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Lecture Notes for January 28, 2010, and following:
Households

12.1 The structure of household consumption sets and preferences

Households are elements of the finite set H numbered 1, 2, . . . , #H . A house-

hold i ∈ H will be characterized by its possible consumption set X i ⊆ RN
+ ,

its preferences �i, and its endowment ri ∈ RN
+ .

12.2 Consumption sets

(C.I) X i is closed and nonempty.

(C.II) X i ⊆ RN
+ . X i is unbounded above, that is, for any x ∈ X i there is

y ∈ X i so that y > x, that is, for n = 1, 2, ..., N, yn ≥ xn and y 6= x.

(C.III) X i is convex.

X =
∑

i∈H X i.

12.2.1 Preferences

Each household i ∈ H has a preference quasi-ordering on X i, denoted �i.

For typical x, y ∈ X i, “x �i y” is read “x is preferred or indifferent to y

(according to i).” We introduce the following terminology:

If x �i y and y �i x then x ∼i y (“x is indifferent to y”),

If x �i y but not y �i x then x �i y (“x is strictly preferred to y”).

We will assume �i to be complete on X i, that is, any two elements of X i

are comparable under �i. For all x, y ∈ X i, x �i y, or y �i x (or both).

Since we take �i to be a quasi-ordering, �i is assumed to be transitive and

reflexive.

The conventional alternative to describing the quasi-ordering �i is to as-

sume the presence of a utility function ui(x) so that x �i y if and only if
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ui(x) ≥ ui(y). We will show below that the utility function can be derived

from the quasi-ordering. Readers who prefer the utility function formulation

may use it at will. Just read ui(x) ≥ ui(y) wherever you see x �i y.

12.2.2 Non-Satiation

(C.IV) (Non-Satiation) Let x ∈ X i. Then there is y ∈ X i so that y �i x.

12.2.3 Continuity

We now introduce the principal technical assumption on preferences, the

assumption of continuity.

(C.V) (Continuity) For every x◦ ∈ X i, the sets

Ai(x◦) = {x | x ∈ X i, x �i x◦} and

Gi(x◦) = {x | x ∈ X i, x◦ �i x} are closed.

Example 12.1 (Lexicographic preferences) The lexicographic (dictionary-like)

ordering on RN (let’s denote it �L) is described in the following way. Let

x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN).

x �L yif x1 > y1, or

if x1 = y1 and x2 > y2, or

if x1 = y1, x2 = y2, and x3 > y3, and so forth . . . .

x ∼L yif x = y.

�L fulfills non-satiation, trivially fulfills strict convexity (C.VI(SC), intro-

duced below), but does not fulfill continuity (C.V).

12.2.4 Attainable Consumption

Definition x is an attainable consumption if y + r ≥ x ≥ 0, where y ∈ Y

and r ∈ RN
+ is the economy’s initial resource endowment, so that y is an

attainable production plan.

Note that the set of attainable consumptions is bounded under P.VI.

12.2.5 Convexity of preferences

(C.VI)(C) (Convexity of Preferences) x �i y implies ((1 − α)x + αy) �i y, for

0 < α < 1.
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(C.VI)(SC) (Strict Convexity of Preferences): Let x�iy, (note that this includes

x∼iy), x6=y, and let 0 < α < 1. Then αx + (1− α)y �i y.

Equivalently, if preferences are characterized by a utility function ui(·),

then we can state C.VI(SC) as

ui(x) ≥ ui(y), x 6= y, implies ui[αx + (1− α)y] > ui(y).

An immediate consequence of C.VI(C) is that Ai(x◦) is convex for every

x◦ ∈ X i.

12.3 Representation of �i: Existence of a continuous utility function

Definition Let ui: X i → R. ui(·) is a utility function that represents the

preference ordering �i if for all x, y ∈ X i, ui(x) ≥ ui(y) if and only if x �i y.

This implies that ui(x) > ui(y) if and only if x �i y.

12.3.1 Weak Conditions for Existence of a Continuous Utility Function

Theorem 12.1 Let �i, X
i, fulfill C.I, C.II, C.III, C.V. Then there is ui : X i →

R, ui(·) continuous on X i, so that ui(·) is a utility function representing �i.

Proof See Debreu (1959, Section 4.6) or Debreu (1954). QED

12.3.2 Construction of a continuous utility function

Shortcut: use weak desirability, X i = RN
+ and a 45◦ line.

