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ABSTRACT 

A commonly followed procedure in econometric research has 
been to dummy out a qualitative ordinal explanatory variable before 
entering it into a standard regression equation. This paper 
demonstrates using the framework of Aigner (1974) that this prac­
tice creates an errors-in-variables problem similar to entering 
the ordinal variable directly into a regression equation when the 
underlying "true" unobserved variable has an interval or ratio 
measurement scale. On the basis of a number of Monte Carlo 
experiments, we find that there is no a priori reason for favoring 
the dummy variable representation over the ordinal variable repre-' 
sentation •. Optimal transformations for ordinal proxy variables are 
discussed and suggestions are made on methods to assess and mitigate 
the errors-in-variables problem. 
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1. Introduction 

The dummy explanatory variable section of any standard econo­

metrics text portrays one of two situations: either the need to 

dummy out a nominal level variable (e.g., war/no war, male/female) 

or the need to dummy out an ordinal (ranked categorical) level 

variable (e.g., education, income). This paper addresses the second 

situation and the implications of alternative methods of estimating 

regression equations when working wii!:h ordinal explanatory variables. 

The 	question of whether to use an ordinal explanatory variable 

l
directly or to use its dummy variable representation when esti ­

mating a regression equation has long been a topic of controversy 

in the other social sciences [e.g., Labovitz (1970); Wilson (1971); 

Bonrnstedt and Carter (1971); Kim (1975, 1978)]. The basic posi­

tion of those adVocating the use of ordinal variables in regres­

sion equations is that regression techniques are robust to most 

allowable (order preserving) transformations and thus the greater 

power of parametric statistics justified the use of ordinal vari ­

ables. The opponents demonstrated that radically different results 

could be obtained using different allowable but extreme trans for­

mations. Lewis-Beck (1980) in a popular statistics series sum­

marized current thinking when he compares two OLS equations (one 

in which an ordinal variable is entered directly and one in which 

its dummy variable representation is used) and concludes, "In 

this particular case, regression analysis with the ordinal vari ­

able arrives at the same conclusion as the more proper (emphasis 
I.,,' 

added) analysis with dummy variables. 

1 



There is a fundamental problem with this whole debate. The 

presence of either an ordinal variable or its dummy variable rep­

2
resentation is almost always indicative of an errors-in-variables 

problem since the "true" underlying variable is usually measured 

on an interval (or ratio) scale. The errors-in-variables nature 

of this problem is clearly seen once it is realized that the "true" 

interval-level explanatory-variable in the model can be represented 

as a function of either the ordinal variable and an error term, 
--.:II.. 

or the dummy variable(s) and an error term. Both the ordinal and 

dummy variable representations may be thought of as proxies meas­

ured with error,for the "true" interval level variable in the model 

being estimated. 

Econometric texts, in general, either offer no guidance to 

the researcher on what to do with ordinal explanatory variables, 

or tell the researcher to dummy the ordinal variable(s) out with 

little or no recognition of the errors-in-variables nature of the 

situation. The increasing use of micro surveys in economic re­

search with their abundant ordinal categorical data make the irnpli-­

cations of how one handles these ordinal highly relevant 

to applied econometric research. 

Fortunately, Aigner (1974) has provided a framework for 

comparing various methods for estimating regression equations 

when an ordinal proxy for a "true" unobserved-interval variable 

available. Assuming no other inforrnation,such as variance 

ratios, covariances, or multiple equationsJis available,3 the 
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options a researcher has, when confronted with the above situa­

tion, can be divided into three categories: 

(1) 	 estimate the model without a proxy for the 


unavailable interval explanatory variable, 


(2) 	 dummy out the ordinal proxy variable before 


estimating the model, or 


(3) 	 estimate the model using the ordinal variable 


directly. 


~-

This paper will show that the omission of any explanatory 

variable, using a dummy variable representation of the ordinal 

proxy variable or using the ordinal variable directly when the 

"true" model contains an unavailable interval level variable, 

results in similar (but potentially different magnitude) errors­

in-variables problems. For the simple case where the "true" 

model consists of a constant term and two variables (one of which 

is interval level and unavailable), we will derive the mean square 

error for the estimated parameter of the variable observed without 

-2
error:and the R for the equation as a wholeJfor each of the three 

possible methods of estimating ~~e equation. Finally, Monte Carlo 

results are presented for variants of the three cases with partic­

ular emphasis given to the effect of different numbers of ranked 

categories in the available ordinal variable: Violations of the 

assumptions made and optimal transformations are also considered. 

2. 	 Preliminaries 

Consider the following "true" model~ 
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Y. 8 + 8 X. + 82Z. + u.· (1)
J 0 1 J J J' 

where Y, X, and Z are variables measured on an interval or ratio 

scale with finite and observable first and second movements; u is 

an unobservable ~(O,a ) disturbance, distributed identically and 
uu 

independently of X and Zi and there are j=l, . . .. , n observations . 

Dropping the j subscript to avoid notational confusion and taking 

deviations from the means, equation (1) becomes 

y (2) 

4
where small letters represent deviations from the means. 

The covariance matrix of x and z is given by 

(3)EC)IXZi 

Z is unavailable,but available as a proxy is an ordinal rep­

resentation of Z,which we will call Z*. The researcher must choose: 

(1) whether to estimate the model with or without the proxy variable; 

and (2) if so;whether to use the ordinal variable Z* directly or 

to "dummy out" Z* using one or more dummy variables in the equation 

to be estimated. 

3. Omitting a Proxy for Z 

The first case to be considered is leaving Z* or its dummy 

representation out altogether. The model to be estimated is then 
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A A 

Y + (4)So SlX 

A 

when eq. (1) is the true model. We give the asymptotic MSE(Sl)OLS 
..

-2 5
developed by Aigner (1974) and R for eq. (4) below 

(5) 


and 

n:J­
2:'p,IO -0 ) /n-2 


, 2> zz xx
-2 J=l
R 1 - (6) 

n 2 
2: y,/n-l 


, 1 J
J= 

We will now assume that the decision to use the proxy variable 

in some form has been made based on the need for consistent pre­

diction of Y, the desire for some notion of the significance and/or 

A 

effect of Z in eq. (1), interests in minimizing bias (81)' or 

A 

interests in minimizing MSE(Sl). Use of a proxy variablefin the 

absence of any a priori information, to achieve the first two goals 

is fairly clear; use of a proxy variable to fulfill the last two 

goals is more open to question and circumstance. 6 t-lcCallurn (1972) 

and Wickens (1972) have demonstrated, using a number of restric­

tions on covariances between variables in the estimated equation, 

A 

that the bias of 8 when the proxy variable is used is always less
1 

than or equal to the case where the proxy variable is not used. 

Since Aigner (1974) has shown that, except in a limited range of 

7
circumstances , that MSE(Sl) was smaller using the proxy variable 
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than without it, we will assume that the researcher will want to 

consider one of the two proxy variable methods. 

4. Direct Use of an Ordinal Proxy Variable 

The relationship between Z and the ordinal variable proxy, Z*, 

is dependent upon the particular ranking or ordering system chosen 

for Z*. We will assume that this relationship is at least mono­

tonic and further limit the class of possible transformation func­

tions to those which are order preserving. It is important to 

note that the class of allowable transformations between Z and Z* 

is quite broad and includes linear, polynomial, logarithmic, ex­

ponential and others. The linear transformation is the easiest 

to work with,and specific results developed will apply only to 

that transformation. However, the general development and con­

clusions can be adapted to any admissible transformation. One 

of the more troublesome transformations, the exponential, is 

8
sketched out in the footnote below. 

