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Abstract

Knowledge-sharing is economically important but also typically incomplete: we “fil-
ter” our communication. This paper analyzes the consequences of filtering. In the model,
homogenous agents share knowledge with their peers whenever the private benefits ex-
ceed communication costs. The welfare implications of this transmission mechanism
hinge on whether units of knowledge complement, substitute for, or are independent of
each other. Both substitutability and complementarity generate externalities; cheaper
communication eliminates externalities in the former case, but not necessarily the latter.
Complementary basic skills like numeracy catalyze technology adoption, and adoption
may be path-dependent even when payoffs are certain and independent across agents.

JEL codes: D83, O31, O33

Keywords: Communication, Social Learning, Technology Adoption

∗I thank Ed Glaeser and Sendhil Mullainathan for encouragement and guidance throughout this project.
I benefited from conversations with Nageeb Ali, Ryan Bubb, Eric Budish, Daniel Carvalho, Vince Crawford,
Michael Faye, Drew Fudenberg, Jerry Green, Justin Ho, Michael Kremer, Markus Möbius, Joel Sobel,
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1 Introduction

Knowledge spillovers play an important role in economic activity. Word-of-mouth helps

shape decisions about consumption (Moretti, 2011) and saving (Duflo and Saez, 2003).

Peer-to-peer knowledge transmission drives the adoption of new technologies (Foster and

Rosenzweig, 1995; Kremer and Miguel, 2007; Conley and Udry, 2010) and the creation

of new ones (Jaffe et al., 1993). Besides explaining micro-economic behavior, these phe-

nomena are predicted to have powerful aggregate implications. For example, knowledge

spillovers are seen as determinants of economic growth (Romer, 1986; Lucas, 1988) and

of spatial equilibrium (Black and Henderson, 1999; Glaeser, 1999). Understanding the

(in)efficiency of spillover processes thus appears to be an important task.

Micro-theorists have modeled spillovers in two ways. The observational learning ap-

proach restricts agents to observing each others actions and/or payoffs; one has of course

the option of interpreting “observation” as “communication”.1 An alternative approach

models communication explicitly but with exogenous restrictions on what people do or

do not communicate, rather than a full specification of costs and benefits.2 This has two

important consequences. First, it limits welfare analysis – though most would agree that

externalities are likely to arise and to be economically important. Second, one suspects

that under reasonable cost specifications the behavior posited would be inefficient even

locally, i.e. from the point of view of pairs of communicating agents. For example, a

receiver in the persuasion bias framework (DeGroot (1974), Demarzo et al. (2003)) would

want to learn whether he is receiving independent or correlated signals from his various

sources, but does not. In such cases it is unclear to what extent adverse outcomes, such

as failure to adopt a beneficial technology, are due to local contractual failings or bounded

rationality as opposed to communication externalities.

This paper proposes a different approach in which the costs of communication are

modeled explicitly. Agents are endowed with discrete units of knowledge and must weigh

the costs and benefits of communicating each unit. I call this process filtering. Some

filtering is socially valuable because communication takes time and effort; simply trans-

ferring all of our knowledge to each other would be wasteful. But filtering may also

impose social costs if particular units of knowledge do not reach the people who need

them. When and why will this be the case?

1See Banerjee (1992), Bikhchandani et al. (1992), Banerjee (1993), Ellison and Fudenberg (1993), Besley
and Case (1994), Bala and Goyal (1998), and Acemoglu et al. (2008).

2See DeGroot (1974), Jovanovic and Rob (1989), Ellison and Fudenberg (1995), Glaeser (1999), Demarzo
et al. (2003), Banerjee and Fudenberg (2004), Kondor and Ujhelyi (2005), Calvó-Armengol and de Mart́ı
(2007), Jackson and Golub (2010), and Kremer and Miguel (2007). Acemoglu et al. (2010) are exceptional
in that they study endogenous choices about whether and to whom to communicate. They focus on condi-
tions for asymptotic learning rather than on welfare comparisons, however, and on learning about a single
parameter rather than on complementary or substitutable knowledge (as this paper will).
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I study these questions under the assumption that communication is locally efficient :

agents share knowledge if and only if the benefits to the learner exceed the costs of

communication. This serves two purposes. First, it helps clarify what kinds of inefficiency

are due to externalities, as opposed to local contractual failings. Second, I argue that

it approximates several real-world settings of interest. A great deal of social learning

takes place between friends and acquaintances motivated to help each other. Knowledge

sharing may also occur in the workplace where co-workers engaged in team production

share knowledge in order to raise group productivity. The settings I have in mind are

explicitly non-strategic, and the model thus complements recent work on sequences of

strategic communication (Stein, 2008; Ambrus et al., 2010).

The requirement that communication choices respond to the local costs and benefits

of knowledge-sharing imposes some discipline on aggregate behavior; the question is, how

much? I study this question in a sequential setting where agents speak with predeces-

sors who have been in similar situations. All agents share a common value function for

knowledge. The utility of this approach is that it permits analysis of fully general payoff

functions describing the returns to knowledge. For example, one can think coherently

about disparate units of knowledge such as numeracy and the ability to identify insect

eggs within the same framework. (Exactly why the latter is useful will be made clear.)

Section 3 characterizes the efficiency of learning over finite sequences of conversations.

I show that efficiency hinges on whether different kinds of knowledge complement, substi-

tute, or are independent of each other. In the independent case communication is efficient

from a social point of view, even though each communication decision takes into account

only local costs and benefits. The reason is that under independence an agent’s marginal

valuation of knowledge does not depend on what he already knows, making the marginal

net returns to communication the same everywhere.

This symmetry property breaks down when different kinds of knowledge either sub-

stitute for or complement each other, because in these cases each agent’s marginal val-

uation for knowledge varies depending on what he already knows. For example, knowl-

edge about different vendors selling similar goods is substitutable, and so communication

externalities can hinder price competition. The units of knowledge required to imple-

ment a new technology are complementary, so adoption may be inefficiently slow even

when the returns to the new technology are known.3 These externalities always involve

“under-communication” relative to what a planner would have chosen, though interest-

ingly there can be situations where lack of communication at one juncture is triggered by

“over-communication” at an earlier one.

Since the social benefits of communication sometimes exceed the private benefits there

3Rogers (2003) opens his review thus: “Many innovations require a lengthy period of many years from
the time when they become available to the time when they are widely adopted” (1).
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may be scope for welfare-improving subsidies. Directly subsidizing communication would

be difficult, but governments often fund interventions that lower communication costs: for

example, construction of communication and transportation infrastructure and training

in skills like reading, writing, and language. Whether there are external returns to these

investments is an active area of research.4 I therefore examine whether the model can

rationalize them by characterizing the welfare effects of cheaper communication.