12.4 Choice and boundedness of budget sets, B̃i(p)

Choose c ∈ R+ so that |x| < c (a strict inequality) for all attainable con-

sumptions x. Choose c sufficiently large that X i∩{x | x ∈ RN , c > |x|} 6= φ;

B̃i(p) = {x | x ∈ RN , p · x ≤ M̃ i(p)} ∩ {x||x| ≤ c}.

D̃i(p) ≡ {x | x ∈ B̃i(p) ∩ X i, x �i y for all y ∈ B̃i(p) ∩ X i}

≡ {x | x ∈ B̃i(p) ∩ X i, x maximizes ui(y) for all y ∈ B̃i(p) ∩ X i}.

To characterize market demand let

D̃(p) =
∑

i∈H

D̃i(p).



CB046/Starr LN012810 January 21, 2010 10:52

4 Lecture Notes for January 28, 2010, and following: Households

Lemma 12.1 B̃i(p) is a closed set.

We will restrict attention to models where M̃ i(p) is homogeneous of degree

one, that is, where M̃ i(λp) = λM̃ i(p). It is immediate then that B̃i(p) is

homogeneous of degree zero.

Lemma 12.2 Let M̃ i(p) be homogeneous of degree 1. Let B̃i(p) and D̃i(p)

6= ∅. Then B̃i(p) and D̃i(p) are homogeneous of degree 0.

P ≡

{

p | p ∈ RN , pn ≥ 0, n = 1, 2, 3, . . . , N,
N

∑

n=1

pn = 1

}

.

12.4.1 Adequacy of income

(C.VII) For all i ∈ H , M̃ i(p) > infx∈Xi∩{x||x|≤c} p · x for all p ∈ P .

Example 12.2 [The Arrow Corner]

X i = R2
+,

ri = (1, 0),

M̃ i(p) = p · ri.

Let p◦ = (0, 1). Then

B̃i(p◦) ∩ X i = {(x, y) | c ≥ x ≥ 0, y = 0},

the truncated nonnegative x axis. Consider the sequence pν = (1/ν, 1−1/ν).

pν → p◦. We have

B̃i(pν) ∩ X i =

{

(x, y) | pν · (x, y) ≤
1

ν
, (x, y) ≥ 0, c ≥ |(x, y)| ≥ 0

}

,

(c, 0)∈B̃i(p◦), but there is no sequence (xν, yν)∈B̃i(pν) so that (xν, yν) →
(c, 0). On the contrary, for any sequence (xν , yν) ∈ B̃i(pν) so that (xν, yν) =

D̃i(pν), (xν, yν) will converge to some (x∗, 0), where 0 ≤ x∗ ≤ 1. For suitably

chosen �i, we may have (c, 0) = D̃i(p◦). Hence D̃i(p) need not be continuous

at p◦. This completes the example.

12.5 Demand behavior under strict convexity

Theorem 12.2 Assume C.I–C.V, C.VI(SC), and C.VII. Let M̃ i(p) be a con-

tinuous function for all p ∈ P . Then D̃i(p) is a well-defined, point-valued,

continuous function for all p ∈ P .
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Proof B̃i(p)∩X i is the intersection of the closed set {x | p ·x ≤ M̃ i(p)} with

the compact set {x | |x| ≤ c} and the closed set X i. Hence it is compact. It

is nonempty by C.VII. Because D̃i(p) is characterized by the maximization

of a continuous function, ui(·), on this compact nonempty set, there is a

well-defined maximum value, u∗ = ui(x∗), where x∗ is the utility-optimizing

value of x in B̃i(p) ∩ X i. We must show that x∗ is unique for each p ∈ P

and that x∗ is a continuous function of p.

We will now demonstrate that uniqueness follows from strict convexity of

preferences (C.VI(SC)). Suppose there is x′ ∈ B̃i(p) ∩ X i, x′ 6= x∗, x′ ∼i x∗.

We must show that this leads to a contradiction. But now consider a convex

combination of x′ and x∗. Choose 0 < α < 1. The point αx′ + (1− α)x∗ ∈
B̃i(p)∩X i by convexity of X i and B̃i(p). But C.VI(SC), strict convexity of

preferences, implies that [αx′+(1−α)x∗] �i x′ ∼i x∗. This is a contradiction,

since x∗ and x′ are elements of D̃i(p). Hence x∗ is the unique element of

D̃i(p). We can now, without loss of generality, refer to D̃i(p) as a (point-

valued) function.

To demonstrate continuity, let pν ∈ P , ν = 1, 2, 3, . . . , pν → p◦. We

must show that D̃i(pν) → D̃i(p◦). D̃i(pν) is a sequence in a compact set.

