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ABSTRACT

A commonly followed procedure in econometric research has
been to dummy out a qualitative ordinal explanatory variable before
entering it into a standard regression equation. This paper
demonstrates using the framework of Aigner (1974) that this prac-
tice creates an errors-in-variables problem similar to entering
the ordinal variable directly into a regression equation when the
underlying "true" uncbserved variable has an interval or ratio
measurement scale. On the basis of a number of Monte Carlo
experiments, we find that there is no a priori reason for favoring
the dummy variable representation over the ordinal variable repre-
sentation.. Optimal transformations for ordinal proxy variables are
discussed and suggestions are made on methods to assess and mitigzte
the errors—-in-variables problem.
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1. Introduction

The dummy explanatory variable section of any standard econo-
metrics text portrays one of two situations: either the need to
dummy out a nominal level variable (e.g., war/no war, male/female)
or the need to dummy out an ordinal (ranked categorical) level
variable (e.g., education, income). This paper addresses the second
situation and the implications of alternative methods of estimating
regression equations when Qofking wieh ordinal explanatory variables.

The guestion of whether to use an ordinal explanatory variable
directly or to use its dummy variable representationl when esti-
mating a regression eguation has long been a topic of controversy
in the other socilal sciences [e.g., Labovitz (1970); Wilson (1971);
Bonrnstedt and Carter (1971); Kim (1975, 1978)]. The basic posi-
tion of those advocating the use of ordinal variables in regres-
sion equations is that regression technigues are robust to szt
allowable (order preserving) transformations and thus the greater
power of parametric statistics justified the use of ordinal vari-
ables. The opponents demonstrated that radically different results
could be obtained using different allcowable but extreme transfor-
mations. Lewis-Beck (1980) in a popular statistics series sum-
marized current thinking when he compares two OLS equations (one
in which an ordinal variable 1s entered directly and one in which
its dummy variable representation is used) and concludes, "In
this particular case, regression analysis with the ordinal vari-
able arrives at the same conclusion as the more proper (emphasis

3
added) analysis with dummy variables.
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There is a fundamental problem with this whole debate. The
presence of either an ordinal variable or its dummy variable rep-
resentation is almost alway52 indicative of an errors-in-variables
problem since the "true" underlying variable is usually measured
on an interval (or ratio) scale. The errors-in~variables nature
of this problem is clearly seen once it is realized that the "true™
interval-level explanatory-variable in the model can be represented
as a function of either the ordinal variable and an error term,

T,
or the dummy variable(s) and an error term. Both the ordinal and
dummy variable representations may be thought of as proxies meas-
ured with error,for the "true" interval level variable in the model
being estimated.

Econometric texts, in general, either offer no guidance %o
the researcher on what to do with ordinal explanatory variables,
or tell the re;earcher to dummy the ordinal variable(s) out with
little or no recégnition of the errors-~in-variables nature of the
situation. The increasing use of micro surveys in economic re-
search with their abundant ordinal categorical data make the impli-
cations of how one handles these ordinal proxies highly relevant
to applied econometric research.

Fortunately, Aigner (1974) has provided a framework for
comparing various methods for estimating regression egquations
when an ordinal proxy for a "true" unobserved-interval variable

is available. Assuming no other information,such as variance

) . . . . , 3
ratios, covariances, or multiple equations is available, the



options a researcher has, when confronted with the above situa-
tion, can be divided into three categories:

(1) estimate the model without a proxy for the

unavailable interval explanatéfy variable,

(2) dummy out the ordinal proxy variable before

estimating the model, or

(3) estimate the model using the ordinal variable

directly.

This paper will show that the ;;ission of any explanatory
variéble, using a dummy variable representation of the ordinal
proxy variable or using the ordinal variable directly when the
"true" model contains an unavailable interval level variable,
results in similar {(but potentially different magnitude)} errors-
in*vériables problems. For the simple case where the "true"
model consists of a constant term and two variables (one of which
is interval level and unavailable), we will derive the mean sguare
error for the estimated parameter of the variable observed without
érror:and the §2 for the equation as a whole,for each of the three
possible methods of estimating the equation., Finally, Monte Carlo
results are presented for variants of the three cases with partic-
ular emphasis given to the effect of different numbers of ranked

categories in the available ordinal variable,  Violations of the

assumptions made and optimal transformations are also considered.

2. Preliminaries

Consider the following "true" model:



Y, = + X, + Z, + u,. 1
5= Byt BiX 4 Byt u, (1)

where ¥, X, and Z are variables measured on an interval or ratio

scale with finite and observable first and second movements; u is
an unocbservable %{O,Guu} disturbance, distributed identically and
independently of X and Z; and there are j=1, ..., n observations.
Dropping the Jj subscript to avoid notational confusion and taking
deviations from the means,.equation {1) becones

-,

Y=81X+822+u {2)

C s 4
where small letters represent deviations from the means.

The covariance matrix of x and z is given by

Z is unavailable, but available as a proxy is an ordinal rep-
resentation of 2Z,which we will call Z*. The researcher must choose:
{1} whether to estimate the model with or without the proxy variable;
and (2) if so,whether to use the ordinal variable Z* directly or
to "dummy out" Z* using one or more dummy variables in the eguation

to be estimated.

3. Omitting a Proxy for 2
The first case to be considered is leaving Z* or its dummy

representation out altogether. The model to be estimated is then



when eg. (1) is the true model. We give the asymptotic MSE(B.)

1°0Ls
developed by Aigner (1974) and iz for eq. (4) below5
2
Ouu 2 Oxz
MSEG)) = |55t 8,05 ()
XX , XX
and
i |
5 ._légzz Oxx)/n—2
R =1~ 1 (6)
o2
L y./n-1
j=1

We will now assume that the decision to use the proxy variable
in some form has been made based on the need for consistent pre-
diction of Y, the desire for some notion of the significance and/or

A

effect of Z in eq. (1), interests in minimizing bias (B,), or

1
interests in minimizing MSE(él). Use of a proxy variable, in the
absence of any a priori information, to achieve the first two goals
is fairly clear; use of a proxy variable to fulfill the last two
goals is more open to guestion and circumstance.6 McCallum (1972)
and Wickens (1972) have demonstrated, using a number of restric-
tions on covariances between variables in the estimated equation,
that the bias of él when the proxy variable is used is always less
than or equal to the case where the proxy variable is not used.

Since Aigner (1974) has shown that, except in a limited range of

. 7 S . .
circumstances , that MSE(Bl) was smaller using the proxy variable



thah without it, we will assume that the researcher will want to

consider one of the two proxy variable methods.

4. Direct Use of an Ordinal Proxy Va£iable

The relationship between 2 and the ordinal variable proxy, Z*,
is dependent upon the particular ranking or ordering system chosen
for Z*. We will assume that this relationship is at least mono-
tonic and further limit the class of possible transformation func-

=

tions to those which are order preserving. It is important to
note that the class of allowable transformations between Z and 2%
is guite broad and includes linear, polynomial, logarithmic, ex-
ponential and others. The linear trapsformation is the easiest
to work with,and specific results developed will apply only to
that transformation. However, the general development and con-
clusions can be adapted to any admissible transformation. One
of the more troublesome transformations, the exponential, is
sketched out in the footnote below.8

Taking the linear case, we can represent the ordinal proxy,

Z*, as
Z*¥ = .+ 0.2 + e . (7)

Z can be defined in terms of 2Z*

-

¢ Z*

Zes gt e e ()
1 1 1



Equation {8) is unidentified,since . is unknown; however, since

1
the scale of 2 is unobserved we can assume Z is scaled so that
. - . . ) .

al = 1 without affecting the results to follow. It is clear from
these two equations that some ordinal representations of the same
ranked categories will be better than others,while the dummy vari-
able representation will be invariant to the particular ordinal
representation.