The answer is “maybe.” When knowledge is substitutable welfare losses are bounded

above by the costs of communicating, so that lowering those costs sufficiently must elim-

inate externalities. When knowledge is complementary, however, this need not hold,

because agents may rationally choose not to incur even an arbitrarily low communication

cost if a complementary unit of knowledge is not available. The argument for subsidy is

thus less immediate for learning processes like technology adoption and innovation where

complementarities are generic.5

Section 4 examines whether communication externalities are eventually overcome or

whether they may also hinder asymptotic learning, along with implications for technology

adoption. Previous work has studied asymptotic learning about an unknown parame-

ter and has emphasized factors such as agents’ rules-of-thumb (Ellison and Fudenberg,

1993), the scope and structure of social interactions (Ellison and Fudenberg, 1995; Bala

and Goyal, 1998; Acemoglu et al., 2008, 2010), and the strength of signals (Smith and

Sorensen, 2000; Banerjee and Fudenberg, 2004). In the filtering model the main im-

pediment to asymptotic learning is complementarity: if knowledge is too disaggregated

initially then it may never begin to accumulate.

As this suggests, knowledge can be catalytic in the sense that it raises the value of other

skills and thus accelerates social learning. Development economists since at least Nelson

and Phelps (1966) have argued that human capital matters as “a factor that facilitates

diffusion” as well as “a factor of production” (Benhabib and Spiegel, 2005). With filtered

communication these two functions coincide: human capital facilitates diffusion precisely

because it complements new techniques in the production function. Section 4.3 illustrates

this with an example of technology diffusion in which a basic skill, numeracy, complements

a new farming technique. Because of filtering, (1) adoption is asymptotically incomplete

and (2) there are socially increasing returns to the basic skill. This may help explain

evidence from diffusion research that better-educated individuals, as well as individuals

with more access to new knowledge, most influence their peers (Rogers and Shoemaker,

1971).

Finally, I examine whether filtering can lead to multiple stable steady-states, and in

4See Gramlich (1994) and more recently Straub (2008) for reviews on returns to infrastructure, Heckman
and Carneiro (2003) and Moretti (2004) on external returns to education.

5Subsidizing skills needed to adopt or innovate may still have high returns in those cases, however. Section
4.3 examines this.
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particular to lock-in to either of two competing technologies. Lock-in is often observed

in practice; for example, Rogers and Kincaid (1981) document how women in each of 25

Korean villages tended to converge to use of the same method of birth control – the pill

in some villages, IUDs in others, vasectomy in yet others. Several papers have shown that

lock-in may arise when there is uncertainty about payoffs; indeed, even an isolated agent

experimenting with uncertain alternatives may rationally settle on an inferior one. It is

also well-known that if the payoffs to adopting a technology depend on the number of

other users (as with telephones or email) then society may converge to a Pareto-inferior

equilibrium. Section 4.4 shows that filtering can generate lock-in even with independent

and certain payoffs. The necessary condition is that some knowledge be substitutable,

which is typically the case in technology choice problems as skills specific to one technology

substitute for skills specific to the other. The mechanism is intuitive: as knowledge

about one technology accumulates this depresses incentives to communicate about the

alternative, eventually generating lock-in even if the alternative is intrinsically preferable.

Some discussion of avenues for further research is in Section 5, the conclusion.

2 A Model of Filtered Social Learning

2.1 Primitives

For a general analysis of issues like complementarity and substitutability we need a flexible

way of representing knowledge and its value. Let there be n discrete units of knowledge.

Each unit can be thought of as a technique for accomplishing something useful; for ex-

ample, one unit of knowledge could be knowing how to work out fractions. Agents either

know or do not know each unit of knowledge, and so we can represent their knowledge as

an element of K ≡ {0, 1}n. kt is agent t’s knowledge endowment ; kit = 1 if agent t knows

the ith unit of knowledge, and kit = 0 otherwise. The utility of this setup is that it can

accommodate arbitrary kinds of incommensurable knowledge – for example, one unit of

knowledge might be knowing how to identify insect eggs, while another could be knowing

how to prove Kakutani’s theorem. The framework lets us to think coherently about both

together.

I use standard notation defined onK: the join (or coordinate-wise maximum) operator

∨ and the meet (coordinate-wise minimum) operator ∧; the partial product order - which

ranks k - k̂ if ki ≤ k̂i for all i and its implied strict order ≺; the Euclidean norm | · |;

and a difference operator \ defined by k \ k′ = k− (k′ ∧ k). eb is the unit vector with a 1

in the bth spot and zeros otherwise, and k = (1, . . . , 1) is an n-vector of ones. I say that

endowment k contains unit of knowledge b ∈ {1, . . . , n} if kb = 1.
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Assumption 1 (Homogeneity). All agents share a common value function V : K → R

over knowledge endowments.

Agents are homogenous in that they share common preferences over knowledge en-

dowments. This rules out situations where different farmers need to learn different things

because their asset holdings differ (see e.g. Munshi (2004)). The value of this approach

is that it focuses attention on generic issues in knowledge aggregation. Of course, type

heterogeneity will play an important role in many applied settings. Understanding the

efficiency of communication among homogenous agents can help predict incentives for

assortative matching.

Assumption 2 (Monotonicity). If k′ % k then V (k′) ≥ V (k).

The value function V captures the payoff that agents get from maximizing an under-

lying profit or utility function. Knowing more expands the feasible set of actions, so that

a larger endowment of knowledge is always weakly beneficial. Its value may at times be

less than the cost of communicating it, however, leading to filtering.

2.2 Interaction and Conversation

I study communication in a sequential setting. A countably infinite set of agents indexed

t = 1, 2, . . . each deal with the same situation in turn. Agent t’s initial endowment of

knowledge k̃t is drawn independently according to the c.d.f. F on K, reflecting things

she has learned from formal education, exposure to advertising, observation, learning-by-

doing, and so forth. Leaving this endowment exogenous sharpens our focus on issues to

do with the transmission, rather than the initial acquisition, of knowledge. I remark on

some implications of endogenous acquisition below.

The timing of play is simple: at time t agent t speaks with one of her antecedents

a(t), where a(t) < t, and then takes an action and receives a once-and-for-all payoff V .

