ask price for good I at trading post Yij is the amount of J that the firm accepts for 1 unit 

of I, or 1/qij.1  The firm uses its bid-ask spread to cover its fixed cost. 

 

2.3. Decisions 

 

The agents in this model follow a simple adaptive learning rule.  Each agent can 

choose from two possible trading plans, direct and indirect trade.  An agent Xij that chooses 

direct trade simply trades good i for good j.  An agent Xij that chooses indirect trade first 

trades i for k, then trades k for j.  Good k is referred to as the medium of exchange for such 

an agent.  When all agents choose direct trade, the system is (possibly) at the barter 

equilibrium.  When agents trade through a common medium of exchange, the system is at a 

monetary equilibrium.  At the monetary equilibria, agents who are endowed with or 

consume the monetary good trade directly and all other agents trade indirectly.  Although 

indirect trade requires the use of two trading posts (and paying a share of each post’s fixed 

cost through the bid-ask spreads), it will be desirable if the combined average cost of using 

those posts is below the average cost of using the other post.  

                                                 
1 For instance assume Fab = 2 and αa

ab = αb
ab = 0.5, and that 10 units of good A and 9 

units of good B are brought to post Yab.  The amount of A that this post will give for 1 unit 
of B is qab = (10 – 1)/9 = 1 unit of A and similarly qba = (9 – 1)/10 = 0.9 units of B.  The 
bid-ask spread for good A is 1/qab – qba = 1 – 0.9 = 0.1 units of good B.  The bid-ask spread 
for good B is 1/qba – qab = 1.11 – 1 = 0.11 units of good A.   
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The agents’ risk preferences do not need to be modeled because only one agent is 

allowed to change actions each period and that agent knows what the population 

distribution was during the previous period.  Agents face no uncertainty when they choose 

actions.  The amount of j (based on that agent’s choice of direct or indirect trade) is given 

by, 

( ) max[ ,0]

( ) (max[ ,0])(max[ ,0])

j
ij ij ij

ij

jk
jk jk jkik ik ik

ik jk

J F
j direct

I

J FK Fj indirect
I K

α

αα

−
=

−−
=

 

The first term for the amount of j received through indirect trade gives the amount 

of good k that the agent receives for 1 unit of i.  The product of the 2 terms then gives the 

total amount of good j that the agent receives.2  An example of these calculations is given in 

Appendix A for an economy with 10 agents of each type. 

This model differs from a standard Walrasian model in that there is no single 

centralized market.  The agents face a balanced budget constraint at each trading post, in 

that the costs of their purchases each period must equal the proceeds of their sales at every 

post.  In the first period, it is assumed that the agents’ actions are drawn from a uniform 

distribution.  In all additional periods, a single randomly selected agent will be given the 

option to choose a new strategy.  This agent, with high probability, chooses the best 

response to the population’s play in the previous period.  (The agent will choose direct 

trade in the case of a tie.)  However, in the style of Kandori, Mailath and Rob (1993), the 

agent has a small probability of making an error and playing something other than the best 

response to the previous period’s play.  Because agents in this model have only two 

choices, an agent that makes an error plays the lower utility strategy (indirect trade in case 

of ties).  All other agents’ actions remain the same as in the previous period.  These agents 

have no choice of actions for the current period.  This assumption introduces enough 

friction to rule out cycles and ensures that the population will converge to an equilibrium. 

                                                 
2 As an approximation, if each market has a relatively balanced amount of goods 

brought to it from each side (Iij ≈ Jij, Iik ≈ Kik and Jjk ≈ Kjk) and aij ≈ 0.5 for all i ≠ j ∈ {a, b, 
c}, agent Xij prefers indirect trade to direct trade if (1 – 0.5Fik/Iik)(1 – 0.5Fjk/Kjk) > 1 – 
0.5Fij/Iij.  If the fixed costs are equal, indirect trade is appealing if Iik and Kjk are large 
compared to Iij.  Notice that Iik, Kjk and Iij represent the traffic at each trading post due to the 
market balance. 
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2.4. Equilibrium 

 

We study the Nash equilibria of the game described above.  An equilibrium is a 

configuration of trading strategies for those agents such that no agent prefers a different 

trading strategy, given the prices determined by all agents’ current strategies.  Given the 

assumptions about preferences introduced above, each agent chooses the action that allows 

him to consume the maximum amount of his consumption good that he can purchase given 

his endowment and everyone else’s actions.   