The errors in variables problem becomes readily apparent

T

when we substitute the right hand side of eq. (8) for Z in eq. (1),

Y = 80 + le + 82(~ao+z*-e) + u . (9)

—Bzao is a constant and the error terms —82e and u can be combined so

Yy = (80-82ao) + BlX + 622* + (*B2e+U) ' (10)

*
which can be further simplified in notation by letting BO = SO - Bzao
and letting v = ~Bze + u:
*
- *
Y BO + le + 822 + v . (11

~

and 8. are biased

The usual errors-in-variables result that SO’ 81, 5,

and inconsistent can be shown to hold.lo

Taking deviations from the means eg. (l1l) can be written as



Making explicit assumptions that OX = 0, O = 0, and

e eu
Uze = 0. The covariance matrix Zo of %x and z* can be represented
as
bxx ze* Gxx ze
Y = = g {13}
% \g o o (Cc_ +0_ )
z*x z*z¥ ZX z ee/ °
A
he MSE (B jerived i i
The SE(“l}OLS derived by Aignexr (1874) is

. 2 2
A Ou (02270 Bolo w40 0. _~07 )
MSE(B,) = _uuy zz  eey | T2) ee zz XX " 2zX .
L n ¢ n ¢
o 40 5 g \°Z
. |zz _eel  o2( xzce -
¢ 2\ ¢

2
- -+ - .
where ¢ g (Gee ozz(l cxz/cxxozz))
We can simplify this expression in an instructive manner using
Algner's ati b fini = + i i -
g not on by defining Ao Gee/(gzz Gee) which is the pro

portion of the variance in z* accounted for by measurement error

2 . .
(e};_pxz, as the squared simple {(population) correlation coeffi~-

cient between x and z;and A = 0_0__ - A 02 :
o) ee XX O X2

22 2

= Ouu >\o('ix).?oteeqf‘:z l_pxz

MSE(B.) + < JA_+ (15)

1 nh 2 o 2
o T np

o Xz

-t t‘ * . ~
With the choosing of any sample n, Y, Oyy’ X, Gxx' rxz the

P

sample estimate of pxz’ U, and 8uu are determined; thus the one
manipulatable feature of eq. (15} is the choice of the proxy

variable 2*,which will affect MSE(Bl) through ko (or eguivalently



~
Cee). To minimize MSE(SI), Z* should be chosen to minimize cee'

n
which can be minimized by minimizing I V. where v = - 58 + u.
n j=1 _
Minimization of 2 vy is reflected in Theil's R~ statistic
i=1
i 2
L (~B,e+u) /n-3
=2 j=1 2 J
= ] - , (15)
n
Ly./n-1
j=1 7
which becomes
o2
_7 ]il(g2gee+0uu)j/n~3
R” = 1 . (17
2o
L yv./n-1
j=1

It is obvicus from eq. (17) that §2 will increase as Oée
‘ ) o . . :
decreases, with R~ reaching its highest possible maximum (for the

model in eg. (1)) when Cee = (,at which point VAR(Z*) = VAR(Z).

5. The Dummy Variable(s) Proxy Case
Z can be represented by i - 1 (or fewer) dummy variables,
Di' a constant and an error terxm where 1 is the number of ranked

categories present in ordinal variable Z*

(c0+c202+c3n3+...+cini) = Z + € f (18)

or alternatively

7w (CO+C2D2+C3D3+...+CiDi) - € . (19)



We can simplify notation by letting D = (C2D2+C3D3+...+CiDi).
Substituting the right hand side of eg. (19) for 2 in eg. (1)

we have
Y = 80 + le - 62 (Cy*tD-€) + u (20)

combining terms

T,

Y = §5O+B2CO) + Slx + 82D + (*82€+u) {21}
which can be simplified in notation to
v =8+ 8%+ 8D+ (22)
) 1 20 TV

4
= + B.C_ and w = -B.€ + u.
where 80 BO 82 o and w 82 u
The usual errors in variables result that all of the parameter
estimates are biased and inconsistent can be shown to hold except
for the special case described in footnote 10.

Taking deviations from the means eq. (22} can be written as
= + 8.4 + 2
y = Bix + Bd+w (23)
where d = D - E(D).
Now making assumption about the covariances parallel to those

made for the ordinal variable case in section 3 we can represent

the covariance matrix Zd of x and 4 as

10



Zd - XX xd - XX , Xz , (24)
5 o+
de Uad Y% ¢ zz Gae)
The MbE(Bl)OLS from eg. (23) is
2
[ c ;E;E g_ (o -0
MSE(% ) = wu'_zztee) | T2)7€e zz XX zX
1 n \ ¢ n o
2
922%¢ 2(7xz" ez
. A R 3 [ i (25)
, @ 2 9
5
where $ = ¢ {(C__+0_  (l-Cc_ /0
XX EE zz xz' Txxzz
Dafining A . as Jes/(JZZTGES) and Ad as Gaeoxx - ldoxz,eq. (25) can be
rewritten as
7 " ’
R o é}\d&isis;} [ l-piz
MSE(B)) = op ) 2 4 g H—=— > (28)
a / L Vo np B
L a J L Xz

As in the case of the direct use of the ordinal variable prﬁxy,
2*, the parameters of eg. (1) are fixed,with the choice of any
sample, except for Ad {(or eguivalently Usallwhich is determiged by
which proxy is dummied out, and how it is dummied out.

-2 ,
The R for eq. (23) is

n

) (~82€+u)§/n-2-(i—l)
g2 =1 - =L . (27)
oo
L y./n=1
i=1

or

11
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n
2 .
. .§1(82688+0uu)j/n—2—<l-l)
R =1 - & - ) (28)
L y?/n—l
j=1°

R” is maximized by minimizing Oeg,and will reach the maximum pOsS~
sible for the model in eg. (1) when OEE = 0.
6. Comparison of the Three Cases

A comparison of directly entering the ordinal proxy variable

—

and using a dummy representation of it when the true model is eg. (1)
is now straight forward. Using eq. (9}, the ordinal variable case,
and egq. (20), the dummy wvariable case, it is possible to substitute
the right hand side of eg. (9) for Y in eg. (20)

B+ le + 82(-a +Z-e) + u

0 0

= 80 + le + 82(c0+5-s) + u : (29)

Subtracting the common elements (80, Bl, X, and u) from both sides

we get
82(—ao+z*—e) = 62(C0+D—€) (30)

By dividing both sides by 82 and substituting for Z* in terms of

Z and (C +B} in terms of Z we get

0

12



-a0+ao+z+e-e=z+e—€ (31}

Since E(e) = 0 and E(€) = 0, taking E [2*-(C+D)] yields

-a. = E[z*-(c+D)] . (32)

Thus, the effective measurement error, in the ordinal and dummy

variable cases, differs by the term -0_. when the relationship

0

between Z and Z* is linear. aO may take on both positive and nega-

tive values.

-

From the development of the three cases (omission of a proxy
for Z, direct use of Z*, and the dummy variable representation of
Z*} and given the assumptions made, we conclude

. A similar error is made when either an ordinal variable
or a dummy variable representation is used as a proxy for a true
interval variable. The same type of error is also made 1f a proxy
variable is not used. The magnitude of the error is dependent on

P andong , g__, and ¢ .
ee 2z

Xz £e

. Further, any method of dummying out a "true" interval
explanatory variable 1s equivalent to dummying out any ordinal
variable with those ranks.