Taking the linear case, we can represent the ordinal proxy, 

Z*, as 

Z* (7) 

Z can be defined in terms of Z* 

Z (8) 
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l 

Equation (8) is unidentified,since a is unknown; however, since
l 

the scale of Z is unobserved we can assume Z is scaled so that 

9 
a = 1 without affecting the results to follow. It is clear from 

these two equations that some ordinal representations of the same 

ranked categories will be better than others,while the dummy vari­

able representation will be invariant to the particular ordinal 

representation. 

The errors in variables problem becomes readily apparent 

when we substitute the right hand side of eq. (8) for Z in eq. (1) I 

(9 ) 

-82UO is a constant and the error terms -82e and u can be combined so 

y (10 ) 

*which can be further simplified in notation by letting 8
0 

and letting v = -82e + u; 

y (11) 

,,"- "­

The usual errors-in-variables result that 80 , 81 , and S2 are biased 

10
and inconsistent can be shown to hold. 

Taking deviations from the means eq. (11) can be written as 

y (12 ) 
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Making explicit assumptions that 0 = 0, 0 = 0, and 
xe eu 

o 	 = 0. The covariance matrix L of x and z* can be represented
ze 0 

as 

I 

xx xz* 	 xz
I = a ) a ) 	 (13)(" 	 "Cx~0 

(0 +0 )
°z*x °z*z* zx zz ee 

A 

The 	 derived by Aigner (1974) isMSE U\) OLS 

2 	 2° (0 +0 j S ° -,",,-0 0 -0 )
~u zz1> eel + ~ ee zz<p xx zx 

o +0 
zz 	 ee 

(14) 
<P 

where <p 

We can simplify this expression in an instructive manner using 

Aigner's notation by defining A o /(0 +0 ) which is the pro­
o ee zz ee 

portion 	of the variance in z* accounted for by measurement error 

2
(e) i 	 0 , as the squared simple (population) correlation coeffi ­-' xz 

cient between x and 

uu ° MSE(Sl) --+ 
nn 

0 

2
ziand 	n 

0 	 ° ee 
0 

xx Ao ° Xz': 
2 2 2A 1320 0o 	 ee xz 

2 
n 

0 

With the choosing of any sample 

I and 	a 

2
l-p 

A + ---xz 
(15) 

0 	 2 
np

xz 

n, Y, 0yy' X, 0xx' rxz the 

sample estimate of p a, are determined; thus the one 
xz uu 

manipulatable feature of eq. (15) is the choice of the proxy 

"­

variable Z*!which will affect MSE(Sl) through Ao (or equivalently 
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Gee)' To minimize MSE(Sl)' Z* should be chosen to minimize Gee' 
n 

whic~ can be minimized by minimizing L: v,, where v = - 2e + u. 
, 1 

n J=l 
Minimization of ~ v, 1S re lected ln Tnel s R statistic" 'f .' '1' -2 

. 1 1J"= 

-2
R 1 - (16) 

n 

L:y./n-l
] 

which becomes 

-2 
R 1 -

n 

L: 
2 

«(32G +0 ) ./n-3
ee uu ] 

n 2 
(17 ) 

L: y./n-l 
j=l ] 

-2
It is obvious from eg. (17) that R will increase as a 

ee 
-2

decreases, with R reaching its highest possible maximum (for the 

model in eg. (1» when G O,at which point VAR(Z*) = VAR{Z).
ee 

5. The Dummy Variable(s) Proxy Case 

Z can be represented by i-I (or fewer) dummy variables, 

D., a constant and an error term where i is the number of ranked 
1 

categories present in ordinal variable Z* 

Z + E (18) 

or alternatively 

z (19 ) 
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We can simplify notation by letting D (C2D2+C3D3+···+CiDi) . 

Substituting the right hand side of eq. (19) for Z in eq. (1) 

we have 

y (20 ) 

combining terms 

y (21 ) 

which can be simplified in notation to 

y (22) 

ad a a awhere ~O = ~O + ~2CO and w = -~2E + u. 

The usual errors in variables result that all of the parameter 

estimates are biased and inconsistent can be shown to hold except 

for the special case described in footnote 10. 

Taking deviations from the means eq. (22) can be written as 

y (23 ) 

-where d D - E(D). 

Now making assumption about the covariances parallel to those 

made for the ordinal variable case in section 3 we can represent 

the covariance matrix Ld of x and d as 
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xz 
r:; ) (24) 

(r:; +0' ) 
ZZ Et: 

,...2+ ,-< 
'"'2 

c 0' (0' 0' -a 
0'UU II'a ZZ+vt:S') 2) 2 

~:. t:E ZZ$ xx zx-, + n , ¢ 

2 

(25) 

G (0' __ +0' (1-0'-
") 

/0' G ). 
xx ~~ zz xz xx zz 

as::J /(C +J ) a:-.c Ad as a a - XdO' ,eq. (25) ca~ be
EE ZZ E:S EE xx xz 

(26) 

As in the case of the direc~ use of the ordinal variable proxy, 

Z*, the parameters of eq. (1) are fixed, with the choice of any 

except for Ad (or equivalently O'Et:), which is determined by 

which proxy is dummied out, and hm.,. it is dummied out. 

-2
The R for eq. (23) is 

(27) 
~ 2 
L y./n-l 

j=l J 

or 

1 -
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-2 

n 2 

L (S20 c +0 ) ./n-2- (i-l) 


1 . 1 Sc;.. uu J __ ~J_=~__________________ 
(28) 

n 2 
L y./n-l 

. 1 JJ= 

R is maximized by minimizing 0ss,and will reach the maximum pos­

sible for the model in eq. (1) when 0ss O. 

6. Comparison of the Three Cases 

A comparison of directly entering the ordinal proxy variable 

and using a durruny representation of it. when the true model is eq. (1) 

is now straight forward. Using eq. (9), the ordinal variable case, 

and eq. (20), the durruny variable case, it is possible to substitute 

the right hand side of eq. (9) for Y in eq. (20) 

(29 ) 

Subtracting the common elements (PO' P
l 

, X, and u) from both sides 

we get 

62 (-a0+Z*-e) (30) 

By dividing both sides by 6 and substituting for Z* in terms of 

-
2 

Z and (CO+D) in terms of Z we get 
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-aD + a + Z + e - e = Z + E - E ( 31)o 

Since E(e) = 0 and E(E) = 0, taking E [Z*-(C+D)] yields 

-a E [Z*- (C+D)] (32)o 

Thus, the effective measurement error, in the ordinal and dummy 

variable cases, differs by the term -aD when the relationship 

between Z and Z* is linear. aO may take on both positive and nega­

tive values. 

From the development of the three cases (omission of a proxy 

for ZI direct use of Z*, and the dummy variable representation of 

Z*) and given the assumptions made, we conclude 

• A similar error is made when either an ordinal variable 
or a dummy variable representation is' used as a proxy for a true 
interval variable. The same type of error is also made if a proxy 
variable is not used. The magnitude of the error is dependent on 
p and on 0 , and 0 . 

xz 
1 

EE zz 

• Further, any method of dummying out a "true" interval 
explanatory variable is equivalent to dummying out any ordinal 
variable'with those ranks. 

• There is no way to know a priori what the relative 
magnitudes of cree' 0EE' and Ozz are with out additional know­
ledge. However, 0 is by definition always greater than cr or zz ee 

• Hence, there is no a priori reason for preferring to 
dummy out the ordinal variable before using it as a proxy. 