Let the probability q(t, τ) that a(t) = τ satisfy 0 ≤ q(t, τ) ≤ 1 for all (t, τ), q(t, τ) = 0

for τ ≥ t, and
∑

τ q(t, τ) = 1 for all t.6 Also, let A(t) = {a(t), a(a(t)), . . . , 1} be the set

of all of t’s antecedents – this is the set of agents whose knowledge it would be feasible

for t to acquire.

This structure embeds a variety of commonly studied interaction processes, such as

workers learning from their predecessors on the job, children learning from their parents,

farmers learning from more experienced neighbors, etc. The exogenous pattern of social

interactions is intended to capture the idea that opportunities to communicate are often

driven by cost considerations or by factors at least partly orthogonal to the demand

for knowledge.7 While endogenizing the search for communication partners is also an

6Formally, q(t, τ) defines a random graph model (Bollobás, 2001).
7For example, Marmaros and Sacerdote (2006) show how friendships form due to coincidental proximity.
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important task for the theory of social learning, this paper limits itself to endogenizing

communication within a fixed interaction structure.

2.3 Filtering through Conversation

Both formal empirical work (e.g. Conley and Udry (2010)) and casual observation make it

clear that knowledge spillovers are typically incomplete. Sinha and Mehta (1972) provide

an elegant illustration: they measured the incompleteness of communication between a set

of “contact farmers,” who were given information about irrigation techniques, and their

peers. When they surveyed the secondary recipients – farmers who had acquired some of

the new knowledge in conversations with the contact farmers – they found that on average

only 28% of the knowledge had spilled over. They also found that the secondary recipients

who learned the most were those who spoke to the primary recipients who learned the

most. These facts illustrate how communication networks “filter” knowledge-sharing and

thus determine what knowledge each individual has access to.

The main innovation of this paper is to endogenize the filtering process as the solution

to a well-defined optimization problem. Suppose an agent r (the “receiver”) speaks with

an agent s (the “sender”); in our model the receiver at time t will be agent t and the

sender will be a(t). The sender’s knowledge endowment is ks while the receiver’s is k̃r

at the beginning of the conversation and kr at the end of it. I require that the receiver

does not loose any knowledge during the conversation (kr % k̃r) nor learn anything that

agent s did not know (kr - k̃r ∨ ks). Conversation thus serves purely to communicate

knowledge, not to create it (in contrast with Jovanovic and Rob (1989) and Stein (2008)).

Define Kr ≡ {k : k̃r - k - k̃r ∨ ks} the set of feasible final knowledge endowments for r;

the economic problem is to select one from among them. Any theory of communication

must take a stance on this issue, if only implicitly.

Here I suppose that the agents choose to communicate what is locally optimal, trading

off the private benefits of communication against its costs. The private benefit of com-

munication is the increase in the instantaneous payoff the receiver will obtain. Costs are

represented as a fixed vector c = (c1, . . . , cn) with cb representing the cost of transmitting

the bth unit of knowledge. I then define a map C : K ×K → K from the parties’ initial

knowledge endowments to the receiver’s final knowledge endowment:

Assumption 3 (Filtering).

C(ks, k̃r) ∈ arg max
k∈Kr

V (k)− c · (k − k̃r) (1)

As a tie-breaking rule if there are multiple maximizers then one of those with the smallest

norm is chosen.
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In other words, communication maximizes benefits net of costs. The costs c in this

definition reflects real costs of communicating: primarily the time and effort involved.

Both parties bear these costs to some extent, but since communication is assumed efficient

we need not take a stance on their exact division.8

Assumption 3 implies that agents align their incentives locally but do not take into

account the broader social consequences of their choices. I adopt this approach for two

reasons. First, as noted in the Introduction, existing work on communication assumes

communication that is inefficient locally, i.e. from the point of view of the communicating

parties. Introducing local efficiency thus plays a useful logical function: it helps us

understand what kinds of inefficiencies are intrinsic to the process of aggregation, as

opposed to those that simply mirror local inefficiencies.

The second function of Assumption 3 is to approximate a variety of real-world sit-

uations of interest. It seems plausible that a good deal of communication is motivated

by altruism: people share knowledge in order to help their friends and acquaintances.

Under this interpretation the sender directly internalizes the receiver’s utility gains from

learning when deciding what to communicate. Alternatively, local incentives may arise

in team production settings. If the sender and receiver work in a team and the sender’s

compensation varies one-for-one with the receiver’s output then again the sender will

internalize the immediate costs and benefits of sharing knowledge. In both these cases

forward-looking receivers might like the sender to share additional knowledge which they

could then share with the agents they subsequently speak with, but are unable to con-

tract with the sender to do this. These interpretations rest on the idea that one cannot

make “a thoroughly appropriable commodity of something so intangible as information”

(Arrow, 1962). Such contracts would be prohibitively costly to write or enforce, and

the very act of describing the desired transaction may give away the knowledge itself –

Arrow’s “paradox of information.”9

Interestingly, however, one can also interpret Assumption 3 as an equilibrium outcome

when local knowledge-sharing is fully contractible; the wedge in this case is holdup.

Suppose the receiver decides what knowledge to purchase from the sender, but cannot

specify re-sale terms in advance with the agents she will subsequently speak with. Then

those agents will hold up part of her sunk investment in acquiring knowledge from the

sender. The problem becomes more acute as the relative bargaining power of future

buyers increases, and in the limit one recovers Assumption 3.10

A final comment on Assumption 3 concerns the actual process of optimization. In

8Dewatripont and Tirole (2005) also study costly communication but in a single exchange and between
agents with imperfectly aligned preferences.

9In this vein, Jovanovic and Nyarko (1995) study the inter-general transmission of knowledge through a
market subject to adverse selection.

10Formally, consider a sender s and receiver r deciding on a final knowledge endowment kr, and suppose
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general, finding a locally optimal communication choice will require that someone know

what units of knowledge are contained in both agents’ endowments. If at the beginning

of the conversation neither agent knows what the other knows then we are implicitly

assuming that they find out during the course of the conversation. For example, the

receiver might say “I know how to do this but I’m having trouble with that,” to which

the sender responds by explaining “that.” This seems reasonable in settings where it

is much easier to describe what one does or does not know than to actually transfer

that knowledge. For example, asking how to prove Kakutani’s theorem takes much less

time than explaining the proof. Assumption 3 best applies to situations such as these.

Introducing additional costs of communicating about what to communicate about leads

to models of the conversation process itself, which are interesting but beyond the scope

of this paper.

