MORE ON MULTICOLLINEARITY (MC)

Variance Inflation Factor (VIF) and **Tolerance** are two measures that can guide a researcher in identifying MC. Before developing the concepts, it should be noted that the variance of the OLS estimator for a typical regression coefficient (say \boldsymbol{b}_i) can be shown to be the following [see Wooldridge (2000), Chapter 3 appendix for proof].

$$\operatorname{Var}(\hat{\boldsymbol{b}}_{i}) = \frac{\boldsymbol{s}^{2}}{S_{ii}(1-R_{i}^{2})}$$

where $S_{ii} = \sum_{j=1}^{n} (X_{ij} - \overline{X}_i)^2$ and R_i^2 is the unadjusted R^2 when you regress X_i against all the other explanatory variables in the model, that is, against a constant, $X_2, X_3, \dots, X_{i-1}, X_{i+1}, \dots, X_k$. Suppose there is *no* linear relation between X_i and the other explanatory variables in the model. Then, R_i^2 will be zero and the variance of $\hat{\boldsymbol{b}}_i$ will be $\boldsymbol{s}^2 / S_{ii}$. Dividing this into the above expression for Var($\hat{\boldsymbol{b}}_i$), we obtain the variance inflation factor and tolerance as

VIF
$$(\hat{\boldsymbol{b}}_i) = \frac{1}{1 - R_i^2}$$
 Tolerance $(\hat{\boldsymbol{b}}_i) = 1/\text{VIF} = 1 - R_i^2$

It is readily seen that the higher VIF or the lower the tolerance index, the higher the variance of $\hat{\boldsymbol{b}}_i$ and the greater the chance of finding \boldsymbol{b}_i insignificant, which means that severe MC effects are present. Thus, these measures can be useful in identifying MC. The procedure is to choose each right hand side variable (that is, explanatory variable) as the dependent variable and regress it against a constant and the remaining explanatory variables. We would thus get k-1 values for VIF. If any of them is high, then MC is indicated. Unfortunately, however, there is no theoretical way to say what the threshold value should be to judge that VIF is "high." Also, there is no theory that tells you what to do if MC is found.

Example

This example revisits the application in Section 5.4 using DATA4-6 (see Table 5.3) to illustrate how the above methodology can be applied. The original model is

povrate =
$$\boldsymbol{b}_1 + \boldsymbol{b}_2$$
 urb + \boldsymbol{b}_3 famsize + \boldsymbol{b}_4 unemp + \boldsymbol{b}_5 highschl + \boldsymbol{b}_6 college + \boldsymbol{b}_7 medinc + u

The estimates for this model are in Table 5.3 as Model 1 and are reproduced below. As can be seen, several coefficients are insignificant suggesting the possibility of MC.

VARIABLE	COEFFI	ICIENT	STDERROR	T STAT	2Prob(t >	г)
const	16	5.8176	8.5026	1.978	0.053350	*
urb	- C	.0187	0.0148	-1.270	0.210010	
famsize	6	5.0918	1.8811	3.238	0.002116	* * *
unemp	- C	0.0118	0.1195	-0.099	0.921724	
highschl	- C	.1186	0.0681	-1.741	0.087742	*
college	(0.1711	0.0982	1.743	0.087355	*
medinc	- (.5360	0.0704	-7.619	0.00000	* * *
Mean of dep. var. 9.903		S.D. of dep. variable		3.	3.955	
Error Sum of Sq (ESS) 146.091		146.0911	Std Err of F	Resid. (sgmaha	at) 1.6	925
Unadjusted R-squared 0.83		0.836	Adjusted R-s	squared	0.	817
F-statistic (6, 51) 43.3875		p-value for	0.000	0.00000		
MODEL SELECTION	STATISTICS	3				
SGMASQ	2.86453	AIC	3.206	546 FPE	3.2	21025
HQ	3.53259	SCHWARZ	4.111	.72 SHIBA	TA 3.	.1268
GCV	3.2577	RICE	3.320	25		

MODEL 1: Dependent variable: povrate

It was noted in Table 5.3 that perhaps medium income (medinc), though significant, does not belong in the model because it is determined by famsize, unemp, highschl, and college. It therefore makes sense to omit this variable from the model specification. The revised model estimates are given below.