-2
• R may be used to choose between different proxy vari­

ables and/or different representations of a proxy variable. 
!1aximizing R2 will minimize VAR (Y-Y) and also have the effect 
of minimizing MSE(Sl)' 
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7. Consequences of Relaxing Assumptions 

Let us relax some of the assumptions made: 


-2

(1) Suppose now that 0 is not equal to 0, R becomes 

eu 
n 

2
2: (620 +20 +0 ) ./n-3

ee eu uu J
-2 
R 1 - (33) 

n 2 
2: 	 y./n-l 

1 J 

-2
The direction of a change in R with a change in 0 is no longer

ee 

determinant being now also dependent on the sign and magnitude of 
-:;-:..w 

20 
eu 

(2) Suppose now that a. is not equal 0, the variance-covariance 
ze 

matrix in eq. (13) becomes 

(34) 

with the result that MSE(Sl) is now also dependent on the sign and 

magnitude of 20 
ze 

(3) Suppose now that Z* = a + alx + a z + e instead of Z* = 
O 2

a + a Z + e. This assumption introduces a circular errors ino l 

variables argument, the effect of which in the first round is that 

o is no longer equal zero. The appropriate off diagonal variance­
xe 

covariance ele~ent is now (0 +0 ) instead of a with the size 
xz xe xe 

and magnitude of the off diagonal element now dependent on the 

size and magnitude of both covariants. 

(4) Suppose now that the ~odel contains non-linear terms, say 
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this case the best proxy, Z*, a transformation of Z*, or Z*'S dummy 

variable representation is the one that minimizes a ,a ,or
ee 1f1f 

respectively in the following equations for the log example 

Z* (35) 

(36) 

Log Z + C (37) 

(5) In view of the possible deviations from the models 

above, an F test for the significance of the difference between 

the sums of squared error of two competing specifications should 

be conducted before a particular specification is rejected on the 

basis of a strict R2 comparison. 

8. Monte Carlo Experiments: Design and Purpose 

The primary purpose of the Monte Carlo experiments is' to " 

examine the difference between using an ordinal variable proxy, 

Z* for Z in eq. (1), and using a dummy variable representation 

of Z*. We have not attempted to look at the full spectrum of 

possible z*'s (and relationships between Y, X, and Z), but have 

instead concentrated on examining the effects of the number of 

ranked . ,good ad " to t he~n Z* andb approx~at~ons11 

metric of Z by Z*, and cases of low and moderate correlation 

between X and Z. Some attention is paid to the situation in 
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which the transformation between the true underlying continuous 

variable and its ordinal proxy is not an order preserving monotonic 

transformation. 

Monte Carlo experiments (134) were conducted which can be 

divided into three groups: 

(A) 42 experiments which examine the effects of altering the 

number of ranked categories (2-10) of Z* (and equivalently its 

dummy variable representations) on two different mapping schemes 

between Z and Z* when the correlation between X and Z is small 

(r .088) and not statistically significant,
Xz 

(B) 42 experiments parallel to (A) but with the correlation 

coefficient between X and Z of moderate size (r = .366),
XZ 

(C) 50 experiments which examine in a much less detailed 

fashion the effects of a higher correlation (r = .729) between
XZ 

X and Z, sample size (25, 100, and 250), a logarithmic functional 

form for the underlying continuous variable, the addition of another 

continuous variable (X,Q,Z), and a nonmonotonic transformation. 

In all of the experiments of groups A and B as well as the 

first thirteen of group C, the true model was constructed to be 

-
of the other experiments So = 100, and 6 2. The true model,

1 

however, varies as Z enters the true model in a log form, in 

2conjunction with an additional continuous variable X and Z ..
2 

Mean, bias, mean square error, mean absolute deviation (MASD), and 

. 12 D 2 -2var1ance were measured for the parameter ~l' Rand R were cal­

culated for the regression as a whole. There were 100 replications 

of each experiment. 
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j,., ...... "',••,.,.. 

The following conventions have been adopted for identifying 

experiments: 

(1) OLS (k, 1), ordinary least squares (OLS) regression on 

the variables k 1 1 in the parentheses I. 

(2) io, OLS on (X, Z*) where Z* has i ranked categories 

(i = 2, 3,4,5,6,7,8, 9, 10) which correspond to dividing Z 

into i equal distance categories (e.g. for 40, Z* = 1 if Z < 25; 

Z* = 2 if 25 ~ Z < 50; Z* = 3 if 50 ~ Z < 75; Z* = 4 if 25 < Z); 

variables corresponding to the ranked categories of the ordinal 

variable used in io (e.g. for 4d, D2 = 1 if Z* 2 else D = 0;
2 

D = 1 if Z* = 3 else D = O' D = 1 if Z* = 4 else D4 = 0) , 
3 3 ' 4 

(4) iow, OLS on (X, Z*O where Z* has i ranked categories 

with one ranked category representing the lower 70% of the range 

of Z and the other i - 1 ranked categories, dividing the upper 30% 

of the range of Z into equal distance categories (e.g. for 4ow, 

Z* 1 if Z < 70; Z* = 2 if 70 < Z < 80; z* = 3 if 80 < Z<90j 

Z* 4 if 90 < Z), 

(5) idw, OLS on (X,D ,: •• ,D ) where there are i - 1 dummy
3 i 

variables corresponding to the i ranked categories of the ordinal 

variable used in iow (e.g. for 4dw, Dl = 1 if Z* = 2 else D2 = OJ 

D3 = 1 if Z* = 3 else D3 = 0; D4 = 1 if Z* = 4 else D4 = 0). 

The particular features and results of each of these experi­

ments are described below. 

Table I shows the group A experiments. The following features 

are common to each of these 42 experiments: ..nc= 100, r XZ = .088, 

X is normally distributed, Z is uniformly distributed 
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between 0 and 100, and u is N(O, 0 ).uu 

Table II shows the group B experiments. The features are 

the same as the group A experiments except that rXZ = .366 

Table III shows 6 experiments similar to the group A and 

group B experiments except that rXZ = .729 and only 4 ranked 

categories are used for those experiments using Z*. 

Table IV shows 18 experiments where the sample size varies 

(25, 100, 250). rxz is approximately .5 in these experiments 

and results are given only for Z* ~h 4 ranked categories. 

Table V shows 9 experiments where the true model was Y 

100 + 2X + 40 (Log Z) + Ui r = .353. The experiments OLSXLogz 

(X only), OLS (X, Z) estimate the wrong functional form. 40 and 

40w use Z* directly (not Log Z*)i 410 and 410w use OLS to esti ­

+ e and where Z* is 40 and 40w, respectively. 

Table VI shows the results of 6 experiments where the true 

model was Y = 100 + 2X + 2Q + 3Z + U' r - 477 r = .313,
I XQ -. 'XZ 

and r .270. X and Q are continuous variables.Qz 

Table VII shows the results of 9 experiments where the true 

.245. Z* is an ordinal representation of Z, however Z 

takes on negative values so that Z* (in the 40 experiment) is not 

an ordinal representation of z2 while Z* (40w) is. In the 40s 

and 40ws experiments, it is assumed that the researcher knows the 

mean value of the Z* possessed and has a rough idea of the mean value 

of Z,and scales Z* to have the same mean as Z. In the 40s experi­

ment Z* (40s) = 20Z"{40), and in the 40s experiment Z* (40ws) = 20.2"(40w). 
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Table VIII shows the result of 9 experiments similar (different 

error terms) to those in Table VII except that Z* had ten ranked 

categories instead of four. In the 100s experiment Z*(lOos) 

10 Z*(lO ) and Z*(lOows) 20Z*(100w). In these experiment~ rXZ 
o 

.455 and rxz2 = .365. 
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Table 1 

-2
81 

R2EXP MEAN 
A 

BIAS MSE MASD VAR R 

OLS eX only) 2.121 .121 .155 ~318 .142 .1543 .1462 

OLS ex, Z) 1.977 -.022 .140 .298 .141 .5113 .5013 

20 1.831 -.168 .166 .308 .140 .4302 .4184 
2d 1.831 -.168 .166 .308 .140 .4302 .4184 
20w 2.114 .114 .154 .316 .142 .3923 .3798 
2dw 2.114 .114 .154 .316 .142 .3923 .3798 