3 Communication Externalities

This section characterizes the relationship between efficiency and the value function (V )

– in particular, whether different kinds of knowledge complement, substitute for, or are

independent of each other. I define welfare over groups of agents additively:

Definition 1 (Welfare). Fix a sequence of agents 1, . . . , t, a sequence of endowments k̃t =

k̃1, . . . , k̃t on support(F ), and a mapping a(2), a(3), . . . , a(t) from agents to the predecessor

each speaks with. A sequence kt = k1, . . . , kt on K is feasible iff k̃τ - kτ - k̃τ ∨ ka(τ) for

all τ . For any such feasible sequence social welfare is

W (kt, k̃t) =

t∑

τ=1

V (kτ )− c · (kτ − k̃τ ) (2)

Call the sequence generated by kt = C(ka(t), k̃t) the equilibrium outcome, and say

that learning is efficient over the sequence 1, . . . , t if the equilibrium outcome maximizes

that the sender bears a share α of the communication costs. Their payoffs, gross of transfers, are

Us = −αc · (kr − k̃r)

Ur = V (kr)− V (k̃r)− (1− α)c · (kr − k̃r) +R(kr)−R(k̃r)

where R(k) is the receiver’s expected payoff from re-selling units of knowledge from the knowledge endowment
k. If the receiver has full bargaining power then for any kr he will propose a monetary transfer T (kr) =
αc · (kr − k̃r), just compensating the sender for her time and effort, so that her net payoff is 0 irrespective
of ks. As r’s future interactions have a symmetric structure it must also hold that R(k) = 0 for all k. r is
therefore left to solve

max
kr

V (kr)− V (k̃r)− (1− α)c · (kr − k̃r)− αc · (kr − k̃r)

which differs from Equation 1 only by the constant term V (k̃r).
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Figure 1: Costly Communication

(2) among all feasible length-t sequences of elements of K. If not, say that an externality

occurs.11

Since one might reasonably expect the model to generate externalities, I start with

a case where it does not. Consider a sequence of three agents, as depicted in Figure 1.

Suppose that these are farmers and that each in turn needs to deal with a pest problem. (I

will use pest control as a running illustration to illustrate how the same applied problem

may have different efficiency properties depending on the kind of knowledge in play.)

Suppose Agent 1 knows something that the others do not about pest control. Further

suppose that the value of this knowledge is independent of what else they know. Call V

the (unconditional) incremental value of the knowledge, and c the cost of communicating

it. The socially optimal communication scheme depends on whether 2V > 2c. If so then

it is socially optimal for agent 1 to share his knowledge with 2 and 2 with 3; otherwise

“no communication” is socially optimal. On the other hand, it is locally optimal for agent

1 to share what he knows with agent 2 if and only if V > c, and if this holds then it will

also be locally optimal for agent 2 to relay it to 3. The conditions for private and social

optimality thus coincide exactly.

This reasoning extends directly to longer sequences of conversations and to any num-

ber of units of knowledge whose values are all independent of each other:

Proposition 1. If V is linear (can be written V (k) =
∑n

b=1 Vbk
b) then, in equilibrium,

learning over any finite sequence of agents is socially optimal.

Proof. By assumption we have for any b either V (k ∨ eb) − V (k) > cb for all k not

containing b, or V (k ∨ eb) − V (k) ≤ cb for all k. Call the set of bits satisfying the

former condition B1 and the latter B0. Bits b ∈ B1 will always be communicated from

senders who have them to receivers who do not, so in equilibrium kbt = maxτ∈A(t) k
b
τ . Bits

b ∈ B0 will never be communicated and so kbt = k̃bt . I next show that this is the socially

optimal outcome. Consider any feasible scheme in which for some b ∈ B1 and some t,

kbt < maxτ∈A(t) k
b
τ . Then these exists some τ ∈ A(t) for which ka(τ) contains b but kτ

does not. Then the (feasible) scheme in which kτ contains b is welfare-improving, so the

11This definition implicitly sets a high bar, in that eliminating externalities might require knowing what
knowledge all agents are endowed with. However, under Assumption 3 all agents would behave identically
even if they knew about everyone else’s endowments. Welfare losses in this section are therefore best thought
of as resulting from an incentive problem.
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original scheme cannot be socially optimal. Similarly, if for some b ∈ B0 and some t we

have kbt > k̃bt then we can construct a feasible welfare-improving alternative in which kt

does not contain b. Hence the equilibrium outcome is a sequence of endowments that

matches the socially optimal one, and clearly this is achieved at minimum cost.

This efficiency result is driven by symmetry across agents. Constant returns implies

that the marginal value of each unit of knowledge is not affected by what an agent

initially knows, and because all agents share the same value function this marginal value

is identical across agents. Along with the assumption that costs are the same across

agents this implies that each agent shares knowledge if and only if it is efficient for all

other agents to do so.

Previous work on social communication has not emphasized communication external-

ities, so comparisons between this result and earlier models inevitably depend somewhat

on how one re-interprets their assumptions. It does seem fair to say, however, that

efficiency is not a common property. One area in which the relationship between commu-

nication and efficiency is better-understood is work on strategic experimentation, which

has argued that agents tend to acquire too little costly information because they do not

internalize its value to society (Foster and Rosenzweig, 1995; Bolton and Harris, 1999;

Bramoulle and Kranton, 2007). Interpreted through the lens of Proposition 1 we see that

this literature’s key assumption is an asymmetry between the cost of initially acquiring

knowledge and the costs of subsequently diffusing it. For example, a typical assumption

might be that knowledge, once discovered, becomes freely available to everyone within

a particular village. Proposition 1 also provides one justification for this assumption:

the combination of (i) independently useful knowledge and (ii) local incentives to share

knowledge is sufficient for widespread diffusion.

3.1 Substitutable Knowledge

Proposition 1 highlights the role of symmetry in the model, in which only knowledge

endowments vary. Of course, heterogeneity in knowledge endowments is necessary to

make a social learning model interesting. This brings us to an interesting question: can

the very feature that makes social learning possible also cause it to break down?

One way in which this can happen is if different kinds of knowledge substitute for

each other. For example, suppose a series of farmers face pests on their crops at different

times. There are various methods of dealing with pests and the farmers initially know

different ones, where knowing a method means knowing what inputs to purchase, where to

purchase them, how to apply them, when to apply them, etc. For simplicity suppose that

all methods are equally effective but that they require different expenditures on labor

and other inputs, so that farmers will be interested in learning the cheapest methods.