Equilibria are characterized by three conditions: (i) zero profit for the firms, (ii) 

arbitrage free pricing and (iii) market clearing.  These properties are the result of optimal 

household behavior and the mechanical pricing rule used by the firms.  Arbitrage free 

pricing means that no agent can come up with a trading plan that will result in acquiring 

more of his endowed good than he started with in his endowment.  Such a trading plan 

would allow the agent eventually to trade for an unlimited amount of any of the goods.  

Market clearing occurs at two levels.  First, each trading post must buy the same amount of 

any good that it either sells or burns up to cover its fixed cost.  This condition is just 

material balance for trading posts, and holds in or out of equilibrium.  Second, the total 

amount of each good brought to the market by households less the amount needed to cover 

the post’s operating costs must equal the amount consumed by households.  This condition 

represents material balance for the households given that all trading posts earn zero profit.  

The equilibrium patterns of trade are distinguished by which trading posts are 

active.  A monetary equilibrium is characterized by each active post trading a different 

good for a distinguished good that is common to all active trading posts, which serves as 

the common medium of exchange.  In the case of three goods a monetary equilibrium 

consists of two active trading posts and one inactive trading post.  Agents that are endowed 

with or consume the commodity money trade directly and the other agents trade indirectly.  

A barter equilibrium is characterized by an active trading post for every pair of 

consumption goods, which means that all trading posts remain active.  All agents trade 

directly for their desired consumption goods.  In the case of three goods there can be as 

many as four possible equilibria, depending on the number of each type of agent and the 
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fixed cost of each trading post.  The possible equilibria are barter and three monetary 

equilibria. 

In the absence of ties for the high-cost post there is a unique Pareto efficient 

equilibrium, in which the trading post with the highest fixed cost is inactive and the unique 

good that is traded at both of the other two trading posts serves as the medium of exchange.  

Due to the cost sharing rules, a move from an inefficient to an efficient equilibrium need 

not be Pareto improving.  However if each trading post can use any of the three goods to 

cover its fixed cost, a central planner could choose those amounts to cover the fixed costs 

such that no agents are worse off and some agents are strictly better off. 

 

3. Long Run Equilibrium Selection 

 

This paper performs a long run equilibrium analysis in the style of Kandori, Mailath 

and Rob (1993).  KMR present a dynamic adjustment process for adaptive agents that 

consists of two parts, a deterministic component and a stochastic component.  Under the 

deterministic adjustment, each agent best responds to the distribution of actions of the 

population.  The deterministic adjustment is characterized by the basins of attraction as 

explained below.  Under the stochastic component, there is a low probability that any agent 

will deviate from the best response and play a different action.  The stochastic component 

leads to a steady-state probability of transitioning between equilibria that is independent of 

the initial state of the system.  KMR also show that as the probability of deviation goes to 

zero that the limiting distribution can be determined by counting the minimum number of 

deviations it takes to leave each equilibrium or state.  This limiting distribution can be 

interpreted as the proportion of time the system spends at each equilibrium in the long run. 

The analysis in this paper proceeds in three steps.  First we characterize the basin of 

attraction of each equilibrium.  Then we use the probabilities of switching between 

equilibria to construct the transition matrix.  Finally we calculate the limiting probability 

distribution of the states as the probability of error approaches zero. 
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3.1. Basins of attraction 

 

In standard analysis the basin of attraction for an equilibrium is the region of the 

action space where best response dynamics lead to that equilibrium.  The standard best 

response dynamics have each agent in the population play his best response to the given 

action distribution.  However in this paper if the entire population best responds, there is a 

large portion of the action space that will lead to cyclic behavior.  To avoid this cyclic 

behavior a damped best response dynamic is used where exactly one agent is chosen at 

random each period to respond to the population’s action distribution.3  This dynamic 

ensures that an equilibrium will eventually be reached.  However a given point in the action 

space may lead to different equilibria depending on the specific types of agents that are 

chosen to respond; it is path dependent.  For this paper we define the basin of attraction of 

an equilibrium as the region of the action space that puts positive probability on reaching 

that equilibrium given the damped best-response dynamic. 