30 2.053 .053 .143--, .298 .142 .4720 .4616 
3d 2.047 .047 .166 ' .318 .166 .4769 .4661 
30w 1.994 -.005 .141 .290 .143 ' .3955 .3830 
3dw 2.053 .053 .146 .304 .145 .4101 .3916 

40 2.014 .014 .140 .292 .142 .4873 .4767 
4d 1.981 -.018 .142 .292 .143 .4990 .4779 
40w 1.936 -.063 .147 .292 .145 .3951 .3826 
4dw 2.030 .030 .151 .312 .152 .4158 .3912 

50 1.868 -.131 .158 .303 .142 .4940 .4835 
5d 1.864 -.135 .161 .301 .144 .5101 .4841 
50w 1.954 -.045 .144 .290 .144 .3890 .3764 
5dw 2.045 .045 .151 .310 .153 .4228 .3921 

60 1.954 -.045 .142 .289 .141 .5003 .4900 
6d 1.944 -.055 .170 .313 .169 .5227 .5081 
60w 1.897 -.102 .153 .297 .144 .3824 .3697 
6dw 2.025 .025 .152 .307 .153 .4283 .3914 

70 2.046 .046 .142 .297 .141 .5039 .4936 
7d 2.044 .044 .154 .311 .154 .5255 .4894 
70w 1.926 -.073 .148 .292 .145 .3794 .3666 
7dw 2.045 .045 .158 .320 .157 .4288 .3786 

80 1.926 -.073 .146 .291 .142 .5055 .4953 
8d 1.908 -.091 .161 .30B .154 .5364 .4957 
Bow 1.900 -.099 .153 .297 .145 .3791 .3663 
8dw 2.036 .036 .155 .313 .155 .4384 .3890 

90 1.915 -.084 .147 .292 .141 .5067 .4965 
9d 1.B94 -.105 .160 .306 .151 .5437 .4981 
90w 1.912 -.087 .151 .295 .145 .3B17 .3690 
9dw 2.035 .035 .161 .318 .162 .4383 .3821 

100 1.982 -.017 .140 .289 .142 .5077 .4965 
10d 1.999 -.001 .172 .336 .173 .5492 .4986 
100w 1.912 -.087 .151 .295 .145 .3802 .3675 
10dw 2.030 .030 .157 .317 .158 .4561 .3950 
',t; f3 = 2, rxz ::: .088, sample size ::: 100

" 1 
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Table 2 

,... 
R2EXP MEAN S BIAS MSE MASD VAR R 

1 

015 (X only) 2.695 .695 .510 .695 .026 .6390 .6353 

015 (X, Z) 1.988 -.011 .035 .144 .035 .7655 .7607 

20 2.117 .117 .046 .176 .033 .7249 .7192 
2d 2.117 .117 .046 .176 .033 .7249 .7192 
20w 2.300 .300 .124 .314 .034 .7148 .7089 
2dw 2.300 .300 .124 .314 .034 .7148 .7089 

30 2.117 .117 .04~..._ .179 .032 .7457 .7405 
3d 2.119 .119 .052 .188 .037 .7486 .7407 
30w 2.605 .260 .103 .281 .036 .7205 .7147 
3dw 2.644 .264 .105 .284 .036 .7200 .7112 

40 2.064 .064 .039 .160 .035 .7526 .7475 
4d 2.049 .049 .038 .155 .036 .7581 .7479 
40w 2.248 .248 .099 .274 .038 .7101 .7042 
4dw 2.255 .255 .103 .280 .038 .7222 .7105 

50 1.974 -.025 .038 .151 .038 .7554 .7503 
5d 1.971 -.028 .038 .148 .037 .7631 .7505 
50w 2.260 .260 .104 .282 .036 .7095 .7036 
5dw 2.258 .258 .104 .281 .037 .7258 .7112 

60 2.003 .003 .035 .147 .035 .7586 .7536 
6d 2.000 .000 .042 .160 .043 .7694 .7545 
60w 2.253 .253 .100 .275 .036 .7058 .6997 
6dw 2.259 .259 .104 .285 .037 .7283 .7107 

70 2.040 .040 .035 .149 .034 .7604 .7554 
7d 2.041 .041 .039 .157 .037 .7735 .7562 
70w 2.256 .256 .103 .279 .037 .7076 .7015 
7dw 2.263 .263 .108 .287 .039 .7310 .7105 

80 1.977 -.022 .036 .146 .036 .7611 .7562 
Bd 1.959 -.040 .040 .154 .038 .7791 .7570 
Bow 2.260 .260 .104 .282 .037 .6973 .6911 
Bdw 2.623 .262 .106 .286 .038 .7256 .7015 

90 1.969 -.030 .036 .148 .036 .7617 .7568 
9d 1.959 -.040 .040 .154 .038 .7791 .7570 
90w 2.261 .261 .105 .2B3 .037 .6917 .6854 
9dw 2.266 .266 .110 .293 .040 .7279 .7007 

100 2.001 .001 .035 .146 .035 .7549 .7498 
10d 2.011 .011 .043 .169 .043 .7823 .7578 
100w 2.264 .264 .106 .286 .037 .7057 .6996 
10dw 2.260 .260 .107 .288 .039 .7390 .7097 

*6:1 ::; 2, TXZ ::; .366, sample size = 100 
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Table 3 

"'-

81 
H2EXP MEAN BIAS MSE MASD VAH R 

ols (X only) 3.760 1.760 3.215 1.760 .120 .4865 .4813 

ols (X, z) 1.986 -.014 .306 .438 .309 .5736 .5648 

40 2.294 .294 .388 .499 .304 .5736 .5648 
4d 2.300 .300 •396~- .502 .309 .5822 .5546 
40w 2.939 .939 1.071 .949 .192 .5232 .5134 
4dw 2.910 .910 1.028 .922 .202 .5399 .5205 

*8
1 = 2, l'XZ = .729, sample size = 100 
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Table 4 

R2EXP MEAN 
A 

6. BIAS MSE MASD VAR R 
1. 

ols (X only) 2.835 .835 .908 .843 .214 .5292 .5244 

ols (X, Z) 1.960 -.040 .327 .453 .328 .6697 .6629 

40 2.053 .053 .313 .434 .313 .6631 .6562 
4d 2.109 .109 .343 .448 .334 .6918 .6788 
40w 2.266 •.266 .392 .501 .324 .5925 .5841 
4dw 2.200 .200 .448 .529 .412 .6344 .6190 

* 61 
:: 2, rXZ :: .531, sample size :: 25~"'· 

ols eX only) 2.695 .695 .524 .695 .042 .5613 .5568 

ols (X, Z) 1.986 -.014 .055 .181 .055 .6749 .6682 

40 2.044 .044 .052 .179 .050 .6614 .6544 
4d 2.066 .066 .068 .207 .064 .6708 .6569 
40w 2.246 .246 .120 .296 .060 .6276 .6199 
4dw 2.253 .253 .124 .301 .061 .6406 .6255 

* P1 :: 2, rxz :: .501, sample size :: 100 

ols (X only) 2.747 .747 .576 .747 .017 .5782 .5739 

ols (X, Z) 2.008 .008 .023 .119 .023 .6847 .6782 

40 
4d 
40w 
4dw 

2.087 
2.082 
2.297 
2.284 

.087 

.082 

.297 

.284 

.030 

.029 

.113 

.105 

.139 

.139 

.303 

.291 

.022 

.023 

.025 

.025 

.6717 

.6792 

.6335 

.6457 

.6649 

.6657 

.6259 

.6308 

* ,-'P1 :: 2, rXZ :: .532, sample size :: 250 
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Table 5 