11



Figure 2: Dealing with Pests

Explaining any method to a peer costs $1.

Figure 2 depicts a sequence of three agents with the cost of the cheapest pest-control

method each agent is initially endowed with recorded beneath him. Communication in

this example evolves as follows. First, Agent 2 speaks with Agent 1. Agent 1 knows

a cheaper way of dealing with pests than Agent 2, but because sharing this knowledge

would cost $1.00 and would only save Agent 2 $0.75 it is not locally optimal to share

it. Next Agent 3 speaks with Agent 2, and similarly it is not locally optimal for Agent

2 to teach him anything. It would have been feasible, however, for Agent 1 to teach the

$4.50 method to Agent 2 and for Agent 2 to then teach it to Agent 3, which would have

saved him ($6.00− $4.50)− $1 = $0.50. Since this gain more than offsets Agent 2’s $0.25

net loss from learning the $4.50 method, an externality has occurred: total costs in this

economy are higher than they could have been. The root problem here is the imperfect

substitutability of methods: Agent 2’s knowledge of a $5.25 method for controlling pests

lowers her marginal valuation of Agent 1’s knowledge below agent Agent 3’s marginal

valuation.

An interesting feature of this example is that Agent 3 – and society as a whole –

would be better-off if Agent 2 knew less. Suppose that in the scenario just described

Agent 2 knew both the $5.25 method and the $6.00 method, and then consider a revised

scenario in which Agent 2 knows only the $6.00 method; in this case she and Agent

3 would learn the $4.50 method, and the total cost incurred by the two of them will

fall. This suggests that filtering may have interesting implications for competition: a

firm that enters the market with a product that costs $5.25 will disrupt social learning

about the $4.50 product, exacerbating “business-stealing” motives for entry (Mankiw and

Whinston, 1986).

Another way to look at this example is that Agent 3 suffers from speaking with a peer

with a disparate knowledge endowment. Typically one expects agents to benefit most

from speaking with peers whose knowledge endowments differ the most from theirs, since

those differences create a kind of gain from trade (Glaeser and Sunstein, 2007). But in

the presence of filtering peers who know different things will also learn different things

and in particular may not always learn the things that one would want them to, damping
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the benefits of heterogeneity.

Note also that the inefficiency in this example is somewhat fragile. If the $4.50 method

were slightly cheaper, so that it improved on the $5.25 method by more than $1, then

the externality would vanish. Similarly if the cost of communicating were slightly lower

then Agent 2 would learn the $4.50 method, again eliminating the externality. This

suggests a role for policy: anticipating problems of the sort just described, a planner

might subsidize communication infrastructure (e.g. mail service) or the acquisition of

communication skills (e.g. reading, writing). The next proposition generalizes this idea,

showing that lowering communication costs far enough will eliminate externalities for any

submodular value function.

Proposition 2. If V is submodular then in equilibrium, and for every realization of

agents’ endowments, the average welfare loss among any finite set of agents is at most
∑

cb.

Proof. I will show that no single agent’s welfare is lower in equilibrium than in the opti-

mum scheme by more than
∑

cb, which implies that this must also hold on average. Fix

any agent t and consider the sequence of his antecedents a(t), a(a(t)), . . . , 1; for calculat-

ing t’s welfare there is no loss of generality in re-labeling agents so that t = |A(t)|+1 and

a(τ) = τ − 1 for τ ≤ t. Consider then the sequence of initial endowments k̃1, . . . , k̃t gen-

erating final endowments k1, . . . , kt, and let k̂1, . . . , k̂t be a feasible alternative sequence

of final endowments. The difference G in agent t’s welfare is

G ≡ V (k̂t)− V (kt)− c · ((k̂t − k̃t)− (kt − k̃t))

≤ V (kt)− V (kt) + c · (kt − k̃t)

where kt = k1 ∨ . . . ∨ kt. Expand

V (kt)− V (kt) =

t∑

τ=2

V (kτ−1 ∨ . . . ∨ kt)− V (kτ ∨ . . . ∨ kt)

Each of these marginal differences represents the marginal value of knowledge that agent

τ −1 has but none of agents τ, . . . , t have. Let dτ = kτ−1 \(kτ ∨ . . .∨kt) be an endowment

containing that knowledge. Then

V (kτ−1 ∨ . . . ∨ kt)− V (kτ ∨ . . . ∨ kt) = V (dτ ∨ kτ ∨ . . . ∨ kt)− V (kτ ∨ . . . ∨ kt)

≤ V (dτ ∨ kτ )− V (kτ )

≤ c · dτ

where the first inequality follows from submodularity and the second from the local
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optimality of conversations (Assumption 3). Summing up yields

G ≤ c · (d2 ∨ . . . ∨ dt) + c · (kt − k̃t)

≤
∑

cb

as desired.

The intuition here is that if the nth unit of knowledge does not reach an agent t who

demands it then it must be that some intermediate agent t′ knew some other thing which

was a close substitute, where “close” is defined relative to communication costs. If agent

t does not learn that other thing either then the same argument applies, and so on. One

can construct examples (available on request) in which average welfare losses approximate
∑

cb arbitrarily closely, so this upper bound is tight. Note that Proposition 2 holds for

every realization of endowments and so the same bound must also hold in expectation

ex-ante, before endowments are drawn.12

Proposition 2 implies that if knowledge is substitutable then public investments in

lowering communication costs can be welfare-enhancing. For example, learning about

alternatives in a competitive market for a good like pest control need not be efficient,

but interventions that lower the cost of sharing information about alternative pest control

products can reduce and eventually eliminate the inefficiencies. These interventions could

be specific to the market or could be general-purpose, as training in communication skills

or provision of communication infrastructure.13

3.2 Complementary Knowledge

Knowledge about different ways of accomplishing the same task is substitutable. But

sometimes accomplishing a task requires knowing several things. For example, writing

to a colleague requires knowledge both of how to write and of his address. Treating

an illness requires both skill in diagnosis and knowledge of the available treatments.

Conducting empirical research requires both conceptual knowledge of empirical techniques

and practical knowledge about how to implement them using statistical software. These

are all examples of situations in which knowledge is complementary: knowing one thing

raises the marginal value of learning another.

12While linear costs are a natural base case, one can also imagine situations in which costs are supermodular
(due to increasing marginal costs of time) or submodular (due to inter-relationships between the knowledge
being communicated). Proposition 2 can be generalized to these cases, replacing cb with a bound on the
marginal cost of communicating the bth unit of knowledge (available on request). It is the submodularity of
V that is crucial.