For the case of 3 goods with 6 types of agents, the action space can be described as 

a unit hyper-cube in the positive orthant with one corner at the origin.  The coordinates of 

any point inside the cube represent the proportions of each type that play direct trade.  The 

point (1, 1, 1, 1, 1, 1) represents the (possible) barter equilibrium where all pairs trade 

directly.  In order to assign each point to the correct basin(s), prices are calculated 

according to the posts’ mechanical pricing rules and the agents’ specified actions.  The 

basin of attraction for an equilibrium is the region of points that place a positive probability 

on reaching that equilibrium given the best response dynamic (including the probability that 

each agent is given the opportunity to adjust, but not including the error probabilities).  A 

two-dimensional representation of the basins of attraction is illustrated in figure 1 below.  If 

                                                 
3 KMR use a damped best response dynamic for the case of games with no symmetric 

pure strategy equilibrium.  They demonstrate that an undamped best response dynamic may 
result in a limiting distribution that does not correspond to the mixed strategy equilibrium 
for the system.  Although the only stable equilibria for the model in this paper are pure 
strategy equilibria, a damped best response dynamic is appropriate because market 
imbalances result in the same type of cyclic behavior as considered by KMR.  Cyclic 
behavior results from market imbalances because if one side of a market sees a favorable 
price the other side will see an unfavorable price.  The following period agents on both 
sides of this market will change actions and the situation will reverse.   
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all agents of types Xac, Xca, Xbc and Xcb play direct trade, this representation gives one face 

of the hyper-cube that represents the action space for all types.  The point (1, 1) on this 

graph represents the barter equilibrium and the point (0, 0) represents the equilibrium where 

good C is used as the medium of exchange. 

 

Figure 1: Basins of attraction 
 

The union of regions I and III is the basin of attraction for the monetary equilibrium 

with good C used as the common medium of exchange.  The union of regions II and III is 

the basin of attraction for the barter equilibrium.  Given that one agent is chosen to best 

respond each period, points in region III put positive probability on reaching either 

equilibrium.  Appendix B provides an example of assigning a point in the action space to a 

basin of attraction.  It continues the example used in Appendix A.   

 

3.2. Transitions 

 

The best response dynamic leads to movement within a basin of attraction towards 

an equilibrium.  The probability of error leads to periodic large jumps from one equilibrium 

to another.  These transitions occur when enough individual errors accumulate to move the 

system to a new basin of attraction.  Given a low probability of an error the probability of a 

transition from one equilibria to another is approximately equal to the probability of 

1 

Proportion of Xba 
playing direct 

I 

II 

III 

0 1 Proportion of Xab playing direct
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moving from the first equilibrium to any point in the second equilibrium’s basin of 

attraction.  The probability of transitioning from equilibrium i to equilibrium j is calculated 

by summing the probabilities of error necessary to move the system from equilibrium i to 

each point in equilibrium j.  Calculating the transition probabilities is computationally 

intensive, but relatively straightforward.  One step of this calculation is presented in 

Appendix C. 

 

3.3. Limiting steady-state distribution 

 

Define [T] as the transition probability matrix where [t]ij is equal to the probability 

of reaching the basin of attraction for equilibrium i at time t + 1 given that the system is at 

equilibrium j at time t.  Once the transition probabilities are determined, the system is 

characterized as a Markov process where each equilibrium corresponds to a state.  Define 

Pt as the vector of probabilities of being at the different equilibria at time t.  The steady 

state distribution is calculated from the equation [T] Pt = Pt+1 when Pt = Pt+1.  Finally the 

limit of the steady state distribution will be taken as the error rate goes to 0.  This limit is 

independent of the initial distribution and can be interpreted as the percentage of time the 

system spends at each equilibrium in the long run. 

 

4. General Results 

 

This section gives theorems that show how the long run equilibria distribution 

changes as the parameters change.  Two factors drive the equilibrium selection, the number 

of each type of agent and the fixed costs of the trading posts. For instance, if the number of 

types Xab, Xba, Xac and Xca all increase then the basin of attraction grows for the equilibrium 

where good A is used as the medium of exchange.  Intuitively this proposition holds 

because the higher traffic on these trading routes drives down the fixed cost per agent and 

makes the option of indirect trade look relatively more appealing to types Xbc and Xcb.  If 

the fixed cost of trading post Ybc increases then the basin of attraction grows for the 

equilibrium where good A is used as the medium of exchange.  This proposition holds 

because the cost of trading at post Ybc increases and makes indirect trade look more 

appealing for types Xbc and Xcb. 
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There are three possible regions of parameter values, one with no barter 

equilibrium, one with a small basin of attraction for the barter equilibrium, and one with a 

large basin of attraction for the barter equilibrium.  A large barter basin is defined when the 

transition from one money to barter to another money requires no more deviations than the 

transition from the first money directly to the second.  The theorems in this section only 

apply to the case of a large barter basin whereas the techniques presented in section 5 apply 

to all the regions.  These techniques allow the computation of the limiting steady state 

distribution for any specific economy but they do not allow for analytic comparative statics.  

