Supplement to Lecture Notes for February 3, 2015, pages 3 and 4 (updated February 1, 2015)

Notation: Let b be a positive scalar, and let the notation [b] represent the smallest integer greater than or equal to the argument b.

We wish to show that $0 \notin \Gamma$ where 0 is the zero vector in \mathbb{R}^N . We will show that the possibility that $0 \in \Gamma$ corresponds to the possibility of forming a blocking coalition against the core allocation $\{x^{oi} | i \in H\}$, a contradiction. The typical element of Γ can be represented as $\sum_{i \in H} a_i z^i$, where $z^i \in \Gamma^i$, and where $r^i + z^i \succ_i x^{\circ i}, 0 \leq a_i \leq 1, \sum_{i \in H} a_i = 1$. We use a proof by contradiction, showing that the possibility $0 \in \Gamma$ leads to the recognition that there is a coalition in Q-H, for Q sufficiently large, that blocks $\{x^{oi} | i \in H\}$. If that were to occur, $\{x^{oi} | i \in H\}$ would not be a core allocation. Suppose, on the contrary, that that $0 \in \Gamma$. Then there are $0 \leq a_i \leq 1, \sum_{i \in H} a_i = 1$ and $z^i \in \Gamma^i$ so that

$$\sum_{i \in H} a_i z^i = 0.$$

That is, for those $i \in H$ so that $a_i > 0$ there are $x'^i \in X^i$ so that $z^i = x'^i - r^i$ where $x'^i = (r^i + z^i) \succ x^{\circ i}$ and $0 = \sum a_i z^i = \sum a_i (x'^i - r^i)$. We'll focus on the households of type i where $a_i > 0$, and on their preferred net trades z^i . Consider the k-fold replication of H and the hypothetical net trade for a household of type i, $\frac{ka_i}{[ka_i]}z^i$. We have $\frac{ka_i}{[ka_i]}z^i \rightarrow z^i$ as $k \rightarrow \infty$. Therefore, by (C.V, continuity) for k sufficiently large (and all larger values of k),

$$[r^i + \frac{ka_i}{[ka_i]}z^i] \succ_i x^{oi} \tag{\dagger}$$

CB046/Starr SuppLN020315Mark2 February 1, 2015 11:12

Further,

$$\sum_{i \in H} [ka_i] \frac{ka_i}{[ka_i]} z^i = k \sum_{i \in H} a_i z^i = 0$$
 (‡).

It is now time to form a blocking coalition. We confine attention to those $i \in H$ so that $a_i > 0$. The blocking coalition is formed by $[\hat{k}a_i]$ households of type i where \hat{k} is the smallest integer so that (†) is fulfilled for all $i \in H$ where $a_i > 0$. Consider Q larger or equal to \hat{k} . Form the coalition S consisting of $[\hat{k}a_i]$ households of type i for all i so that $a_i > 0$. The initial resource endowment of this coalition (summing over S) is $\sum [\hat{k}a_i]r^i$. We need to find an allocation to S, attainable for S, that blocks the core allocation $\{x^{oi} | i \in H\}$. The blocking allocation to each household of type iis $r^i + \frac{\hat{k}a_i}{|\hat{k}a_i|}z^i$. Summing this allocation over S, we have

$$\sum[\hat{k}a_i]\{r^i + \frac{\hat{k}a_i}{[\hat{k}a_i]}z^i\} = \sum[\hat{k}a_i]r^i + \sum[\hat{k}a_i]\frac{\hat{k}a_i}{[\hat{k}a_i]}z^i = \sum[\hat{k}a_i]r^i.$$

The last equality follows from expression (‡), and it demonstrates that the allocation is attainable to S. The allocation $r^i + \frac{\hat{k}a_i}{[\hat{k}a_i]}z^i$ is attainable to the coalition S and it is preferable to all members of the coalition by (†). Thus S blocks x^{oi} if $0 \in \Gamma$. The contradiction implies $0 \notin \Gamma$.