13Jensen (2007) shows how lower communication costs improved market efficiency in India fisheries, though
how much of these gains were due to reduced externalities cannot be ascertained.
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Figure 3: Integrated Pest Management

To illustrate the implications of complementary knowledge I take as an example the

adoption of Integrated Pest Management (IPM), a skill-intensive set of practices de-

signed to reduce pest loads while also reducing farmers’ use of potentially toxic fertilizers.

Winarto (2004) provides a vivid description of IPM adoption among Javanese farmers.

As an abstracted version of her account, suppose that to perform IPM farmers must first

count the insect eggs growing on their crops, distinguishing the eggs of harmful pests

(e.g. rice stem-borer) from those of helpful natural predators (e.g. spiders), and then

perform some calculations to determine whether or not spraying pesticide will be prof-

itable. Spraying pesticide is beneficial when there are many pests and few predators, and

wasteful otherwise.

Figure 3 depicts an example of a sequence of conversations about IPM where the

complementary units of knowledge are initially dispersed. Agent 1 knows how to identify

insect eggs but is not numerate, nor is Agent 2, and so it is not worthwhile for him to

teach her what he knows. Given this, Agent 2 has nothing to teach Agent 3. It would

have been feasible, however, for Agent 2 to relay Agent 1’s knowledge about insect eggs

to Agent 3, in which case Agent 3 could have adopted IPM. Adoption is thus delayed and

welfare potentially decreased because of communication externalities.

The externality in this example has a key feature that distinguishes it from the example

with substitutes: the equilibrium pattern of communication does not depend sensitively

on the costs of communication or on the profitability of IPM. All that matters is that

neither of the two units of knowledge required to perform IPM is of much use on its own.

This suggests that lowering communication costs may not be as effective at controlling

externalities here as it was in the submodular case. Proposition 3 proves this by example:

Proposition 3. Fix n ≥ 2 and the costs c of communication. For any L > 0 there exists

an initial distribution F , interaction process q(t, τ), and supermodular V such that over

some fixed sequence of agents the expected welfare loss exceeds L.

Proof. Let q(t, τ) be 1 for τ = t− 1 and 0 otherwise. Let V (k) = γk1k2 + V̂ (k3, . . . , kn)

with V̂ an arbitrary supermodular function and γ > 2c1. Let F be such that with

positive probability the first three agents are endowed with a sequence k̃1, k̃2, k̃3 such
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that k̃1 = (1, 0, k̃31 , . . . , k̃
n
1 ), k̃2 = (0, 0, k̃32 , . . . , k̃

n
2 ), and k̃3 = (0, 1, k̃33 , . . . , k̃

n
3 ). Let φ be

the probability that such a sequence arises under F . Following any such sequence it must

be that k3 = (0, 1, k33 , . . . , k
n
3 ) regardless of γ even though (1, 1, k33 , . . . , k

n
3 ) was feasible at

an additional communication cost of 2c1. The expected welfare loss over this sequence is

thus at least φ · (γ − 2c1), which exceeds L if γ > L/φ+ 2c1.

The key point here is that one can continuously increase a parameter of the value

function while holding communication costs fixed (and thus not merely scaling up the

entire problem). This would be trivially possible in models where communication choices

are exogenous and thus unresponsive to the value of knowledge. Here it is possible even

though the local optimality condition ensures that more valuable knowledge is, in general,

more likely to be communicated.

For policy this implies that interventions that indirectly subsidize communication by

lowering communication costs (such as investments in communication infrastructure or

communication skills) may not mitigate communication externalities when knowledge is

complementary. Intuitively the problem is that agents will not bother incurring even

a small communication cost to share knowledge if a key complementary skill or idea is

missing. In these cases more direct subsidies to communication itself, including coordi-

nating more centralized methods of communication, may be necessary. Subsidizing the

acquisition of complementary knowledge might also be effective; Section 4.3 examines

this idea in slightly more depth.

While adoption in this example hinged on the acquisition of complementary skills,

similar principles would apply to communication about the returns to a new technology.

Suppose the technology has two distinct advantages over its predecessor – for example,

IPM is capital-saving and reduces environmental health threats. If knowing both of these

advantages would convince a farmer to adopt, while knowing either one on its own would

be insufficient, then they are complements. Locally optimal communication in such an

environment would again lead to inefficient delays in adoption.

Complementary knowledge features in processes of innovation as well as adoption.

Farmers themselves often innovate by combining traditional knowledge with new ideas

obtained from extension services (Bentley, 2006), and more generally new ideas typi-

cally build on or combine existing ones (Jacobs, 1969; Feldman, 1994; Holton, 1998).

Mokyr (1990) provides some salient examples in his discussion of punctuated technologi-

cal change:

“Lewis and Paul’s 1740 invention of the roller replacing human fingers as a

yarn-twisting device had to wait until it was complemented a quarter-century

later by Arkwright’s relatively marginal but crucial insight to use two (instead

of one) sets of rollers. Bessemer’s invention of the converter would have been
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useless had it not been for Robert Mushet’s addition of spiegeleisen (an alloy

of carbon, manganese, and iron) into the molten iron as a recarburizer.”

Weitzman (1998) provides additional examples to motivate a model of productivity

growth in which existing ideas serve as complementary inputs in the production of new

ideas. The present model suggests, however, that this production process will be slowed

by communication externalities when ideas are initially dispersed across people. This

suggests a potentially novel way to think about the relationship between communica-

tion patterns and growth. An earlier version of this paper pursued this issue at greater

length and obtained results on the relationship between the structure of communication

networks and the rate of productivity growth.

4 Steady-State Learning

I next characterize the model’s long-run behavior and its implications for technology

adoption. Section 4.1 shows that the long-run probability distribution of knowledge

endowments in the model is invariant within a large class of interaction structures of

interest. Section 4.2 then establishes necessary and sufficient conditions for the learning

process to converge to complete knowledge. One idea that emerges from this analysis is

that certain kinds of complementary knowledge may serve as catalysts to promote the

diffusion of other knowledge, and thus adoption; Section 4.3 illustrates this. Finally,

Section 4.4 studies the mechanics of lock-in to one of several possible technologies.

4.1 Long-Run Equivalent Interaction Processes

As we turn to asymptotic behavior it will be important to understand how sensitive

results are to the details of the interaction process. Any specification of the probability

q(t, τ) that agent t speaks with agent τ < t generates a stochastic “communication tree”.