Assume there are equal numbers of corresponding types of agents (nab = nba, nac = 

nca, and nbc = ncb).  Let Pi represent the probability mass assigned by the limiting steady 

state distribution to the equilibrium where good i is used as money. 

Note that these probabilities are not smooth functions of the parameters.  The 

limiting steady-state distribution is generally flat with respect to the parameters in the 

model and makes discrete jumps when these parameters cross threshold values.  A sample 

graph of the probability of the good C monetary equilibrium is given in figure 2 below. 

 

Figure 2: Sample probability of the C money equilibrium as a function of Fab 
 

Note that when the number of types Xjk and Xkj decreases the relative number the 

other four types increases (who are all endowed with or consume good i).  Theorem 1 states 

that as the number of types Xjk and Xkj decreases, then the limiting steady-state distribution 

(weakly) places more probability mass on the equilibrium where good i is used as the 

medium of exchange. 

1 

PCmoney 

0 
Fab
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Theorem 1: 0i
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Theorem 2 states that as the fixed cost of a trading post rises, then the limiting 

steady-state distribution (weakly) places more probability mass on the equilibrium where 

the good that is not exchanged at that post is used as the medium of exchange. 

Theorem 2: 0i

jk

P
F
Δ

≥
Δ

 

The intuition behind both these proofs is that as the average cost of trading at a post 

increases its likelihood of closing increases.  These theorems are proven in Appendix D. 

 

5. Examples 

 

Theorems 1 and 2 give comparative static results for cases with a large barter 

equilibrium.  We can use the techniques described in section 3 to compute the actual long 

run equilibria for any specific economy (regardless of the size of the basins of attraction).  

We now examine two examples, one symmetric and one asymmetric.  In the symmetric 

case, there are equal numbers of each type of agent and all firms have identical fixed costs.  

In the asymmetric case the model’s parameters vary across goods and across agents as 

explained below. 

 

5.1. Case I – Symmetric 

 

First consider the symmetric case where there are 10 of each type of agent and all 

fixed costs are equal to 2.  Each firm that operates divides its cost evenly between the 2 

goods that are traded at its post (αij = 0.5 for i,j ∈ {A, B, C}).  The perfectly symmetric case 

seems like the most difficult case for a money to emerge because the advantage that the 

best potential money enjoys over barter is smaller than in any asymmetric case. Given these 

parameters, this example has all four equilibria, barter and the three monetary.  A monetary 

equilibrium is an equilibrium where one good is used as the common medium of exchange. 

The transition probabilities are calculated as explained in section 3 and the limiting 

distribution is calculated as ε approaches 0.  The steady state distribution puts probability 

1/3 on each of the monetary equilibria, meaning that in the long run, in any given period, 
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the probability that the system is in a given monetary equilibrium is 1/3. This steady state 

distribution may be counterintuitive at first, but it is explained by the symmetry in the 

model.  In the long run, the model will remain in one of the monetary states for a long time.  

However the model will eventually move back to the barter equilibrium.  The model will 

spend a relatively short time in the barter state and will then switch to a (possibly different) 

monetary equilibrium.  There is an equal probability of switching to any of the monetary 

equilibria due to the perfect symmetry in this example.  The final result is that the 

probability of economy being in any given monetary equilibrium is 1/3 and the probability 

of being in the barter equilibrium is 0. 

  

5.2. Case II – Asymmetric 

 

In the next example we will see that a single money will be predicted with 

probability one in the limit in a case where the symmetry is disturbed.  In this example 

there are 10 of each type, Xab, Xba, Xac and Xca, and there are 7 of type Xbc and Xcb.  This 

assumption tends to favor the use of good A as money because agents will pay a lower 

share of the fixed costs at trading posts Yab and Yca.  The fixed cost of post Yca is equal to 

1.25 and that the fixed costs of the other two posts are equal to 1.  This assumption tends to 

favor the use of good B as money so that agents can avoid paying the higher fixed cost at 

trading post Yca.  The economy still has four possible equilibria and the unique efficient 

equilibrium is the one where good B is used as the commodity money.  Again, each firm 

that operates divides its cost evenly between the 2 goods that are traded at its post. 
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Markov chain-transition probabilities 

(calculated from the asymmetric example) 

 
Figure 3:Markov chain transition probabilities 

 

These transition probabilities (shown in figure 3) are the probabilities of switching 

from one equilibrium to another given that the probability of making an error is ε.  They are 

calculated using the techniques described in section 3.  These probabilities are used to 

construct the transition probability matrix which is used to solve the following equation for 

the steady state equilibrium probabilities. 