. There is no way to know a priori what the relative
magnitudes of Uge, Ogg, and J,, are with out additional know-
ledge. However, Ozz is by definition always greater than O.e OF
g_ ..

£E

. Hence, there is no a priori reason for preferring to

dummy out the ordinal variable before using it as a proxy.

. §2 may be used to choose between different proxy vari-
ables and/or different representations of a proxy variable.
Maximizing RZ willhminimize VAR (Y—?) and also have the effect
of minimizing MSE(Bl).

13



7. Consequences of Relaxing Assumptions
Let us relax some of the assumptions made:

(1) Suppose now that Oeu is not equal to O, §2 becomes
{Bzc +20_ 4G ) ./n-3
1 2 ee eu "uu’ 3J
=1 - {33)
2o
L y./n-1
=1

N

The direction of a change in §2 with a change in Yoo is no longer

determinant being now also dependent on the sign and magnitude of
B —a

20 .

eu

(2) Suppose now that GZe is not equal 0, the variance-covariance

matrix in eg. (13} becomes

T Oxz
(34)

o (0 420 +0 )
X 22 ze ee

with the result that MSE(Bl) is now also dependent on the sign and
magnitude of 20 .

ze
(3) Suppose now that Z* = ao + alX + GEZ + & instead of 2% =
ao + al Z + e. This assumption introduces a circular errors in
variables argument, the effect of which in the first round is that
Gxe is no longer equal zero. The appropriate off diagonal variance-
covariance element is now (0 +0 ) instead of © with the size

Xz xe xe

and magnitude of the off diagonal element now dependent on the
size and magnitude of both covariants.

(4) Suppose now that the model contains non-linear terms, say

2
Y = BO + le + 82(2 } + u,0r ¥ = BO + le + 82(Log Z)y 4+ u., In

14



this case the best proxy, Z*, a transformation of Z*, or Z*'s dummy

variable representation is the one that minimizes Gee’ Gwn' or Gag

respectively in the following equations for the log example

* =
7 ay + gl{Log Z) + e {35)
X} = ‘ 6
(YO + ylz ) Gy + &l(Log Z) + (36)
(c, + D) =Togz + (37)

(5) 1In view of the possible deviations from the models developed
above, an F test for the significancg of the difference between
the sums of squared error of two competing specifications should
be conducted before a particular specification is rejected on the

. . =2 .
basis of a strict R comparison.

8. Monte Carle Experiments: Design and Purpose

The primary purpose of the Monte Carlo experiments is td.
examine the difference between using an ordinal variable proxy,
Z* for Z in eqg. (1), and using a dummy variable representation
of Z*. We have not attempted to look at the full spectrum of
possible Z2*'s (and relationships between Y, X, and Z), but have
instead concentrated on examining the effects of the number of
ranked categories in Z*, good and bad approximationsll to the
metric of Z by 2*, and cases of low and moderate correlation

between X and Z. Some attention is paid to the situation in

15



which the transformation between the true underlying continucus
variable and its ordinal proxy is not an order preserving monotonic
transformation.

Monte Carlo experiments (134) were conducted which can be
divided into three groups:

() 42 exéeriments which examine the effects of altering the
number of ranked categories (2-10) of Z* (and equivalently its

dummy variable representations) on two different mapping schemes

-

between Z and Z* when the correlation between X and Z is small

(rXZ = ,088) and not statistically significant,

{B) 42 experiments parallel to {(A) but with the correlation

coefficient between X and 2 of moderate size (rXZ = _366),

{C) 50 experiments which examine in a much less detailed

fashion the effects of a higher correlation (rXZ = ,729) between

X and 2, sample size (25, 100, and 250), a logarithmic functional

form for the underlying continuous variable, the addition of another

continuous variable (X,Q,ZL and a nonmonotonic transformation.

In all of the experiments of groups A and B as well as the
first thirteen of group C, the true model was constructed to be

= B = = = -
¥ o +81x + BZZ + u where 80 100, Bl 2, and 82 3. In all

of the other experiments B = 100, and Bl = 2. The true model,

0
however, varies as Z enters the true model in a log form, in

conjunction with an additional continuous variable X2 and Z%.

Mean, bias, mean sguare error, mean absolute deviation (MASD), and

. 1 -
variance 2 were measured for the parameter 81. R2 and R2 were cal-
culated for the regression as a whole. There were 100 replications

of each experiment.

16



The following conventions have been adopted for identifying
experiments:

{1y oLs (k, 1), oxrdinary least squares {OLS) regression on
the variables k, 1 in the parentheses,

{2} io, OLS on (X, Z*) where 2* has 1 ranked categories
(i=2, 3,4, 5,6, 7, 8,9, 10) which correspond to dividing 2
into i1 equal distance categories (e.g. for 4o, Z* = 1 if Z < 25;
Z* = 2 if 25 < 2 < 50; Z* = 3 if 50 < Z < 75; z* = 4 if 25 < Z);

(3) id, O0Ls on (X, D

2,...,Di}mwhere there are i - 1 dummy

variables corresponding to the ranked categories of the ordinal
variable used in io (e.g. for 44, D2 =1 if Z2*¥ = 2 else D2 = 0;
B i * = = Qs = i * = =3
D3 1 if 2 3 else D3 0; D4 1if 2 4 else D4 0},
(4) iow, OLS on (X, 2*0 where Z* has 1 ranked categories
with one ranked category representing the lower 70% of the range

of Z and the other i - 1 ranked categories,dividing the upper 30%

of the range of Z into equal distance categories (e.g. for 4ow,

14

Z* 1if 2 < 70; 2* =2 1if 70 < Z2 < 80; 2* = 3 if 80 < 2<90;

H]

Z* = 4 if 90 < 7)),

(5) idw, OLS on (X,D ,L..,Di} where there are i - 1 dumny

3

variables corresponding to the i ranked categories of the ordinal

variable used in iow (e.g. for 44w, Dl = 1 if Z* = 2 else D2 = 0;

D3 =1 if Z*¥ = 3 else D3 = 0; D4 =1 1if Z* = 4 else D4 = 0).

The particular features and results of each of these experi-
ments are described below.

Table I shows the group A experiments. The following features
are common to each of these 42 experiments:”n%=100, rXZ = .088,

¥ is norxmally distributed, 2 is uniformly distributed

17



between O and 100, and u is N{0O, Ouu).

Table II shows the group B experiments. The features are
the same as the group A experiments except that Yo = . 366

Table III shows 6 experiments similar to the group A and
group B experiments except that Yeg = .729 énd only 4 ranked
categories are used for those experiments using 2%,

Table IV showé 18 experiments where the sample size varies
(25, 100, 250). Yoo is approximately .5 in these experiments
and results are given onlyvfor Z* whth 4 ranked categories.

Table V shows 9 experiments wheré the true model was ¥ =

100 + 2X + 40 (Log 2) + u; = .353. The experiments OLS

rXLogZ
(X only), QLS (X, Z) estimate the wrong functional form. 4o and
dow use Z* directly (not Log Z*); 4lo and 4low use QLS to esti-

S -+ ¥ - *
mate Y 80 + le 82 (Log (ao + oz )) + u, where 2 ay + 6%

+ e and where 2Z* is 4o and 4ow, respectively.

Table VI shows the results of € experiments where the true

a = + + + + u: =, =
model was Y 100 2% 20 3z u; rXQ 477, rXZ 313,
and rQZ = ,270, X and Q@ are continucus variables.