Figure 4 depicts an example: agent 2 spoke with agent 1, 3 with 2, 4 with 1, and so forth.

In this Section the object of study will be the evolution of learning as paths within the

communication tree elongate. Intuitively one expects that the evolution of the process

{kt} will resemble the evolution of learning along a single infinitely-long branch provided

that branches elongate “sufficiently quickly”. This might not hold if, on the other hand,

all agents t > 1 spoke with agent 1, in which case the model would be better described

as a model of bilateral rather than social learning. One can rule this out for a large class

of interaction processes that satisfy a monotonicity property:

Assumption 4. q(t, τ) is non-decreasing in τ for every t.

Recall that q(t, τ) = 0 for τ ≥ t since agents speak with predecessors; Assumption 4

says that they are at least weakly more likely to speak with more recent predecessors.
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Figure 4: Stochastic Communication Tree at t = 6

This property holds for most commonly-used interaction processes (e.g. random matching

or death-and-replacement) and is sufficient to ensure that the long-run behavior of the

process is like that of a strict Markov process in which a(t) = t − 1; hence it defines an

equivalence class.

Proposition 4. Let πt be the distribution of kt. There exists a unique π such that

lim
t→∞

πt = π (3)

for any interaction structure q(·, ·) satisfying Assumption 4.

Proof. Proofs for this Section are deferred to Appendix A.

The key to deriving this result is Lemma 5 in the Appendix, which shows that as t

grows the probability that agent t is any finite number of conversations removed from

agent 1 vanishes. I assume from here onwards that Assumption 4 holds and therefore

that Proposition 4 applies.

4.2 When is Learning Asymptotically Complete?

This section characterizes situations in which long-run learning is complete, meaning that

the probability that agent t has final knowledge endowment k ≡ (1, . . . , 1) approaches

1 as t → ∞. As in Section 3 the characterization is in terms of the value function V ,

treating the initial distribution F as a nuisance parameter drawn from the following class

of admissible distributions:

Definition 2 (Admissibility). A distribution F on K is admissible if

1. For any b there exists k̃ ∈ support(F ) such that k̃b = 1
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2. (0, . . . , 0) ∈ support(F )

A sequence k̃1, . . . of initial endowments is admissible if there is an admissible distribution

F such that each element of k̃1, . . . occurs with positive probability under F .

The first condition is innocuous; it essentially says that every unit of knowledge ac-

tually exists. The second requirement can be thought of as a robustness criterion – it

focuses our attention on long-run behavior that is robust to the presence of agents with

very little knowledge. For distributions F that do not satisfy this condition complete

learning may obtain for a larger set of value functions V .

Given that short-run externalities involve too little communication, one expects that

a necessary condition for complete long-run learning is that it be efficient. The next

definition formalizes “efficient” for the long run:

Definition 3. Complete learning is long-run efficient if, for any admissible sequence of

initial endowments k̃1, . . . such that k̃1 ∨ . . . ∨ k̃τ = k for some finite τ , supposing that

a(t) = t − 1 for all t > 1, then there exists (t∗, T ∗) such that T > T ∗ implies that any

solution to

max
{kt} feasible

T∑

t=1

V (kt)− c · (kt − k̃t)

has kt = k for t∗ < t ≤ T .

The definition states that for any admissible sequence of initial knowledge endowments

it will eventually be efficient for agents to learn everything.14 The following lemma gives

an equivalent characterization that is easier to read (and work with):

Lemma 1. Complete learning is long-run efficient if and only if V (k)−V (k) > c · (k−k)

for all k ≺ k

Intuitively this says that it is always worth communicating enough to completely

inform a recipient (though if V is supermodular it may not be worth communicating

partial knowledge). The practical value of this characterization is that it abstracts entirely

from the support of F , which facilitates the proof of this section’s main proposition:

Proposition 5. Long-run learning is complete under the following conditions:

1. If complete long-run learning is inefficient then it never obtains for any admissible

F .

14This definition is strong in the sense that there are sequences of knowledge endowments for which (a) the
solution of the infinite-horizon problem with discounting would involve complete learning, while (b) there are
many undiscounted T -horizon problems for which it does not. A countervailing benefit, however, is that we
sidestep the vexed issue of discounting in OLG models. The requirement that any solution involve eventual
complete learning is introduced to handle knife-edge cases in which tie-breaking is required; it parallels the
assumption that agents break ties by choosing shorter messages.
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2. If complete long-run learning is efficient for a submodular V then it obtains for any

admissible F .

3. If complete long-run learning is efficient for a supermodular V then it obtains for

any admissible F if the following condition holds: there exists a sequence k∗1 , . . . , k
∗
n

satisfying k∗1 = eb(1), k∗n = k, and k∗t = k∗t−1 + eb(t) for t > 1 such that V (k∗t ) −

V (m ∨ eb(t)) > c · (k∗t−1 −m) for all m ≺ k∗t−1. If this condition does not hold then

there exist admissible distributions F for which complete learning does not obtain.

The first result is unsurprising, since agents in this model generally under-value com-

munication compared to the social optimum. The second result is more meaningful but

not particularly strong since (as the proof reveals) when complete learning is efficient

for a submodular V there are in fact no externalities at all, even in the short run; in

spite of decreasing returns, each unit of knowledge is always valuable enough to be worth

communicating.

The results and discussion in Section 3.1 can be used to further characterize asymp-

totic welfare for submodular value functions when complete learning is not efficient. First

consider the long-run behavior of the pest-control example in Section 3.1. Since the prob-

ability that a sequence of agents like that depicted in 2 arises is always positive, the limit

average payoff in equilibrium must be bounded strictly below the limit average payoff a

social planner would achieve. On the other hand, Proposition 2 implies that the limit

average welfare loss is bounded above by
∑

cb.