 
1-ε4-ε3-ε5 ε6 ε8 ε6  Pbarter  Pbarter 

ε4 1-ε6-ε9-ε11 ε11 ε11  PAmoney = PAmoney 

ε3 ε9 1-ε8-ε11-ε13 ε11  PBmoney  PBmoney 

ε5 ε11 ε13 1-ε6-ε11-ε11  PCmoney  PCmoney 
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A Money 
(# of 
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B Money 
(Fixed 
Cost) 
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Money 
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As ε goes to 0, the limiting steady state distribution becomes (0, 0, 1, 0) which 

implies that in the long run, the system will spend almost all of the time with good B used 

as the commodity money. 

 

6. Conclusion 

 

Theorems 1 and 2 provide conditions that favor the use of a particular commodity as 

the common medium of exchange in a trading post economy.  Theorem 1 demonstrates that 

as a good becomes more common (in terms of consumption and endowment) it is more 

likely to be used as the medium of exchange.  Theorem 2 shows that as the fixed cost of 

operating a trading post increases the likelihood of that post shutting down increases.  

Theorem 2 shows that there is a tendency for equilibrium selection to favor efficiency, but 

it does not always suffice for full efficiency.  Theorems 1 and 2 show that equilibrium 

selection via evolutionary dynamics has a strong but not perfect tendency to favor more 

efficient equilibria.  Theorem 2 favors efficiency but theorem 1 does not. 

The examples demonstrate that in the long run, as the probability of error 

approaches 0, the proportion of time spent in the monetary equilibria approaches 1.  In the 

symmetric case, all possible commodity monies have positive prior probabilities, and the 

barter equilibrium has zero prior probability.  In the asymmetric example, by contrast, a 

unique money will emerge with probability one. In the examples considered in this paper, 

the costs are such that all equilibria that have positive probability in the long run are 

efficient.  In the symmetric example, exactly one post will be shut down at a time, and in 

the asymmetric example, the high cost post will be shut down. 

There are several questions open for further investigation elsewhere.  An interesting 

issue to consider is whether increasing the number of goods in the model to four will 

significantly change the analysis.  Adding a good will have two effects.  The first is that 

monetized equilibria will have a greater efficiency advantage over barter equilibria because 

more trading posts will be shut down.  The second is that it will be harder for agents to 

coordinate on a particular money since there will be an increase in both the number of types 

and in the number of actions available to each type. With four goods, there are more monies 

to choose from and there are additional equilibrium patterns of trade that are neither strictly 

barter nor monetary. 
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Appendix A: Sample Calculation of Equilibrium Prices 

 

Assume that there are ten of each type of agent, that the fixed cost of each post is 2, 

and that each firm pays the fixed cost using 1 unit of each good that it trades (αij = 0.5 for i, 

j ∈ {a, b, c}).  Consider the case where two agents of type Xab trade directly and eight 

agents of type Xab trade indirectly.  Furthermore, assume all ten agents of each type Xba, 

Xac, Xca, Xbc and Xcb trade directly.  This point is (2, 10, 10, 10, 10, 10) in the action space.  

The pattern of trade is shown in figure 4 below. 

 

 
Figure 4: Pattern of trade (agents) 

 

This graph shows the number of agents that trade (or attempt to trade) at each post 

and in which direction.  For instance, eighteen agents (marked with a * above) are bringing 

good C to the Ybc trading post, all ten agents of type Xcb that play direct trade and the eight 

agents of type Xab that play indirect trade.  The number of agents bringing each good to 

each post is different than the actual amount of each good that is brought because the agents 

that trade in 2 steps do not generally trade at a 1:1 ratio at the first post that they visit.  The 

exact quantity of each good that is supplied at each trading post is found by solving 

simultaneously a system of six equations, two for each post. 

The following equation says that the amount of good A brought to trading post Yab is 

equal to the number of Xab agents that trade directly plus the number of Xac agents that trade 

   10 agents 
((Xba Direct) 

   2 agents 
(Xab Direct) 

    10 agents 
(10 Xca Direct) 

    18 agents 
(10 Xac Direct + 
 8 Xab Indirect 

18 agents* 
  (10 Xcb Direct + 
    8 Xab Indirect) 

10 agents 
  (10 Xbc Direct) 

A B 

C 
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indirectly plus the total amount of good A received by agents of type Xcb that trade 

indirectly after they trade good C for good A.  Aab refers to the amount of good A brought to 

trading post Yab and dij refers to the proportion of type Xij that chooses direct trade.   