MODEL 2: Depend	lent variable	e: povrat	e			
VARIABLE	COEFFIC	IENT	STDERROR	T STAT	2Prob(t >	т)
const	39.	0423	11.5651	3.376	0.001399	* * *
famsize	-0.0	1526	2.2281	-1.607 -0.966	0.114191 0.338450	
unemp highschl	0.: -0.:	2044 2980	0.1680 0.0925	1.217 -3.221	0.229239 0.002204	* * *
college	-0.	3759	0.0969	-3.878	0.000297	* * *
Error Sum of Sq Unadjusted R-squ	(ESS)	312.3529 0.650	Std Err of Re Adjusted R-se	esid. (sgmaha guared	at) 2.4 0.	509 616
F-statistic (5, 52) 19.2931		p-value for :	0.000	000		
Durbin-watson st	lal.	2.070	FILSC-OLDEL &	autocorr. coe	-0.	044
MODEL SELECTION	STATISTICS					
SGMASQ HQ GCV	6.00679 7.19663 6.69988	AIC SCHWARZ RICE	6.6233 8.196 6.7902	26 FPE 74 SHIBA 28	6.0 FA 6.4	52818 49961

MC might still be present and hence the next step is to regress each explanatory variable against all the other right hand side variables and compute the tolerance $(1-R^2)$ and VIF. The following table has these values.

Dependent Variable	Independent Variables	Tolereance	VIF
urb	constant, famsize, unemp, highschl, college, medinc	0.608	1.645
famsize	constant, urb, unemp, highschl, college, medinc	0.245	4.082
unemp	constant, urb, famsize, highschl, college, medinc	0.228	4.386
highschl	constant, urb, famsize, unemp, college, medinc	0.280	3.571
college	constant, urb, famsize, unemp, highschl, medinc	0.088	11.364
medinc	constant, urb, famsize, unemp, highschl, college	0.164	6.098

All the regressions except the first one have low tolerance and high values for VIF indicating a high degree of MC. It therefore makes sense to omit variables with insignificant coefficients, but one at a time. In Model 2, the coefficient for famsize is the least significant and hence it is omitted first (in the belief that the coefficient is closest to zero and that the "omitted variable bias" will be minimal). yielding the following results.

MODEL 3: Dependent variable: povrate

VARIABLE	COEFFICIENT	STDERROR	T STAT 2	Prob(t > T)
const	30.1267	6.9665	4.324	0.000068 ***
urb	-0.0438	0.0186	-2.360	0.022014 **
unemp	0.1860	0.1668	1.115	0.269949
highschl	-0.2415	0.0716	-3.372	0.001399 ***
college	-0.3554	0.0945	-3.760	0.000425 ***
Error Sum of Sq (ESS Unadjusted R-squared	317.9597 d 0.643	Std Err of Adjusted R	Resid. (sgmahat -squared) 2.4493 0.617

Excluding the constant, p-value was highest for variable 4 (unemp).

Next omit unemp from the model.

MODEL 4	4:	Dependent	variable:	povrate
---------	----	-----------	-----------	---------

VARIABLE	COEFFICIENT		STDERROR T STAT 2P:		2Prob(t > 1)	Г)	
const	const 36.7290		3.677	71 9	.989	0.00000	* * *
urb	-0.0)493	0.018	30 -2	.744	0.008227	* * *
highschl	-0.2	2910	0.056	53 -5	.173	0.00003	* * *
college	-0.4	4466	0.047	76 -9	.390	0.00000	* * *
Error Sum of Sq Unadjusted R-squ	(ESS) S ared	325.4159 0.635	Std Ern Adjuste	c of Resid. ed R-square	(sgmaha d	t) 2.49	548 515
MODEL SELECTION	STATISTICS						
SGMASQ HQ GCV	6.02622 6.80694 6.47261	AIC SCHWARZ RICE		6.44041 7.42381 6.50832	FPE SHIBAT	6.4 A 6.	4182 .3845

Comparing this Model 4 with Model 4 in Table 5.3, we note two things. First all model selection statistics are better here than in Table 5.3. Second, the above model has a very strongly significant coefficient for urb whereas in Table 5.3 urb was replaced by famsize with a relatively week significance. Therefore, overall this Model 4 is superior.

References

Greene, W.H., *Econometric Analysis*, Fourth Edition, Prentic-Hall, Upper Saddle River, New Jersey, 2000.

Wooldridge, J. M., *Introductory Econometrics: A Modern Approach*, South Western, 2000.