Table VII shows the results of 9 experiments where the true
2

del i = + - - =
model is ¥ BO BlX + Szz + 1 where 81 2, 82 1, ey 336
and r,_<2 = ,245. 2* is an ordinal representation of Z, however Z ' -

X2

takes on negative values so that Z* (in the 4o experiment) is not

an ordinal representation of 22 while Z* (dow) is. In the 4os

and 4ows experiments, it is assumed that the researcher knows the
mean valﬁe of the Z* possessed and has a rough idea of the mean value
of Z, and scales Z* to have the same mean as Z. In the 4os experi-

ment Z* (4os) = 202Z740), and in the 4os experiment 2Z* (4ows) = 20ZX4ow).

18



Table VIII shows the result of 9 experiments similar (different
error terms) to those in Table VII except that Z* had ten ranked

categories instead of four. In the 1l0os experiment 2Z*(l0os) =

10 Z*(lQO} and Z* (10ows} = 20Z* (1l0ow)}. 1In these experiments,rXz =

.455 and rX22 = _365,

-
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Table 1

20

EXP MEAN él BIAS  MSE MASD VAR R 72

OLS (X only) 2.121 .121 .55 318 142 .1543 1462
oLS (X, Z) 1.977 -.022  .140  ,298 .41 5113 L5013
20 1.831 -.168 .166 .308 . 140 4302 L4184
2d 1.831 -,168 .166 .308 .140 L4302 L1184
20w 2.114 114 L1504 .316 .42 .3923 .3798
2dw 2.114 L1148 . 154 .316 142 .3923 .3798
30 2.053  .053 .13~ .298 L2 L4720 L4616
34 2.047 LOUT7 .166 - ,318 .166 L4769 4661
3dw 2.053 .053 .146 . 304 L1415 14101 .3916
Lo 2.014 L014 . 140 .292 142 L4873 4767
44 1.981 -,018 142 .292 .143 4990 4779
Yow 1.936 -.063 L 147 .292 .145 .3951 .3826
4dw 2.030 .030  .151 .312 .152 L4158 .3912
S0 1.868 ~.131 .158 .303 L2 JAgho .14835
5d 1.864  -,135 <161 .301 14y .5101 L4841
Sow 1.954  -,045 144 .290 .14y .3890 .3764
5dw 2.045 L0l5 .151 .310 .153 4228 .3921
60 1'95‘u —;045 0142 0289 01“1 t5003 ougoo
6ow 1.897 ~.102 .153 .297 L1484 .3824 .3697
6dw 2.025 .025 .152 .307 .153 4283 L3914
70 2.046 L0U6 142 297 L1041 .5039 L4936
74 2.0u44 .ouy . 154 .311 .154 .5255 489l
Tow 1.926 -.073 .148 .292 .145 .3794 .3666
Tdw 2.045 .0L5 .158 .320 .157 1288 .3786
80 10926 -»073 .1u6 0291 .1“2 -5055 og953
8OW 109G0 —.099 |153 0297 o1u5 .3791 03663
8dw 2.036 .036 .155 .313 .155 .138Y .3890
90 1.915 -,084 L1U7 .292 11 .5067 L4965
9ow 1.912  -.087 .151 .295 .145 .3817 .3690
9dw 2.035 .035 L1617 .318 .162 .1383 .3821
100 1.982  -.017 .140 .289 L142 5077 L4965
10d 1.999 -.001 172 .336 173 L5492 .4986
100w “1.912 -.087 .151 .295 L1485 .3802 .3675
10dw 2.030 .030 .157 2317 .158 L1561 .3950
’%gl =2, r,, = .088, sample size = 100 '



Table 2

EXP MEAN B BIAS  MSE MASD VAR B2 7

ols (X only) 2.695 .695 .510  .695 .026 .6390 .6353
ols (X, Z) 1,988  -,011 .035 144 .035 .7655 L7607
20 2.117 17 .0l6 .176 .033 L7249 L7192
2d 2.117 117 .0L6 .176 .033 L7249 L7192
Jow 2.300 .300 .124 .314 .034 L7148 .7089
2dw 2.300 .300 L1214 .314 .034 .7148 .7089
30 2.117 117 L0U5am.  .179 .032 LTUS7 .T405
3d 2.119 .119 .052 . .188 .037 L7486 . TH07
Jow 2.605 .260 .103 .281 .036 .7205 L7147
3dw 2,64 264 .105 .284 .036 .7200 7112
lo 2,064 .064 .039 .160 035 .7526 .THT5
id 2.049 049 .038 .155 .036 L7581 .TH79
Yow 2.248 248 .099 274 .038 L7101 .7042
bdw 2.255 .255 .103 © .280 .038 .7222 L7105
50 1.974  -.025 .038 .151 .038 L7554 .7503
5d 1.971 -.028 .038 .148 .037 L7631 .7505
50w 2.260 .260 . 104 282 .036 .T095 .T036
5dw 2.258 .258 .10l .281 .037 L7258 112
60 2.003 .003 .035 L1847 .035 L7586 .7536
6d 2,000 .000 .0l2 .160 .0u3 .7694 .T545
Gow 2.253 .253 . 100 275 .036 L7058 6997
6dw 2.259 .259 . 104 .285 .037 .7283 L7107
7o 2.040 .00 .035 .149 .034 L7604 .T554
7d 2.001 L0h41 .039 .157 .037 L7735 L7562
Tow 2.256 .256 .103 279 037 .7076 L7015
Tdw 2.263 .263 .108 .287 .039 L7310 L7105
8ow 2.260 .260 .104 .282 .037 .6973 L6911
8dw 2.623 .262 . 106 .286 .038 .7256 L7015
90 1.969  ~.030 .036 .148 .036 L7617 L7568
Yow - 2.261 .261 .105 .283 .037 L6917 L6854
9dw 2.266 .266 .110 .293 .0bo 7279 L7007
100 2.001 .001 .035 . 146 .035 . 7549 .7498
10d 2.011 011 .0U3 .169 .043 .7823 .7578
100w 2.264 264 .106 .286 037 L7057 .6996
10dw 2.260 .260 .107 .288 .039 .7390 L7097
*6:1 = 2, Ty, = . 366, sample ’sj,ze 100



Table 3

EXP MEAN 'él BIAS  MSE MASD VAR B2 7
ols (X only) 3.760  1.760  3.21%  1.760 .120 L1865 L4813
o 2.294 .294 .388 L1499 .304 .5736 .5548
Id 2.300 .300 .396==.  ,502 .309 .5822 5546
Ydw 2.910 .910 © 1.028 .922 .202 .5399 .5205
*Bl = 2, ryg = .729, sample size = 100
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Table U