-2
EXP MEAN 

"-

BIAS MSE . MASD VAR R2 RSl 

ols (X only) 2.258 .258 .099 .272 .033 .5787 .5744 

ols (X, Z) 1.974 -.026 .050 .177 .049 .6118 .6038 

ols ( X, In Z ) 2.005 .005 .041 .160 .042 .6290 .6213 

40 2.021 .021 .050 .177 .050 .6106 .6026 
4d 2.049 .049 .053""'"""'- • 183 .051 .6219 .6059 
40w 2.111 • 111 .057 .191 .045 .5877 .5792 
4dw 2.122 .122 .058 .198 .044 .5977 .5808 

410 2.044 .044 .046 .168 .045 .6140 .6060 
4low 2.108 .108 .057 .190 .045 .5891 .5806 

*True model Y = So + SlX + S2(Log Z) + U, Sl = 2, ~ = .353,
XLog Zsample size = 100 
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TABLE 6 

EXP MEAN 
'" 
Pi BIAS MSE MASD VAR R2 -2

R 

OLS 

OLS 

40 

4d 

40w 

4dw 

(X, Q 

only) 

(X, Q, Z) 

P 4.306
1 

B 2.499
2 

S 2.583
1 

P 2.019
2 

8 2.575
1 

S 2.176
2 

S 2.567
1 

8
2 

2.255 

t\ 3.144 

S 2.479
2 

S 3.097
1 

P 2.454
2 

2.306 

.499 

.583 

.019 

.575 

.176 

.567 

.255 

1.144 

.479 

1.097 

.454 

6.163 

.915 

.053 

.860 

.081 

.852 

--:'1l0 

1. 902 

.284 

1.599 

.267 

2.306 

.499 

.583 

.189 

.680 

.236 

.676 

.294 

1.154 

.480 

1.097 

.454 

.853 

.055 

.581 

.053 

.535 

.050 

.535 

.046 

.600 

.055 

.159 

.061 

.5386 

.7297 

.7097 

.7164 

.6690 

.6801 

.5291 

.7208 

.7008 

.7014 

.6587 

.6631 

.477, rXZ .313 

= .270, sample size 100 
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Table 7 

EXP MEAN BIAS MSE tA.ASD VAR R2 -2
R 

OLS (X only) 39.901 37.901 1441. 834 37.901 5.438 .0599 .0503 

OLS (X, Z) -5.908 -7.90B 70.271 7.908 7.B05 .6777 .67l0 

OLS (X, Z2) .433 -1. 566 B.861 2.363 6.474 .9781 .9786 

40 
4d 
40w 
4dw 

2.108 
11.163 
12.259 

9.181 

.10B 
9.163 

10.259 
7.181 

6.350 
90.221 

111. 280 
58.608 

1.946 
9.169 

10.259 
7.181 

6.339 
6.325 
6.086 
7.118 

.6136 

.7190 

.8251 

.8456 

.6056 

.7071 

.8216 

.8391 

40s 
40ws 

4.367 
13.857 

2.818 
11. 857 

11. 760 
-ib46.625 

2.367 
11. 857 

6.219 
6.107 

.6831 

.8357 
.6765 
.8324 

*True Model Y So + SIX + S z2 
2 + u, Sl 2, rxz2 = .245, sample size = 100, 
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Table 8 

R2EXP MEAJ."l' BIAS MSE MASD VAR R 

OLS (X only) 87.375 85.375 7289. 796 85.375 .990 .1385 .1297 

OLS (X, Z) .1014 -1. 899 6.433 1. 932 2.858 .6972 .6909 

OLS (X, Z2) 2.619 .619 1. 932 1.17 1.564 .9891 .9889 

100 12.668 10.668 116.530 10.668 2.761 .5123 .5021 
10d -3.938 -5.938 38.116 5.938 2.882 .7751 .7495 
100w -3.755 -5.755 34.950 5.755 1.879 .7547 .7496 
10dw 2.928 .9278 1. 942 1.131 1.092 .8599 .8440 

100s -3.833 -5.833 _~6.377 5.833 2.378 .6374 .6298 
100ws 2.353 .235 2.049 1.420 2.226 .7995 .7954 

. 365, sample size 100 • 
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9. Discussion of Monte Carlo Results 

Looking at Table 1, there is no real pattern to the size of 

the MSE(Sl) or to the bias, MASD, or variance of Sl' All three 

cases (omission of a proxy, an ordinal proxy and a dummy proxy) 

have larger MSE's than the OLS estimate of the true model 

[MSE(P ) = .14]. In the experiment where no proxy for Z was
l 

used, MSE{Sl) equaled .16. For the 0 series (i.e.,20, 30, 40, 50, 

60, 70, 80, 90, 100), MSE{P ) ranged from .14 to .17 with no
l 

apparent pattern as the number of ranked categories in Z* in­

creased. For the ow series, MSE(P ) ranged from .14 to .15.
l 

For both the a and ow series bias, MASD, and variance of 8
1 

followed patterns similar to MSE(Sl) '. For the d series, MSE(P ' l 

ranged from .14 to .17 with no apparent pattern as the number 

" of dummy variables increased. For the dw series, MSE(8 ) ranged
1

from .15 to .16. Fluctuations in bias, MSAD, and variance of 

$1 tended to follow MSE(Sl)' 

'" A comparison of the 0 and d series shows that the MSE{P )
l 

for the a series is less than or equal to the d series (for 

experiments with an equal number of ranked categories). Com­

paring the ow and dw series, with the exception of 60w (MSE = 

'" .153) and 6dw (MSE = .152) , the MSE(P ) is smaller for the ow
1 

" series. Overall the a series produced the smaller MSE (P ) in
l 

six of the nine quadruples {e.g., 40, 4d, 4ow, 4dw) of ranked 

categories, and the ow series had the smallest MSE three times. 
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-2 

-2R for the case where a proxy for Z was not used was only 

29% of the OLS estimate of the true model. For the 0 series, 

R increased from .4184 (83% of that of that obtained by the OLS 

regression of the true model) to .4965 (99%) as the number of 

-2
ranked categories increased . For the d series, R increased from 

. 4184 (83%) to .4986 (99%) as the number of dummy variables in­

-2
creased. For the ow series, R showed no pattern as the number 

of ranked categories increased and varied from .3663 (73%) for 

-2
80w to .3830 (76%) for 30w. The dw series R 's also showed 

no pattern as the number of d~~my variables increased varying 

from .3786 (75%) for 7dw to .3950 (78%) for lOdw. The 0 and d 

-2
series resulted in the highest R for each quadruple with the 

d series slightly higher. The ow and dw series were uniformly 

lower .than the 0 and d series with the dw series resulting in 

-2
higher R 's than the ow series. 

From these results, we conclude that if rXZ is small and 

a researcher's sole interests are in minimizing MSE(Sl) that 

it does not matter how he or she estimates the model (leaving 

out a proxy, using the ordinal variable proxy directly, or 

using a dlli~y variable proxy). Nor does it matter if Z* rep­

-2
resents a good approximation to the metric of Z. If R is a 

consideration then the model should be estimated with a proxy, 

and the better the proxy the closer the R2 will be to the R2 

of the OLS estimate of the true model for both the ordinal 

and durrmy variable cases. An alternative prediction criteria 
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-2 
to R such Amemiya's prediction criteria (Judge et al., 1980), 

which imposes a greater penalty on the number of variables, will 

tend to favor use of the ordinal variable proxy. 