(1 ) (1 ) [( ),0]
a

ac ac ac
ab ab ab ac ac cb cb

ac

A FA n d n d n d Max
C
α−

= + − + −  

The other five equations are similar.  There is a corresponding equation for the 

amount of good B brought to trading post Yab as well as two equations for each of the other 

two posts.  The quantities are determined by solving these equations for Aab, Bab, Aac, Cac, 

Bbc and Cbc.  The closed-form solution to these equations does not exist but can be 

approximated recursively.  This solution is illustrated in figure 5 below. 

 

 
Figure 5: Pattern of trade (goods) 

 

In the above example, prices are as follows: 

• Yab sells 4.5 units of B for 1 unit of A and sells 0.1 units of A for 1 unit of B. 

• Yac sells 0.5 units of C for 1 unit of A and sells 1.7 units of A for 1 unit of C. 

• Ybc sells 1.3 units of C for 1 unit of B and sells 0.64 units of B for 1 unit of C. 

 

Given the trading volumes and prices it’s straight forward to check for consistency.  

For instance, the amount of C that flows into the BC trading post, Cbc is equal to 14 (10 

from the Xcb agents that trade directly plus the 4 units received by the Xab agents that trade 

indirectly).  Post Yac will give 0.5 units of C to each of the eight agents of type Xab trading 

indirectly.  We’ll refer back to this example in Appendix B to illustrate the basins of 

attraction. 

   10 units    2 units 

    10 units

    18 units 

14 units

10 units 

A B 

C 
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Appendix B: Sample Calculation of Equilibrium Prices 

 

Consider 10 agents of each type, with all agents playing direct trade except 8 agents 

of type Xab, which is represented by the point (0.2, 1, 1, 1, 1, 1) in the action space.  This is 

the example we considered in section Appendix A.  Recall that prices are as follows: 

• Yab sells 4.5 units of B for 1 unit of A and sells 0.1 units of A for 1 unit of B. 

• Yac sells 0.5 units of C for 1 unit of A and sells 1.7 units of A for 1 unit of C. 

• Ybc sells 1.3 units of C for 1 unit of B and sells 0.64 units of B for 1 unit of C. 

 

An agent of type Xab will receive 4.5 units of B if he chooses direct trade and will 

receive 0.32 units of B if he chooses indirect trade.  First he’ll receive 0.5 units of C for one 

unit of A; then he’ll receive 0.32 units of B for the 0.5 units of C.  All agents of type Xab 

will choose direct trade given the opportunity to change actions (provided they do not make 

errors).  There is a positive probability that the 8 agents of type Xab that were initially 

playing indirect trade will be chosen successively over the following 8 periods to be 

allowed to choose new strategies.  Each agent will choose to play direct trade, leading to a 

positive probability of reaching the barter equilibrium.  (The prices will change as each 

agent changes actions but direct trade will still beat indirect trade for these agents.)  A 

single point may be in the basin for more than one equilibrium because the best response 

can vary based on which agent is chosen each period to be allowed to change strategies.  In 

the example above, if type Xba agents are chosen first, they will change to indirect trade.  

Eventually every agent will desire to play the actions that correspond with the equilibrium 

that uses good C as money.  The point (0.2, 1, 1, 1, 1, 1) is in the basin of attraction for both 

the barter equilibrium and the equilibrium with good C used as money. 

 

Appendix C: Partial Calculation of Transition Probabilities 

 

Continuing from the example given in Appendix B, the point being examined is (2, 

10, 10, 10, 10, 10).  This point has been found to be in the basin of attraction for both the 

good C monetary equilibrium and the barter equilibrium.  The probability of switching 

from any equilibrium to either of these equilibria by way of this point can be calculated.  To 
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calculate the probability of the system switching from the good B monetary equilibrium to 

the barter equilibrium by way of this point, the number of deviations from the good B 

monetary equilibrium to this point is summed.  The good B monetary equilibrium 

corresponds to the point (10, 10, 10, 10, 0, 0) in the action space.  In this example there are 

28 deviations.  All twenty agents of types XAC and XCA must switch from indirect to direct 

trade.  Additionally 8 agents of type XAB must switch from direct to indirect trade.  The 

probability of this event occurring is ε28.  The overall probability of switching from the 

good B monetary equilibrium to the barter equilibrium is determined by summing the 

probabilities of switching equilibria over all of the points in the basin of attraction for the 

barter equilibrium. 