EXP MEAN %l BIAS MSE  MASD VAR 8° FG
ols (X only) 2,835  .835  .908  .843 214 .5292  ,52ub
ols (X, Z) 1.960 -.040  .327  .453 328 .6697  .6629
o 2.053  .053  .313  .434 313 L6631 .6562
4d 2.109  .109  .343  .448 .33 .6918  .6788
Uow 2.266 266 .392 .501 .324 5925 5841
Hdw 2.200  .200 448  .529 12 L6344 .6190
* g1 = 2, Pyy = .531, sample size = 25>

ols (X only) 2.695 .695 524 .695 042 .5613 5568

ols (X, Z) 1.986 -.01h .055 ) .181 .055 6749 L6682
Lo 2.044 Lo44 .052 179 .050 L6614 L6544
ha 2.066 .066 .068 .207 .06h 6708 6569
bow 2.246 .26 120 .296 .060 L6276 .6199
Yaw 2.253 .253 124 .301 .061 .6U06 .6255
% 81 = 2, Pyg = .501, sample size = 100

ols (X only) 2,747 JTMT 576 LTMT .017  .5782  .5739
ols (X, Z) 2.008 .008 .023 . 119 .023 L6847 6782
Yo 2.087 .087 .030 . 139 022 6717 L6649
ha 2.082 .082 .029 .139 .023 6792 L6657
how 2.297 297 .13 . 303 .025 .6335 .6259
Udw 2.284 .284 . 105 .291 .025 .6Us7 .6308
* 61 = 2, Py = .532, sample size = 250
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Table 5

EXP ' MEAN 'él BIAS MSE . MASD VAR R R

ols (X only) 2.258 .258 .099 272 .033 5787 L5TUY

ols (X, 2} 1.974 -.026 .050 177 .049 6118 .6038
ols (X, InZ ) 2.005 .005 .0l . 160 L0482 .6290 .6213
Yo 2.021 .021 .050 ATT .050 .6106 .6026
4d 2.049 049 . ,053= ,183 .051 .6219 .6059
Yow 2.11 1 057 - 0191 .045 5877 .5792
Bdw ‘ 2.122 . 122 .058 .198 .0k44 5977 .5808
%lo 2.044 el 046 .168 . 045 .6140 .6060
4low 2.108 .108 057 .190 .045 .5891 .5806

*True model Y = By + ByX + B,(Log Z) +u, By = 2,
sample size = 100

rXLog 7 = 03533
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TABLE 6

EXP MEAN R BIAS MSE MASD VAR R° 2
oLS (X, Q 81 4.306 2.306 6.163 2.306 .853  .5386 .5291
only) 82 2.499 .499 .301 .499 .055
OLS (X, Q, Z) 81 2.583 .583 .915 .583 .581 .7297 .7208
52 2.019 .019 .053 .189 .053
40 81 2.575 .575 .860 .680 .535  .7097 .7008
52 2.176 .176 .081 .236 .050
44 Bl 2.567 567 .852 676 .535 .7l64 .7014
82 2.255 .255 T 110 .294 . 046
dow Bl 3.144 1.144 1.902 1.154 .600  .6690 .6587
82 2.479 .479 .284 .480 .055
4dw 81 3.097 1.097 1.599 1.097 .159  .6801 .6631
82 2.454 .454 .267 .454 .06l
* = g . 8 = = .313
True Model Y BO +8X o+ B2Q + BBZ, 8y 2, ¢ <A77, Xy,
rQZ = ,270, sample size = 100
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Table 7

EXP MEAN éi ~ BIAS MSE MASD VAR R

OLS (X only) 39.901 37.901 1441.834 37.801 5.438 .0589 .0503

OLs (X, Z) -5.908 ~-7.908 70.271 7.808 7.805 .6777 .6710
OLS (X, Zz) .433 ~1.566 g8.861 2.363 6.474 .978l1 .9786
40 2.108 .108 6.350 1.946 6.339 .6136 .6056
44 11.163 9.163 90.221 9.169 ©.325 .71%0 .7071
dow 12.252 10.259 111.280 10.259 6.086 .8231 .8216
4dw 9.181 7.181 58.608 7.181 7.118 .8456 .8391
4os 4.367 2.818 11.760 2.367 6.219 .6831 .6765
4ows 13.857 11.857 -6 . 625 11.857 6.107 .8357 .8324

2 .
* A = = = =
True Model Y BO + le + 822 + u, Bl 2, rXZ2 .245, sample size = 100,
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Table 8

*True Model

~ "2

EXP MEAN B BIAS MSE MASD VAR R° R
OLS (X only) 87.375 85.375 7289.796 85.375  .990 .1385 .1297
OLS (X, 2) .1014  -1.899  6.433  1.932 2.858 .6972 .6909
oLs (x, z°) 2.619 619 1.932 1.17  1.564 .9891 .9889
100 12.668 10.668 116.530 10.668 2.761 .5123 .5021
104 -3.938 -5.938  38.116  5.938 2.882 .7751 .7495
100w ~3.755 -5.755  34.950  5.755 1.879 .7547 .7496
10dw 2.928 .9278  1.942  1.131 1.092 .8599 .8440
100s -3.833 15.833 _36.377  5.833 2.378 .6374 .6298
100ws 2.353 .235 2.049  1.420 2.226 .7995 .7954

Y = BO + le + 8222 +u, B, =2, x, 2 = .365, sample size = 100.

1 X2
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9. Discussion of Monte Carlo Results

Looking at Table 1, there 1s no real pattern to the size of
the MSE(%I) or to the bias, MASD, or variance of %l' All three
cases (omission of a proxy, an ordinal‘proxy and a dummy Proxy)
have larger MSE's than the CLS estimate of the true model
[MSE(BI} = .14] . In the experiment where no proxy for Z was
used,MSE(Bl) equaled .16 . For the o series (i.e., 20, 30, 40, 50,
6o, 70, 8o, %o, 1lCo), MSE(BI) ranged from .14 to .17 with no
apparent pattern as the number of rggked categories in Z* in-
creased. For the ow saries,'MSE(Sl) ranged from .14 to .15.

~

For both the o and ow series bias, MASD, and variance of 81
followed patterns similar to MSE(%l).‘ For the 4 series, MSE(Bl}
ranged from .14 to .17 with no apparent pattern as the number
of dummy variables increased. For the dw series, MSE(él) ranged
from .15 to .16. Fluctuations in bias, MSAD, and variance of

~

8, tended to follow MSE(B)).

A comparison of the ¢ and 4 series shows that the MSE(@I)
for the o series is less than or egual to the d series (for
experiments with an egual number of ranked categories). Com-~
paring the ow and dw series, with the exception of 6ow (MSE =

.153) and 6dw (MSE = .152), the MSE(B.) is smaller for the ow

l)
series. Overall the o series produced the smaller MSE(él) in

six of the nine quadruples (e.g., 40, 44, 4ow, 4dw) of ranked

categories, and the ow series had the smallest MSE three times.
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ﬁz for the case where a proxy for Z was not used was only
29% of the OLS estimate of the true model. For the o series,
R increased from .4184 (83% of that of that obtained by the OLS
regression of the true model) to .4965 (99%) as the number of
ranked categories increased. For the d series, R” increased from
.4184 (83%) to .4986 (99%) as the number of dummy variables in-~
creased. For the ow series, §2 showed no pattern as the nunber
of ranked categories increased and varied from .3663 (73%) for

= =2

8ow to .3830 (76%) for 3ow. The dw series R 's alsc showed
no pattern as the number of dummy variables increased varying
from .3786 (75%) for 7dw to .3950 (78%) for 10dw. The o and 4
series resulted in the highest ﬁ? for each quadruple with the
d series slightly higher. The ow and dw series were uniformly
lower than the o and d series with the dw series resulting in
higher,ﬁg‘s than the ow series.

From these results, we conclude that if rxz is small and
a researcher's sole interests are in minimizing MSE{él) that
it does not matter how he or she estimates the model (leaving
out a proxy, using the ordinal variable proxy directly, or
using a dummy variable proxy). Wor does it matter if Z* rep-
resents a good approximation to the metric of Z. If §2 is a
consideration then the model should be estimated with a proxy,
and the better the proxy the closer the iz will be to the ﬁz

of the OLS estimate of the true model for both the ordinal

and dummy variable cases. An alternative prediction criteria
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to iz such Amemiya's prediction criteria {Judge et al., 1%880),
which imposes a greater penalty on the number of variables, will
tend to favor use of the ordinal variable proxy.