With a moderate correlation between X and Z (Table II), the 

A -2 
o and d series have both smaller MSE(P ) and higher R than com­

l 

parable experiments of the ow and dw series. Omission of a proxy 

for Z produces inferior results on both a MSE 	 [MSE(Sl) .26] 

-2
and R basis compared to any using 	a proxy. The 0 

....."., 

series had the lowest MSE(Sl) except for 40 where 4d's MSE(Sl) 

was slightly lower. The 0 series had MSE(Sl) ranging from 

slightly below .02 to slightly above .02. There was a tendency 

A 

for the MSE(Sl) to decline as the number of categories increased. 

The d series smallest MSE was for 5d and largest MSE occurred 

at 3d. The ow series MSE( showed no pattern as the number 

of ranked categories increased ranging from a low of MSE(Sl) 

.05 for 40w to a high of .06 for 20w. The dw series also 

showed no pattern with regard to MSE as the number of categories 

but was always slightly higher or to the com­

parable ow experiment. 

for the d series was always the ranging from 

.7192 (95% of attainable) for 2d to .7578 (99%) at 10d. The 0 

2
series R ,s ranged from .7192 (95%) for 20 to .7498 (99%) for 

2
100. The ow series R ,S showed no pattern as the number of 

ranked 	categories increased ranging from .6854 (90%) for 90w 

-2 
to .7147 (94%) for 30w while the dw series had 	R 's ranging 
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from .7007 (92%) for 9dw to .7112 (94%) for 3dw. For the case 

-2
where no proxy for Z was used the R was .6353 (84%). 

-2
Our earlier development indicated that R could be used to 

select the model with the smallest MSE(B
~ 

). The results of
l 

Table 2 offer some support for that conclusion when the differ­

ence between the MSE of two competing models is large, the 

-2
choice of the model with the highest R will be the one with the 

~ -2
lower MSE(Sl)' R is, however, insensitive to relatively small 

-2
differences in MSE(B ). In particular on the R criteria, thel 

-2
dummy variable case will usually have a slightly higher R than 

the equivalent ordinal variable case while having a slightly 

Table 3 displaying the results from experiments where 

rXz = .729 shows the increased importance of using a proxy vari ­

able (and a good proxy variable) when the correlation between X 

and Z is large. For the case where a proxy for Z was left out 

MSE(B ) is 1.61. For the 0 case, MSE(B ) ~ .19 and for the dl l 

case, MSE(B ) = .20 where MSE(Bll = .15 for the OLS estimate ofl 

the true model. For the ow and dw cases MSE(Sl) was .54 and .51 

-2
respectively. The R measures for the 6 experiments in Table 3 

correctly rank order the MSE(Sl) measures. 

Table 4 shows the effect of different sample sizes. MSE(Sl) 

generally decreases as sample size increases due to the decrease 

in VAR(Sl)' but will not converge to zero even as the sample 

size goes to infinity because the bias does not disappear. These 
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limited results suggest that reductions in MSE (e ) with increased
l 

sample size are not large for sarrples of over 100 cases. 

A logarithmic functional form (Y = So + SlX:+ S2(L09 Z) +u), 

was examined in the experiments shown ,in Table 5. Here the lowest 

MSE (other than the true model) was achieved by the 410 experiment 

where the ordinal proxy was Log (Yo + Y1Z*), where YO 

determined by using OLS to regression Z* on Z. The next lowest 

MSE (6 ) was for the 40 experiment which was an est~~ation of the
1

wrong flli~ctional form. It is inter~ting to note here that while 

the range of Z was not (0-100),410 and 40 both had smaller 

MSE than did 4d and that 4low and 40w had smaller MSE(Sl) than.did 

-2
4dw. While the R here would have allowed us to select the model 

A ' 

with the lowest MSE(Sl)' it would not have allowed us to rank order 

several of the other experiments where the differences in MSE 

were smaller. 

The experiments in Table 6 simply introduce another continuous 

independent variable, Q. The results are similar to those in 

Table 2 where the level of correlation between Z and X was similar. 

Noteworthy perhaps is that 40 and 4d produce a Sl with a smaller 

MSE than the ols regressions on the true model although their 

estirnateof 82 has a higher MSE. There is no real basis to choose 

between the 40 and 4d regressions since each performs better', 

than the other on one of the two coefficients. Between the 40w 

and 4dw experiments, 4dw performs marginally better. Leaving 

out a proxy for Z produces noticeably worse results. 
-2 
R is a 

fairly accurate guide to the results. 
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The experL~ents in Table 7 represent an intentional effort 

to show what might happen when the order preserving transforma­

tion rule was violated. Here the transformation between Z+Z* 

is order preserving but it is z2 which is the variable in the 

true model. Keeping in mind how Z* is created in the 40 case 

(4 equal sized categories), we note that most of the values of 

Z represented by Z* = 1 are negative while those of Z* = 2, 3, 4 

are positive. Z*(40} is not, however, an order preserving trans­

formation of z2 since many of the va.lues of z2 represented by Z* = 

1 are larger than-those represented by Z* = 2. For Z*(40w) however 

this is not the case since Z* = 1 contains the first 70% of the 

cumulative distribution of Z and the l~rgest absolute value of 

Z contained in Z* = 1 is smaller than the smallest absolute 

value in Z* = 2. The experiments 40s and 40ws imitate the common 

practice of scaling an ordinal variable to have the same mean as 

the unobserved Z, when the mean value of Z is known from outside 

information. 

Examining the results in Table 7, we are struck by a number 

of peculiar results, 40 produces the best estimate of 8 although
1 

't h 1 2 h .~ as a ower R t an any case except the om~tted variables case. 

The misspecified case (Z instead of Z2) produces estimates that 

are wrong by a wide margin and worse than several of the cases 

which use an ordinal or dummy proxy. The 40 case as already noted 

is uniformly preferred to 4d while 4dw is preferred to 40w, It 

is interesting to note that the 40s and 40ws transformations 

result in clearly inferior estimates of 8
1

, This result will 

have implications for our later discussion, 
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In Table 8, we display the results of experiments with 

the same basic parameters but different seed numbers for X, Z 

. 
and the u's, except that we have created 10 ranked categories 

in Z*(100) and Z*(lOow) and nine appropriate dummy variables 

(dropping the last category) for lad and 10dw. Now, lao is a 

much more distorted representation of the values of z2 while 

100w is still an order preserving representation of z2. The 

laos and 100ws experiments represent transformations which 

~. 

scale Z*(lOo) and Z*(lOow) to the approximate mean value of 

Z (keep in mind that the true variable is Z2). 

The results in Table 8 suggest that the good performance 

of 40 in Table 7 was to some degree a fluke of the particular 

scaling and categorization scheme used. In Table 8, on a MSE 

2base the experiments can be ranked: ols(X, Z ), lOdw, 100ws, 

ols(X,Z), 10m~i' laos, lad, lao, ols(X). 

1, 
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10. Optimal Transformation of Ordinal Variables 

In the previous section, we gave the results of several experi­

ments [Tables 5(410, 4low)i 7(40s, 40ws) and 8(100s, 100ws)] where 

the ordinal proxy had been rescaled from the simple equal distance, 

I, 2, 3 ... numerical assignment used in most of the experiments. 

In this section we take up the issue of how the optimal transform­

ation of an ordinal proxy might be found. It is first necessary, 

however, to make clear the distinction between how well the ranked 

categories of the ordinal proxy divided the true unobserved vari­
-~ 

able's distribution up into equal distance intervals and the parti­

cular scheme used to assign numeric values to each of the ordinal 

categories. The researcher typically has no control over the 

categories in the available ordinal proxy but: complete control over 

the value given to each of those categories. 

The experiments reported have used several of the more com­

manly used methods of assigning numbers to ordinal categories. 