 

 
Appendix D: Proof of theorems 1 and 2 

 

 These proofs use a steady-state characterization given by Freidlin and Wentzel 

(1984) and discussed in Kandori, Mailath and Rob (1993).  The characterization involves 

the construction of a vector, q that is proportional to the steady-state distribution.  Each 

element in q, qz is defined as the sum of the product of all transition probabilities for all z-

trees.  A z-tree is a directed graph from all states except z to state z where each state except 

z has a unique successor.  For instance, one (A-money)-tree is {B money to Barter, C 

money to Barter, Barter to A money}.  The transition probabilities used to construct q are 

the same transition probabilities used in the earlier analysis in this paper.  Each qz is a 

polynomial in terms of ε, the error rate.  Let a* denote the minimum power of ε that appears 

in q (with a nonzero coefficient).  Define az as the coefficient of εa* in qz.  As ε approaches 

0, the limiting distribution of q is az/Σiai (from L’Hopital’s rule).  This distribution is the 

same as the limiting steady-state distribution. 

Both proofs use the case with a large basin of attraction for the barter equilibrium.  

A large barter basin means that the probability of switching from one money to barter to 

another money is higher than the probability of switching directly from one money to the 

other.  The only z-tree that needs to be considered for a monetary equilibrium is the one that 

has each of the other monetary equilibria leading to barter and has the barter equilibrium 

leading to that monetary equilibrium.  The only Barter-tree that needs to be considered is 
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the one where each monetary equilibrium leads directly to the barter equilibrium.  The 

relevant z-trees are as follows: 

 

Barter-tree: B-money to Barter, C-money to Barter, A-money to Barter. 

(A-money)-tree: B-money to Barter, C-money to Barter, Barter to A-money. 

(B-money)-tree: A-money to Barter, C-money to Barter, Barter to B-money. 

(C-money)-tree: A-money to Barter, B-money to Barter, Barter to C-money. 

 

The two theorems are demonstrated by noting the effects that changing parameters 

in the model have upon these transition probabilities.  These proofs both consider changes 

that increase the probability given to the equilibrium where good C is used as the common 

medium of exchange.  These proofs are also appropriate for other changes due to the 

symmetry in the model.  Both proofs demonstrate that the transition probabilities shown in 

bold face above become more likely and that the other transition probabilities become less 

likely.  The sum of these probabilities for the (C-money)-tree must gain on the other trees 

because the all the segments that increase in the other trees (A-money to Barter and B-

money to Barter) are included in the (C-money)-tree.  The (C-money)-tree also has one 

segment that increases that is not included in the other relevant trees (Barter to C-money).  

Since the relevant (C-money)-trees increases relative to the other trees, the probability 

given to the equilibrium where good A is used as the common medium of exchange in the 

limiting steady-state equilibrium (weakly) increases because of the possibility that that tree 

now has a non-zero coefficient for the lowest power of ε. 

Assume there are equal numbers of corresponding types of agents (nab = nba, nac = 

nca, and nbc = ncb).  Let Pi represent the probability mass assigned by the limiting steady 

state distribution to the equilibrium where good i is used as money. 

Theorem 1: 0i

jk

P
n
Δ

≤
Δ

 

Theorem 1 is shown by looking at the changes in the basins of attraction of the 

equilibria at the relevant regions, the points in action space where the minimum transitions 

in the relevant trees occur.  We need to determine the minimum number of deviations 

needed to switch from the barter equilibrium to the basin of attraction for the equilibrium 

where good C is used as the common medium of exchange.  (The proof is similar going 
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from the barter equilibrium to any monetary equilibrium or from any monetary equilibrium 

to the barter equilibrium.)  Consider balanced trade where the number of agents of type Xij 

playing direct trade is the same as the number of type Xji playing direct trade for all i,j.  

Assume that all agents of types Xac, Xca, Xbc and Xcb are playing direct trade.  If the 

following inequality is satisfied, the system is in the basin of attraction for the equilibrium 

where good C is used as the common medium of exchange. 

 
(1 ) (1 )

> +
− + − +

ab ac bc

ab ab ac ab bc

F F F
n z n z n n z n

 (eq. 1) 

The variable z represents the proportion of type Xab (and type Xba) that play direct 

trade and z must be in the interval [0,1].4  The minimum number of deviations required to 

change from barter to the monetary equilibrium is equal to one minus the maximum value 

of nabz that satisfies the above inequality.  The minimum number of deviations is achieved 

when all deviations occur from one side of the market (for instance, agents Xab).  Then there 

is a positive probability that agents of type Xba will be chosen to best respond.  Once 

enough of these agents respond, prices will cause all agents of type Xab and Xba to choose 

indirect trade and the monetary equilibrium will be reached.  If there are fewer deviations, 

agents of type Xab and Xba will eventually return to direct trade and the system will not 

reach the monetary equilibrium. 