With a moderate correlation betweéﬁ X and Z (Table II), the
o and d series have both smaller MSE(%l) and higher iQ than com-
parable experiments of the ow and dw series. Omission of a proxy
for 72 produces inferior results on both a MSE {MSE{Bl} =, 26]
and R_2 basis compared to any experiment using a proxy. The o

~ A ~

series had the lowest MSE(Bl) except for 4o where 44's MSE(Bl)
was slightly lower. The o series had MSE(Bl) ranging from
slightly below .02 to slightly above .02. There was a tendency
for the MSE(él} to decline as the number of categories increased.
The d series smallest MSE was for 54 and largest MSE occurred
at 3d. The ow series MSE(él) showed no pattern as the number
of ranked categories increased ranging from a low of MSE(BI) =
.05 for 4ow to a high of .06 for 2ow. The dw series also
showed no pattern with regard to MSE as the number of categories
increased, but was always slightly higher or equal to the com-
paréble ow experiment.

§2 for the d series was always the highest ranging from
.7192 (95% of attainable) for 24 tec .7578 (99%) at 10d. The o
series §2's ranged from .7192 (95%) for 20 to .7498 (99%) for
10o. The ow series iz's showed no pattern as the number of

ranked categories increased ranging from .6854 (90%) for %ow

- , , =2 .
to .7147 (94%) for 3ow while the dw series had R 's ranging
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from .7007 (92%) for %dw to .7112 (94%) for 3dw. For the case
where no proxy for Z was used the ﬁz was .6353 (84%).

Qur earlier development indicated that §2 could be used to
select the model with the smallest MSEéél), The results of
Table 2 offer some support for that conclusion when the differ-
ence between the MSE of two competing models is large, the
choice ¢of the model with the highest ﬁz will be the one with the
lower MSE{él). §2 1ls, however, insgnsitive to relatively small
differences in MSE(Bl). In pérticula£ on the §2 criteria, the
dummy varilable case will usually have a slightly higher §2 than
the equivalent ordinal variable case while having a slightly
larger MSE(él).

Table 3 displaying the results from experiments where
Lyg = .729 shows the increased importance of using a proxy vari-
able {(and a good proxy variable) when the correiation between X
and Z is large. For the case where a proxy for Z was left out
MSE(Bl) is 1.61. For the o case, MSE(BI) = ,19 and for the d
case, MSE(Bl) = .20 where MSE(Bl) = .15 for the OLS estimate of
the true model. For the ow and dw cases MSE(Bl) was .54 and .51
respectively. The §2 measures for the 6 experiments in Table 3
correctly rank order the MSE(@l) measures.

Table 4 shows the effect of different sample sizes. MSE(él)
generally decreases as sample size increases due to the decrease

in VAR(Sl}, but will not converge tc zero even as the sample

size goes to infinity because the blas does not disappear. These
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limited results suggest that reductions in MSE (él) with increased
sample size are not large for samples of over 100 cases.

A logarithmic functional form (Y = BO + lez+ 82(Log Zy +u},
was examined in the experiments shown -in Table 5. Here the lowest
MSE (other than the true model) was achieved by the 4lo experiment
where the ordinal proxy was Log (YO + YlZ*L where YO and Yl were
determined by using OLS to regression 2Z* on Z. The next lowest
MSE (él} was for the 4o experiment which was an estimation of the
wrong functional form. It.is inter&sting to note here that while
the range of Z was not large (0-100), 4lo and 4o both had smaller
MSE than did 4d and that 4low and 4ow had smaller MsE(B,) than did
4dw. While the §2 here would have allowed us to select the model

~

with the lowest MSE(BI}, it would noi have allowed us to rank order
several of the other experiments where the differences in MSE
were smaller,

The eﬁperiments in Table 6 simply introduce another continuous
independent variable, Q. The results are similar to those in
Table 2 where the level of correlation between Z and X was similar.
Noteworthy perhaps is that 4o and 4d produce a él with a smaller
MSE than the ols regressions on the true model although their
estimate of 82 has a higher MSE. There is no real basis to choose
between the 4o and 4d regressions since each performs better -
than the other on one of the two coefficients. Between the 4ow
and 4dw experiments, 4dw performs marginally better. Leaving

. =2 .
out a proxy for Z produces noticeably worse results. R 1s a ..

fairly accurate guide to the results.
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The experiments in Table 7 represent an intentional effort
to show what might happen when the ordexr preserving transforma-
tion rule was violated. Here the transformation between Z- 2*
is order preserving but it is 22 which is the variable in the -
true model. KXeeping in mind how Z* is created in the 4o case
(4 equal sized categories), we note that most of the values of
7 represented by Z* = 1 are negative while those of 2% = 2, 3, 4
are positive. 2Z*{4o) is not, however, an order preserving trans-—
formation of Z2 since mahy>of the values of 22 represented by 2% =
1 are ‘larger than “those represented b? Z* = 2, For Z* (4ow) however
this is not the case since Z* = 1 contains the first 70% of the
cumulative distribution of Z and the largest absolute value of
Z contained in Z2* = 1 is smaller than thé smallesf absclute
value in Z* = 2. The experiments 4os and 4ows imitate the common
practice of scaling an ordinal variable to ha&e the same mean as
the unobserved Z, when the mean valué of Z is known from outside
information,

Examining the results in Table ?, we are struck by a number
of peculiar results, 4o produces the best estimate of Bl although
it has a lower R2 than any case except the omitted variables case.
The misspecified case (Z instead of 22) produces estimates that
are wrong by a wide margin and worse than several of the cases
which use an ordinal or éummy proxy. The 4o case as already noted
is uniformly preferred to 4d while 4dw is preferred to 4ow. It
is interesting to note that the 4os and 4ows transformations
result in clearly inferior estimates of 81. This result will

have implications for our later discussion.
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In Table 8, we display the results of experiments with
the same basic parameters but different seed numbers for X, Z
and the u's, except that we have created 10 ranked catééories
in 2*(100) and Z*(10ow) and nine appropriate dummy variables
(dropéing the last category) for 104 and 10dw. Now, 1l0o is a
much more distorted representation of the values of 22 while
10ow is still an order'preserving representation of 22. The
10os and 1O0ows expeximentsArepresent transformations which
scale Z* (100) and Z*(10ow) to the égiroximate mean value of
7 (keep in mind that the true variable is Zz).

The results in Table & suggest that the good performance
of 40 in Table 7 was to some degree a fluke of the particular
scaling and éategorization scheme uséd. In Table 8, on a MSE
base the experiments can be ranked: olé(x, Zz), 10dw, lQows,

ols{(¥,2), 10ow;,- lOos, 104, 10o, ols{X).
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10. Optimal Transformaticn of Ordinal Variables

In the previous section, we gave the results of several experi-
ments [Tables 5(41lc, 4low); 7(4os, 4ows) and 8(10os, 10ows)] where
the ordinal proxy had been rescaled from the simple equal distance,
1, 2, 3... numerical assignment used iﬁ.most of the experiments.
In this section we take up the issue of how the optimal transform-
ation of an ordinal proxy might be found. It is first necessary,
however, to make clear the distinction between how well the ranked
categories of the ordinal proxy divided the true uncbserved vari-

.

able's distribution up into equal distance intervals and the parti=-
cular scheme used to assign numeric values to each of the ordinal
categories. The researcher typically has no control over the
categories in the available ordinal proxy but complete control over
the value given to each of those categories.