The io experiments have used a scheme equivalent to assigning the 

mean of the underlying values of Z represented by each category of 

Z*. The iow experiments conform to the practice of assigning equal 

distances between categories when those distances are unknown. The 

410 and 410w experiments in Table 5 assumed that the least squares 

transformation between Z and Z* (40; 40w) was known. The as and ows 

experiments in Tables 7 and 8 assumed that only the mean value of Z 

was known. There are obviously an infinite number of transforma­

tions which might be made. 

It is clear that the optimal transformation of the ordinal proxy 

Z* must be defined in terms of the researchers objectives. Those 

objectives can be seen to fall into three general categories: 
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(1) 	 estimation of the parameter S.11 associated with the 

observed continuous variable, X, of interest, 

(2) 	 estimation of the parameter, Sz, associated with the 

unobserved Z or obtaining some idea of the signifi ­

cance and importance of SzZ with respect to the 

dependent variable Y, or 

(3) 	 prediction of Y from the observed continuous variables 

X. and the available proxy Z*. 
~ 

If the researcher is willi~g to accept the assumptions of sections 

3-6, then finding the transformation of Z* which maximizes R2 will be 

optimal for objectives (1) and (3) under a mean square error loss 

function. A number of suggestions for doing this have been made 

in the literature, Bonacich and Kirby (1976), de Leeuw et al. (1976) 

and Young et al. (1926). The technique proposed by Young et al. 

is the most general and allows almost any monotonic transformation 

of Z*. 

In general, however, these assumptions often will not hold and 

we have demonstrated in Tables 7 and 8 the large distortions pos­

sible if the form of Z, say ~(Z), which is part of the true model, 

is not monotonic in the available Z*. Brieman and Friedman (1982) 

have recently proposed a nonparametric iterative method based on 

alternating conditonal expectations which minimizes 

p 
E{[8{Y) - L;¢{X.)]2} 

=1 J (38) 

VAR [8 (Y) J 

where there are p independent variables and 8{~) and ¢. (.) are 
J 

transformations to be estimated. No restrictions are placed on 

the transformations 8{.) and ¢. (.) and the algorithm has been 
J 
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shown to converge under farily weak conditions. While the use of 

i~ 

such a tool maximizes the predictive properties of ¥, the proper­

ties of the sdX) obtained are unclear. Without additional in­

formation or the assumption of various restrictions, singular 

pursuit of the best estimator of 81 appears to be impossible. 

The second goal, estimation of 82Z, is frought with diffi­

cuIties. The standard practice has been for researchers to assess 

the direction and significance of 82 from the significance and 

sign of the ordinal or dummy variable proxy(s). If the ordinal 
~ 

proxy is similar to the io proxy used in Tables I, 2 and 3 and 

the true model is similar to the one in those tables, this practice 

has some merit as a rule of thumb, although strict hypothesis test­

ing is invalid. We only need to turn to any of the ow experiments 

to begin finding t-statistics which bear no resemblance to those 

obtained by estimating the true model. 

Dummy variable proxies do not force the researcher to choose 

a scaling scheme for the ordinal proxy and instead allow the data 

to choose the transformation (not necessarily order-preserving) 

h ' h " 2w lC maXlmlzes R . This property lies behind much of the popular­

ity of using dummy variable proxies instead of an ordinal variable 

proxy. When the assumptions of sections 3-6 are fulfilled and the 

number of categories to be dummied out small, the practice of using 

dummy proxies comes close to achieving the same result as the op­

;.. 

timal transformation in terms of minimizing MSE (81) and the mean 

square error of the regression. 

The transformation implied by the dummy variable proxies is, 

however, alway~ readily available to the researcher as an ordinal 

, 13 
scaI lng. This scaling may be obtained by estimating 
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A A 

y"", Po + fhX+C2 D2 +C3 D3 + •.• +C.D. +,,, (39)
). ). 

and forming the vector, 

r ..., 
o 

0 

Z*D (:2 
(40)"'" 

;. 
Cz 

L ..1 

where zero s the category represented by the omitted d~~y 

variabl.e and the C. 
). 

I s obtained from""l9quation (39) replace their 

respect~ve categories. Z can then be used in estimating, 

" y := So + P1X + B + w (41 ) 

~ 

s equal one and the 61 obtained from equations (39) 

and (415) will be equal. This result always holds since Z*D = 

(:2D2 + .. , + (:iD2' &~ exa~ple of using z*D is given in Table 9, 

experiment ~owsd. Notice that the 4dw and 40wsd experiment are 

A 

comparable except for slight differences in the VAR(Sl) and a 

-2
slightly higher R in the 40wds experiment. 

A reaso~able question to ask is whether this increase in R2 

is worth the expense involved in estimating the regression equa­

-2
tion twice. To answer the questio~, we must point out that R, 

while correcting for the degrees of freedom problem that R2 suffer's 

from, does not account for the random error introduced into the 

coefficients of the regression equation by adding additional vari-· 

ables to that equatio~. Breiman and Freidman (1983) have recently 

unified a literature on the optimal nurrber of regressors to 

retain and have shown that minimizing the unconditional mean square 

error prediction criteria can be fulfilled by minimizing, 
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Table 9 

-2R2EXP BIAS MSE MASD VAR RMEA.""l' 51 

OLS (X only) 44.424 42.424 1799.929 42.424 .182 .3295 .3226 

OLS ex, Z) 4.157 2.157 4.857 2.157 .206 .4144 .4023 

OLS (X, Z2) 2.429 .429 .497." .617 .316 .9971 .9470 

40 25.614 23.615 557.707 23.615 .064 .3588 .3456 
4d 14.371 12.371 153.136 12.371 .088 .6614 .6472 
40w -9.062 -11. 062 122.573 11.062 .202 .7804 .7759 
4dw -6.222 -8.222 67.784 8.222 .179 .8043 .7961 

4bsd 14.371 12.371 
~-

153.264 12.371 .218 .6614 .6544 
40wd -6.222 -8.222 67.838 8.222 .234 .8043 .8003 

*True Model Y 
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(42 )l + P )C n-l-p 

with respect to the number of included variables,p, where n equals 

2
the number of observations, 0 equals the variance of the true 

error term and, 

VAR ·C 	 ~ i3 •x. I X 1 I ••• I Xp ) (43 ) 
p J=P+1 J ] 

Equation (43) depends on unobserved parameters and minimization of 

A 2 
U 	 _1_ t . (Y Y. ) C1 + L-)

np n-p ~=l i L.,... n-l-p , (44 ) 

which 	depends only on p and the data and serves as a good approximation. 

U has been calculated for the experiments in Table 10. The 
np 

experiment 40wsd uses the transformation indicated by the dummy vari, ­

able regression (4wd). U clearly favors the ordinal variable proxy
np 

over the dummy variable proxies and because the unconditional 

-? 
mean square error increases much more rapidly in p than R- decreases in p. 

Clearly, since the dummy variable proxies do not convey any more 

information than the ordinal proxy using the dummy variable scaling, 

use of the dummy variable proxies in the final regression equation 

only introduces noise into the estimates. This effect will be notice­

able in all but very large data sets. 