Without loss of generality take a convergent subsequence, D̃i(pν) → x◦. We

must show that x◦ = D̃i(p◦). We will use a proof by contradiction.

Define

x̂ = argmin

x∈Xi∩{y|y∈R
N ,c≥|y|}

p◦ · x.

The expression “x̂ = arg minx∈Xi∩{y|y∈RN ,c≥|y|}p
◦ · x” defines x̂ as the min-

imizer of p◦ · x in the domain X i ∩ {y | y ∈ RN , c ≥ |y|}. x̂ is well defined

(though it may not be unique) since it represents a minimum of a continuous

function taken over a compact domain.

Now consider two cases. In each case we will construct a sequence wν in

X i ∩ {y | y ∈ RN , c ≥ |y|}.
Case 1: If p◦ · D̃i(p◦) < M̃ i(p◦) for ν large pν · D̃i(p◦) < M̃ i(pν). Then let

wν = Di(p◦).

Case 2: If p◦ · D̃i(p◦) = M̃ i(p◦) then by (C.VII) p◦ · D̃i(p◦) > p◦ · x̂ .

Let

αν = min

[

1,
M̃ i(pν) − pν · x̂

pν · (D̃i(p◦)− x̂)

]

.

For ν large, the denominator is positive, αν is well defined (this is where

C.VII enters the proof), and 0 ≤ αν ≤ 1. Let wν = (1 − αν)x̂ + ανD̃i(p◦).

Note that M̃ i(p) is continuous in p. The fraction in the definition of αν is
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the proportion of the move from x̂ to D̃i(p◦) that the household can afford at

prices pν. As ν becomes large, the proportion approaches or exceeds unity.

Then in both Case 1 and Case 2, wν → D̃i(p◦) and wν ∈ B̃i(pν) ∩ X i.

Suppose, contrary to the theorem, x◦ 6= D̃i(p◦). Then ui(x◦) < ui(D̃i(p◦)).

But ui is continuous, so ui(D̃i(pν) → ui(x◦) and ui(wν) → ui(D̃i(p◦)). Thus,

for ν large, ui(wν) > ui(D̃i(pν)). But this is a contradiction, since D̃i(pν)

maximizes ui(·) in B̃i(pν) ∩ X i. The contradiction proves the result. This

completes the demonstration of continuity. QED

Theorem 12.2 gives a family of sufficient conditions for demand behavior

of the household to be very well behaved. It will be a continuous (point-

valued) function of prices if preferences are continuous and strictly convex

and if income is a continuous function of prices and sufficiently positive.

What will household spending patterns look like? What is the value of

household expenditures, p · D̃i(p) ? There are two significant constraints

on p · D̃i(p), budget and length: p · D̃i(p) ≤ M̃ i(p) and |D̃i(p)| ≤ c. In

addition, of course, D̃i(p) must optimize consumption choice with regard to

preferences �i or equivalently with regard to the utility function ui(·). We

have enough structure on preferences and the budget set to actually say a

fair amount about the character of spending and where D̃i(p) is located.

This is embodied in

Lemma 12.3 Assume C.I–C.V, C.VI(C), and C.VII. Then p ·D̃i(p) ≤ M̃ i(p).

Further, if p · D̃i(p) < M̃ i(p) then |D̃i(p)| = c.

Proof D̃i(p) ∈ B̃i(p) by definition. However, that ensures p · D̃i(p) ≤ M̃ i(p)

and hence the weak inequality surely holds. Suppose, however, p · D̃i(p) <

M̃ i(p) and |D̃i(p)| < c. We wish to show that this leads to a contradiction.

Recall C.IV (Non-Satiation) and C.VI(C) (Convexity). By C.IV there is

w∗ ∈ X i so that w∗ �i D̃i(p). Clearly, w∗ 6∈ B̃i(p) so one (or both) of two

conditions holds: (a) p ·w∗ > M̃ i(p), (b) |w∗| > c.

Set w′ = αw∗ + (1− α)D̃i(p). There is an α(1 > α > 0) sufficiently small

so that p · w′ ≤ M̃ i(p) and |w′| ≤ c. Thus w′ ∈ B̃i(p). Now w′ �i D̃i(p) by

C.VI(C), which is a contradiction since D̃i(p) is the preference optimizer in

B̃i(p). The contradiction shows that we cannot have both p · D̃i(p) < M̃ i(p)

and |D̃i(p)| < c. Hence, if the first inequality holds, we must have |D̃i(p)| =
c. QED