The experiments reported have used several of the more com-
monly used methods of assigning numbers to ordinal categories.
The io experiments have used a scheme equivalent to assigning the
mean of the underlying values of Z represented by each category of
Z*. The iow experiments conform to the practice of assigning equal
distances between categories when those distances are unknown. The
4lo and 4low experiments in Table 5 assumed that the least sgquares
transformation between Z and 2Z* (4o0; 4ow) was known. The os and ows
experiments in Tables 7 and 8 assumed that only the mean value of 2
was known. There are obviously an infinite number of transforma-
tions which might be made.

It is clear that the optimal transformation of the ordinal proxy
Z* must be defined in terms of the researcher’s objectives. Those

objectives can be seen to fall into three general categories:
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{1} estimation of the parameter ﬁl,associated with the

observed continuous variable, ﬁ, of interest,

(2) estimation of the parameter, B;, associated with the

unobserved Z or obtaining some idea of the signifi-

cance and importance of 822 Qith respect to the

dependent variable Y, or

(3) prediction of ¥ from the observed continuous variables

Xi and the available proxy Z*.
If the researcher is willing to accept the assumptions of sections
3-6, then finding the transfofmatioanf Z* which maximizes‘§2 will be
optimal for objectives (1) and (3) under a mean square error loss
function. A number of suggestions for doing this have been made
in the literature, Bonaciéh and Kirbx (1976), de Leeuw et al. (1976)
and Young et al. (1826). The technique proposed by Young et al.
is the most general and allows almost any monotonic transformation
of z*.

In general, however, these assumptions often will not hold and
we have demonstrated in Tables 7 and 8 the large distortions pos—
sible if the form of Z, say ¢(Z), which is part of the true model,
is not monotonic in the available Z*. Brieman and Friedman (1982)
have recently proposed a nonparametric iterative method based on
alternating conditonal expectations which minimizes

. P 5
E{[8(Y) - L6(X.)17}
j=1 , (38)

VAR [6(Y)] i
where there are p independent variables and 6(.) and ¢j(.) are
transformations to be estimated. No restrictions are placed on

the transformations 6(.) and ¢j(.) and the algorithm has been
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shown to converge under farily weak conditions. While the use of
such a teool maximizes the predictive properties of:§, the proper-
ties of the B, {X) obtained are unclear. Without additional in-
formation or the assumption of variocus restrictions, singular
pursuit of the best estimator of 8, apééars to be impossible.

The second goal, estimation of’BZZ, is frought with diffi-
culties. The standard practice has been for researchers to assess
the direction and significance of g, from the significance ana
sign of the ordinal or dummy variable proxy({s). If the ordinal

—
proxy is similar to the io proxy used in Tables 1, 2 and 3 and
the true model is similar to the one in those tables, this practice
has some merit as a rule of thumb, although strict hypothesis test-
ing is invalid. We only need to turn to any of the ow experiments
to begin finding t-statistics which bear no resemblance to those
obtained by estimating the true model.

Dummy variable proxies do not force the researcher to choose
a scaling scheme for the ordinal proxy and instead allow the data
to choose the transformation (not necessarily order-preserving)
which maximizes R2“ This property lies behind much of the popular-—
ity of using dummy variable proxies instead of an ordinal variable
proxy. When the assumptions of sections 3-6 are fulfilled and the
number of categories to be dummied out small, the practice of using
dummy proxies comes close to achieving the same resuit as the op-
timal transformation in terms of minimizing MSE (él) and the mean
sguare error of the regression.

The transformation implied by the dummy variable proxies is,
however, always readily available to the researcher as an ordinal

. 13 , ) , . .
scaling. This scaling may be cbtained by estimating
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Y= Bo + B1X + CaDz + C3D3 + ... + C,D, *+w (39)

and forming the vector,

1
.

(40)

~

L1

o
OresOse s BQ v O
X

where zero reolaces the category represented by the omitted dummy
variable and the Ci's obtained fromsmeguation (39)Vreplace their
respective categories. Z* can then be used in estimating,
~ - R D
Y = B¢ + B1X + B22*% 4+ w {(41)
%2 will always egual one and the B, obtained from equations (39)
- . . L . D
and (415) will be egual. This result always holds since Z* =
62D2 + ...+ éiD2'> An exazmple of using 7+D ig given in Table 9,
experiment 4owsd, Notice that the 4dw and 4owsd experiment are
comparable except for slight differences in the VAR(f;) and a
. . -2, .
slightly higher R” in the 4owds experiment.
2 reasonable question to ask 1is whether this increase in R
is worth the expense involved in estimating the regression equa-
. . . . —2
tion twice. To answer the question, we must point out that R,
while correcting for the degrees of freedom problem that R2 suffers

from, does not account for the random error introduced into the

coefficients of the regression eguation by adding additional vari-
l

ables to that eguation. Breiman and Freidman {(1983) have recently

unified a large literature on the optimal number of regressors to

retain and have shown that minimizing the unconditiocnal mean square

error prediction criteria can be fulfilled by minimizing,
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Table 9

2 -2
EXP MEAN 8, BIAS MSE MASD VAR R R
OLS (X only) 44.424 42.424  1799.929 42.424  .182  .3295 .3226
OLS (X, 2) 4.157 2.157 4.857  2.157  .206  .4144 4023
oLS (X, Z°) 2.429 .429 .497.  .617  .316  .9971 .9470
4o 25.614 23.615  557.707 23.615 .064  .3588 .3456
4a 14.371 12.371  153.136 12.371 .088  .661d .6472
dow -9.062  -11.062  122.573 11.062 .202  .7804 .7759
4dw -6.222 -8.222 67.784 8.222 .179  .8043 .7961
N e

46sd 14.371 12.371  153.264 12.371 .218 .6614 .6544
dowd ~6.222 -8.222 67.838 g.222  .234  .8043 .8003

=2, r 2= 553, sample size = 100.

2
* o
True Model Y BO + le + 822 + u, B %z

1
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v = (a2 + 02p3 e (42) -

3 n-l-p
with respect to the number of included variables, p, where n equals
. 2 . |
the number of observations, ¢ equals the variance of the true

error term and,

O VAR (B BX, D ST %) (43)

Bguation (43) depends on unobserved parameters and minimization of

- 1 ~ 2 el
np  n-p §=1 (Yi - YLLN C L n-l-p)' (44}

which depends only on p and the data and serves as a good approximation.
6np has been calculated for the experiments in Table 10. The

experiment 4owsd uses the transformation indicated by the dummy vari-

able regression (dwd). &np clearly favérs the ordinal variable proxy

over the dummy variable prdxies and because the unconditional

mean $guarée error increases much more rapidly in p than ﬁz decreases in p.

Clearly, since the dummy variable proxies dé not convey any more

information than the ordinal proxy using the dummy variable scaling

use of the dummy variable proxies in the final regression equation

only introduces noise into the estimates. This effect will be notice-

able in all but very large data sets.