The derivative with respect to nab of the solution to the maximum z that satisfies 

equation 1 gives the change in the transition probability of switching from barter to good C 

used as money.  The derivative can be found using the implicit function theorem. 

 

( )
( )

( )
( )

( ) ( )

2 22

2 22

1 1

1 1

1 1

− −
− + +

⎡ ⎤ ⎡ ⎤− + − +∂ ⎣ ⎦ ⎣ ⎦= −
∂ − − −

⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦

ac bcab

ab ab ac ab bc

ab ac ab bc abab

ab ab ac ab bc

F z F zF
n z n z n n z nz
F F n F nn

n z n z n n z n

 (eq 2) 

 We’re interested in the parameter values where equation 2 is negative.  The 

denominator is always negative so the condition we’re interested in cases where the 

following inequality holds. 

                                                 
4 The fixed costs are divided slightly differently here than in the rest of the paper.  Each 

agent’s share of the fixed costs at a post is divided proportionally among the number of 
users that use that post rather than based on the quantity traded there.  This formulation is 
necessary for the theorem because it avoids the recursive price calculations.  The prices are 
similar if trade is balanced and if the fixed costs are low relative to the number of agents.  
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( )

( )
( )

( )

2 2

2 2

1 1

1 1

− −
> +
⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦

ab ac ab bc
ab

ab ac ab bc

n z z F n z z F
F

n z n n z n
 (eq 3) 

 z depends on the other parameters in the model so equation 3 is not of much use on 

its own.  Note that the maximum value for z(1 – z) = 1/4 and the minimum value of (1 – z) 

= 0.  Therefore equation 3 will hold if the following holds. 

 
2 2

2 2

1 1
4 4> +

ab ac ab bc

ab
ac bc

n F n F
F

n n
 (eq 4) 

 Equation 4 is a stronger condition than we need but it is more illustrative than the 

weaker condition.  Furthermore a numerical search reveals that the derivative is negative 

given that all fixed costs are equal to 1, all α’s are equal to 0.5, nac = nca = nbc = ncb = 10 

and nab = nba ∈ [1, 4000].5  Results for the other transition probabilities are computed 

similarly and they reveal that the transition probabilities shown in bold face on the relevant 

z-tree chart increase and that the other transition probabilities decrease.  Therefore there is a 

(weak) increase in the probability mass given to the equilibrium where good C is used as 

the common medium of exchange in the limiting steady-state distribution. 

Theorem 2: 0i

jk

P
F
Δ

≥
Δ

 

Theorem 2 is more straightforward to prove.  When the fixed cost of trading post 

Yab increases, the new basin of attraction for the equilibrium where good C is used as the 

medium of exchange contains the original basin (it’s weakly larger everywhere).  The new 

basins for the other monetary equilibria are contained inside their original basins.  These 

results can be determined from the following equations. 

]0,max[]0,max[)(

]0,max[)(

jk

jk
j
jkjk

ik

ik
k
ikik

ij

ij
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ijij
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directu

αα

α

−−
=

−
=

 

These utilities are for agents of type Xij.  The expression Jij represents the amount of 

good j brought to the Yij trading post.  The basin of attraction for the equilibrium with good 

C used as the medium of exchange consists of all points in the action space where u(direct) 

                                                 
5 Similar results hold when nac, nca, nbc, ncb, and the fixed costs vary. 
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≥ u(indirect) for types Xac, Xca, Xbc and Xcb and where u(indirect) > u(direct) for types Xab 

and Xba. 

Given that the new basins either contain or are contained in the original basins, the 

possible change in the limiting distribution follows directly from the changes in the relevant 

transition probabilities.  For instance, if Fab increases, the transition probabilities decrease 

for Barter to A-money, Barter to B-money and C-money to Barter.  The transition 

probabilities increase for A-money to Barter, B-money to Barter and Barter to C-money.  

Based on these changes, the (C-money)-tree increases.  The other three trees have an 

indeterminate change, but any increase will be strictly less than the increase in the A-tree 

because each component that increases is contained in the changes in the A-tree.  The 

minimum power of ε in the A-tree decreases relative to the other trees, so the limiting 

steady stated distribution assigns (weakly) more probability to the equilibrium where good 

A is used as the medium of exchange. 
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