11. 	 Concluding Remarks 

The debate over how to handle ordinal data is old and goes back 

at least to 1900 when Pearson and Yule expressed their opinions in 

the Philosophical Transactions of the Royal Society. Pearson be­

lieved that ordinal variables were imperfect measurements of con­

tinuous variables while Yule believed that treating them as possess­

14
ing only nominal level information was most appropriate. He have 

obviously chosen Pearson's view of the world. 
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Table 10 

EXP 


OLS (X only) 

OLS (X, Z) 

40w 
4dw 

40wd 

*True Model 

Mean Sl MSE 

3.451 2.145 

1. 763 .107 

2.610 .425 
2.590 .398 

2.589 .405 

R2 RSSE RMSE 
A 

Unp 

.4665 .4611 26538693 270803 276387 

.7022 .'6960 14842308 153014 157796 

.6103 

.6217 
.6022 
.6057 

19437995 
18871765 

200392 
198650 

206787 
209216 

.6170 .6091 19105406 196963 203118 

y 

RSEE is residual 

squared error. 

sum 

K. = 2 
""?~ I 

rXZ = .455, 

of squared error, RMSE 

size ,= 100, 

is residual mean 
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We feel that the use of dummy variable proxies encourages the 

interpretation of a slope parameter as intercept shifters and conceals 

the errors-in-variables nature of the problem. Since we demonstrated 

in the last section that the dummy variable solution can always be 

incorporated into an ordinal scaling scheme (whose use results in 

an improvement in the mean square error prediction rate for the re­

gression over direct use of the dummy variable proxies), we can see 

no justification for ever using them in preference to an ordinal proxy. 

There is obviously much work to be done. Barrow (1976) and 

Frost (1979) have shown that the choice of tec~~iques for dealing 

with the errors-in-variables problem becomes more difficult when 

more than one variable is measured with error while Kinal and Lahiri 

(1983) have applied Aigner's (1974) framework to the case of stochastic 

regressors measured with error. Extention of this '\vork to the special 

attributes of ordinal independent variables would undoubtedly be 

fruitful as these are the conditions under which most applied work is 

done. &~other important area is the case where the unobserved vari­

able, Z, for which the ordinal proxy, Z*, is available, is the vari­

able of prime interest. Hypothesis testing in the errors-in-variables 

framework is still woefully inadequate. Finally, we should note that 

the Monte Carlo results on ordinal proxies presented here is only a 

beginning of what needs to be done. 

While wishing for better (i.e., interval level) data is a pipe 

dream in many cases, as survey researchers have long know~, survey 

questions could often be designed to provide "better" ordinal vari­

abIes if guidelines were known. We have shown that simply increasing 

the number of response categories is not necessarily the answer. 

Researchers will have to be clearer about their models and in parti­
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cular about the functional forms they should take if guidelines are 

to develop with an eye toward better multivariate work in a regres­

sion framework. 

Researchers using ordinal proxies are not totally without 

guidance from their data and outside information. The correlation 

between X and Z was shown to be a key parameter in assessing the 

severity of the errors-in-variables problem. The correlation co­

efficient between X and Z* is easily calculated. Since the cor­

relation coefficient between X and Z* is as a rule smaller than that 
~-

between X and Z, a high r * is a sure sign of problems particular­xz 
ly if Z* is not a good representation of Z. The quality of the 

ordinal proxy Z* can often be determined by reference to outside 

information and simple examination of the frequency of each category 

of Z*. Estimation of the regression equation using different ordinal 

scalings and the dummy variable transformation often reveals much 

about the sensitivity of the 61 parameters to the form of the proxy 

and of possible nonlinearities with respect to the unobserved 

variable Z. 

This "auxilIary" analysis should be reported to the reader who 

should also be cautioned against too literal of an interpretation 

of parameter estimates and t-statistics. It is all to easy to 

generate cross distortions, particularly when the variable of in­

terest is only marginally significant in the true model and highly 

correlated with the unobserved variable for which the ordinal proxy 

is being used. 
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FOOTNOTES 

* The author wishes to thank Michael Hazilla, P.A.V.B. Swamy, 
Raymond Kopp, Robert Mitchell, William Vaughan, and Charles 
Paulsen for their helpful comments. Any remaining errors are 
the responsibility of the author. 

IThe following example will help clarify what is meant by 
ordinal and dummy variable representations. Assign a person 
the value of 1 if his/her income is less than $10,000, 2 if income 
is between $10,000 and $25,000, and 3 if over $25,000. One ordinal 
representation is the 1, 2, 3. Other ordinal representations for 
the same data include any order preserving transformation of 
1, 2, 3 (e.g q 12, 81, 302),' The dummy variable representation 
is Dl = 1 if income is less than $10'1-000, else Dl = 0; D2 = 1 if 
income is between $10,000 and $25,000, else D2 = 0; D3 = 1 if 
income is greater than $25,000, else D3 O. Note that while 
there are an infinite number of ordinal representation of the 
same ranked categorical data there is only one dummy variable 
representation (the only choice being which of the dummies to 
drop). For more on nominal, ordinal, interval, and ratio scales 
see Roberts and Schulze (1973)~ Krantz et ale (1971), or any 

measurement theory text. 

2It is possible to think of examples where the "true" 
underlying variable has an ordinal measurement scale rather 
than interval (e.g., union seniority: rank rather than years). 
In these cases an errors-in-variables situation is created if 
then interval level variable is used in the estimated model. 

3For more information on errors-in-variables estimators 
and how to use outside information in particular see Judge 
et al. (1980) and Fuller (1980). 

4 
It should be noted that some of the distributional prop­

erties of u change with the taking of deviations from the means. 
These changes do not affect any of the results and the u notation 
is maintained for convenience. 

5All of the results to follow should be considered to be 
asymptotic. Aigner (1974) making a number of normality assump­
tions derives exact distributions. A function of the R2 measure 
is asymptotically proportional to the F statistic. See Dhrymes 
(1978) for use of the R2 measure in the errors-in-variables case. 

6see Aigner (1974), Aigner and Goldberger (1977), Barrow 
(1976), Maddala (1977), Dhrymes (1978), and Frost (1979) for a 
discussion on different qualifications for using proxy variables. 
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7The larger the correlation between X and Z, the smaller 

the ratio of the variance of the measurement error to the vari ­

ance of Z, and the larger the number of observation~, the more 

likely use of a proxy will result in a smaller MSE(Bl)' Aigner 

(1974) gives these trade offs in detail. Survey data is usually 
blessed with such large n that it will.always be desirable to 
use a proxy if available. 

8
A general representation of an exponential transformation 

between Z* and Z can be represented by Z* = AeZeY where A is a 
constant and Y is the error component. Z* in terms of Z is 
Log Z* - Log A - Log y. Eq. (1) becomes Y = Bo + SlX + 
B2(Log Z* - Log A - Log y) + u which can be rewritten as Y = 
BO - B2Log A + BIX + B2Log Z* - S2Log Y + u. OLS mininizes 
n


jf (-B Lo9 y + u), and the coefficie;tt on Z* will be /vi where

l 2


B
2

Log Z* =: A,{z* and /vi (B
2

Log Z*)/z*. 


9If al is known Z can be scaled so is one. Further,a l 
since both al and e will vary directly with the scaling of Z*, 
the parameter a l can not be manipulated for any gain by the 
researcher. 

10
Except when rXZ = 0 which is equivalent to identification 

of the equation through a restriction on the covariance between 
X and Z. 

llTo simulate a bad metric we constructed Z* to provide 
little information about the much of Z's range and much infor­
mation about the upper 30% of Z's range. Labovitz (1970) and 
O'Brien (1979) suggest that this dichotomizing transformation 
of an interval variable will produce the most distortion in S . 

1 

l2See Smith (1973) for details of construction. 

13r am indebted to Leo Breiman for this observation. 

14we have not considered the line of development which descends 
from Yule's contingency table approach. These methods of dealing 
with ordinal variables in a contingency table/log-linear frfu~ework 
have recently been surveyed by Agresti (1983). They are difficult 
to use in combination with continuous independent variables or 
large numbers of variables, and interpretation of the results is often 
non~intuitive. The errors-in-variables/missing information problem 
with the data is often unrecognized. A more promising line of 
attack using the ANOVA approach is Chamberlain (1980) who uses 
the concept of latent variables. 

r 
\ 
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