11. Concluding Remarks
The debate over how to handle ordinal data is old and goes back
at least to 1900 when Pearson and Yule expressed their opinions in

the - Philosophical Transactions of the Royal Society. Pearson be-

lieved that ordinal variables were imperfect measurements of con~
tinuous variables while Yule believed that treating them as possess-
. . , . . 14

ing only nominal level information was most appropriate. We have
obviously chosen Pearson's view of the world.
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Table 10

EXP Mean B, MSE R’ 52 RSSE RMSE  Unp
QLS (X only) 3.451 2.145 .4665 .4611 26538693 270803 276387
OLS (X, Z) 1.763 107 L7022 6960 14842308 153014 157796
dow 2.610 .425  .6103 .6022 19437995 200392 206787
4dw 2.590 .398 .6217 .6057 18871765 198650 209216
4owd 2.589 .405  .6170 .6091 19105406 196963 203118
* = A = = i =

True Model Y BO + le + 622 + u, &r~ 2, - .455, sample size 100,

RSEE is residual sum of squared error, RMSE is residual mean

squared error.

41



We feel that the use of dummy variable proxies encourages the
interpretation of a slope parameter as intercept shifters and conceals
the errors-in-variables nature of the problem. Since we demonstrated
in the last section that the dummy variable solution can always be
incorporated into an ordinal scaling scﬁeme {whose use results in
an improvement in the mean square error prediction rate for the re-
gression over direct use of the dummy variable proxies}, we can see
no justification for ever using them in preference to an ordinal proxy.

There 1is obviously much work to be done. Barrow (1876) and

L
Frost (1979) have shown that the choice of techniques for dealing
with the errors-in-variables problem becomes meore difficult when
more than one variable is measured with error while Kinal and Lahiri
(1983) have applied RAigner's (1974) framework to the case of stochastic
regressors measured with error. Extention of this work to the special
attributes of ordinal independent variables would undoubtedly be
fruitful as these are the conditions under which most applied work is
done. Another important area is the case where the unobserved vari-
able, Z, for which the ordinal proxy, zZ*, is available, is the vari-
able of prime interest. Hypothesis testing in the errors—in-variables
framework is still woefully inadequate. Finally, we should note that
the Monte Carlo results on ordinal proxies presented here is only a
beginning of what needs to be done.

while wishing for better (i.e., interval level) data is a pipe
dream in many casgs,as survey researchers have long known, survey
questions could often be designed to provide "better" ordinal vari-
ables if guidelines were known. We have shown that simply increasing
the number of response categories is not necessarily the answer.

Researchers will have to be clearer about their models and in parti-
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cular about the functional forms they should take if guidelines are
to develop with an eye toward better multivariate work in a regres-
sion framework.

Researchers using ordinal proxies are not totally without
guidance from their data and outside information. The correlation
between X and Z was shown to be a key parameter in assessing the
severity of the errors-in-variables problem. The correlation co-
efficient between X and Z* is easily calculated. Since the cor-
relation coefficient between X and Z{aés as a rule smaller than that

between X and Z, a high ry is a sure sign of problems particular-

7%
ly if 2* is not a good representation of 2. The quality of the
ordinal proxy Z* can often be determined by reference to outside
information and simple examination of the frequency of each category
of Z*. Estimation of the regression equation using different ordinal
scalings and the dummy variable transformation often reveals much
about the sensitivity of the 8; parameters to the form of the proxy
and of possible nonlinearities with respect to the unobserved
variable Z.

This "auxillary" analysis should be reported to the reader who
should also be cautioned against too literal of an interpretation
of parameter estimates and t-statistics. It is all to easy to
generate cross distortions, particularly when the variable of in-
terest is only marginally significant in the true model and highly
correlated with the unobserved variable for which the ordinal proxy

is being used.
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FOOTNOTES

*The author wishes to thank Michael Hazilla, P.A.V.B. Swany,
Raymond Kopp, Robert Mitchell, William Vaughan, and Charles
Paulsen for their helpful comments. Any remaining errors are
the responsibility of the author.

lThe following example will help clarify what is meant by
ordinal and dummy variable representations. Assign a person
the value of 1 if his/her income is less than $10,000, 2 if income
is between $10,000 and $25,000, and 3 if over $25,000. One ordinal
representation is the 1, 2, 3. Other ordinal representations for
the same data include any order preserving transformation of
1, 2, 3 {e.g., 12, 81, 302). The dummy variable representation
is Dy = 1 if income is less than $103000, else Dy = 0; Dy = 1 if
income is between $10,000 and $25,000, else Dy = 0; Dy = 1 if
income is greater than $25,000, else D3 = 0. Note that while
there are an infinite number of ordinal representation of the
same ranked categorical data there is only one dummy variable
representation {the only choice being which of the dummies to
drop). For more on nominal, ordinal, interval, and ratio scales
see Roberts and Schulze (1973), Xrantz et al. (1871), or any

measurement theory text.

21t is possible to think of examples where the "true"
underlying variable has an ordinal measurement scale rather
than interval (e.g., union seniority: rank rather than years).
In these cases an errors—in-variables situation is created if
then interval level variable is used in the estimated model.

3 . . . . . .

For more information on errors-in-variables estimators
and how to use outside information in particular see Judge
et al. (1980) and Fuller (1980).

4It should be noted that some of the distributional prop-
erties of u change with the taking of deviations from the means.
These changes do not affect any of the results and the u notation
is maintained for convenience.

5All of the results to follow should be considered to be
asymptotic. Aigner (1974) making a number of normality assump-
tions derives exact distributions. A function of the R? measure
is asymptotically proportional to the F statistic. See Dhrymes
(1978) for use of the R? measure in the errors-in-variables case.

6See Algner (1974), Rigner and Goldberger (1977), Barrow

(1976), Maddala (1977), Dhrymes (1978), and Frost (1979) for a
discussion on different gqualifications for using proxy variables.
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7The larger the correlation between X and Z, the smaller
the ratio of the variance of the measurement error to the vari-
ance of 2, and the larger the number of observations, the more
likely use of a proxy will result in a smallexr MSE(By). Aigner
(1374) gives these trade offs in detall. Survey data is usually
blessed with such large n that it will .always be desirable to
use a proxy if available.

8A general representation of an exponential transformation
between Z* and Z can be represented by Z2* = aeZeY where a is a
constant and vy is the error component. 2* in terms of 2 is
Log Z* - Log A - Log Y. Eg. (1) becomes Y = B3 + £3X +
B2(Log 2* ~ Log A - Log Y} + u which can be rewritten as Y =
80 - BZLog A+ ByX + ByLog Z*¥ - 85Log Y + u. OLS minimizes
n

jél(‘BzLog Y + u), and the coefficiemt on z* will be M where
B,Log z* = Mz* and M = (B,log 2¥)/z*. '

9If aq is known Z can be scaled so oy is one. Further,
since both o, and e will vary directly with the scaling of Z*,
the parameter dl can not be manipulated for any gain by the
researcher.

0 . . y . c e 4

Except when ry, = 0 which is equivalent to identification
of the equation through a restriction on the covariance between
X and 2.

lTo simulate a bad metric we constructed Z* to provide
little information about the much of Z's range and much infor-
mation about the upper 30% of Z's range. Labovitz (19870) and
O'Brien {1979) suggest that this dichotomizing transformatiog
of an interval variable will produce the most distortion in Bi.

12 . . R
See Smith (1973) for details of construction.

13 ,
I am indebted to Leo Breiman for this observation.

14We have not considered the line of development which descends
from Yule's contingency table approach. These methods of dealing -
with ordinal variables in a contingency table/log-linear framework
have recently been surveyed by Agresti (1983). They are difficult
to use in combination with continuous independent variables or
large numbers of variables, and interpretation of the results is often
non-intuitive. The errors-in-variables/missing information problem
with the data is often unrecognized. A more promising line of
attack using the ANOVA approach is Chamberlain {1980) who uses
the concept of latent variables.
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