Part 3 of Proposition 5 is of most interest. It says that decentralized communication

may fail to assemble complementary units of knowledge unless a “small steps” condition

holds. This condition is that we can order the n units of knowledge such that if an agent’s

initial knowledge endowment includes the b(t)’th unit of knowledge then it is strictly

more efficient to communicate to the agent a message that results in him knowing all the

b(1), . . . , b(t−1) previous units of knowledge than to communicate a message resulting in

less information. This ensures that there is an order in which a knowledge endowment can

be profitably augmented one unit of knowledge at a time. In addition to being sufficient

for any F , this condition is necessary in situations where knowledge is initially highly

dispersed. For example, if V (1, 1, 1) = 4, V (k) = 0 for all k 6= (1, 1, 1), c = (1, 1, 1), and

agents are initially endowed with at most 1 unit of knowledge then the complementary

units will never be assembled. Of course, in cases where some aggregation has already

occurred so that the support of F includes larger elements then weaker conditions on V

would be sufficient. Indeed, if k ∈ support(F ) then no further conditions on V beyond

the efficiency of complete learning would be necessary. In this case the issue facing society

is less an aggregation problem than a search problem.15

15Situations where complete learning does eventually obtain may still involve large expected welfare losses
if the rate of convergence is sufficiently slow. Not surprisingly the details of the interaction process q(t, τ)
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One implication is that larger-scale interactions may be particularly important when

dealing with dispersed complementary knowledge. These could involve bringing more

than two agents together at a time to communicate or simply increasing the number

of bilateral interactions per agent. The “discovery” of James Watt’s celebrated steam

engine illustrates the latter. Watt began with Thomas Newcomen’s design, which was

operational but required too much coal to be economical. He then had two key social

interactions. First, the chemist Joseph Black explained certain features of the process of

evaporation and condensation to him, which inspired the addition of a separate condenser

to the engine. Second, he acquired from the notorious John “Iron-mad” Wilkinson a

new technique for smooth-boring shafts (originally developed to improve cannons) that

greatly improved the fit of the pistons in Watt’s cylinders. These complementary insights

combined put Watt’s engine over an efficiency threshold and made it a commercial success.

Had Watt not spoken to either Black or Wilkinson, his name might be unknown today

(Hart-Davis, 2001).

4.3 Catalytic Knowledge and Knowledge Policy

The “small steps” condition in Proposition 5 evokes the idea that some kinds of knowledge

catalyze the diffusion of other complementary skills and thus may catalyze adoption. For

example, general-purposes skills like numeracy complement many applied ones.

This idea can be brought out most clearly in an example with asymptotically incom-

plete learning. Again suppose that implementing IPM requires two kinds of knowledge,

numeracy and the ability to identify insect eggs, but now suppose that while the latter

can be communicated relatively easily, the former is prohibitively costly to teach. This

is sensible, as most people spend many years in school acquiring numeracy, and consis-

tent with Winarto (2004) who reports instances of social learning about eggs but not

about mathematics. It implies that agents will adopt if and only if (1) they themselves

are numerate, and (2) they or the peer with whom they speak knows about insect eggs.

Crucially, the latter is more likely if the peer with whom they speak is himself numer-

ate, since numerate people are more likely to acquire the complementary applied skill.

This is consistent with evidence from diffusion research that more educated people are

more likely to adopt innovations, that later adopters tend to learn from more educated

peers, and that later adopters tend to learn from peers with more “change agent” con-

tact (Rogers and Shoemaker, 1971, Generalizations 5-2, 6-3, and 6-6). The latter fact is

readily explained by any reasonable model of social interaction, but the former suggest

some form of filtering.

Under these assumptions long-run learning will be incomplete and there will be a

are key here; one can show by example (available on request) that expected losses may be either bounded
or unbounded depending on q.
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steady-state rate π ∈ [0, 1) of IPM adoption. Suppose that the distribution of initial

knowledge endowments F has the following simple structure: a random fraction s ∈ (0, 1)

of farmers get formal schooling and become numerate, while a random fraction e have

contact with a government extension agent and learn about insect eggs. Then one can

show that

π = es

[

1 +
1− e

1− (1− e)s

]

︸ ︷︷ ︸

Social Multiplier

(4)

The first term in the product is simply the probability that any one individual is endowed

with the knowledge needed to perform IPM. The bracketed term is a social multiplier; it

captures the way in which knowledge spillovers between farmers scale up the impact of

investments in schooling s and extension e.

The interesting thing about this social multiplier is the way in which it depends asym-

metrically on s and e. One can readily show that ∂π
∂e > 0 and ∂π

∂s > 0; unsurprisingly,

both kinds of teaching increase adoption rates. This is consistent, for example, with the

empirical evidence provided by Foster and Rosenzweig (1996), who show that Green Rev-

olution technologies increased the return to schooling in India. The model also predicts

decreasing returns to extension activity (∂
2π

∂e2
< 0) because of a saturation effect: the

more likely it is that a farmer has a neighbor who knows how to identify insect eggs, the

less valuable it is for him to speak with an extension agent himself. However, there are

increasing returns to schooling (∂
2π

∂s2
> 0). Increasing returns result from the “weakest

link” property of communication. As more farmers become numerate and value knowl-

edge about insect eggs, that knowledge tends to travel further, and so the social cost

incurred when its transmission halts because of an innumerate farmer increases. The so-

cially optimal schooling policy will therefore be either to educate everyone or to educate

no-one – in other words, it will tend towards egalitarianism.

If agents choose their education levels non-cooperatively then we have analogous re-

sults on incentives. The private returns to both schooling and extension contact are below

the public returns, which potentially justifies subsidizing both. Individual investments

in extension are strategic substitutes, but investments in schooling are strategic comple-

ments. If this complementarity is strong enough then there may exist multiple equilibria

and a poverty trap in which society mis-coordinates on the low-schooling equilibrium.

This suggests that general-purpose skills like numeracy may be doubly important for

policy, both because of the incentive problems associated with providing them (Becker,

1993) and also because of their potential for large external returns.

Benhabib and Spiegel (2005) have argued that “the policy implications of distinguish-

ing between the role of education as a factor of production and a factor that facilitates

technology diffusion are significant” (p. 939). Our example illustrates this, and also

shows that the two functions may be inseparable: numeracy facilities the diffusion if
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IPM precisely because it complements IPM skills in the production function. This is a

direct consequence of the fact that communication responds to incentives in the model –

it would not hold if communication choices were random.

4.4 Multiple Steady States and Technology Lock-In

A final fundamental question about learning processes is whether or not they converge

to a unique limit. This is particular important for understanding technology adoption,

where lock-in to alternative technologies is often observed. As mentioned in the Intro-

duction, Rogers and Kincaid (1981) report that women in each of 25 Korean villages

tended to converge to use of the same method of birth control – the pill in one, IUDs

in others, vasectomy in yet others. Can such patterns emerge due to filtering? While

Proposition 4 implies that the ex-ante probability distribution πt converges to a unique

limit, realizations of the process {kt} may still converge to different limiting sets. This

section (1) shows that this requires a non-supermodular value function and (2) provides

an example of technological lock-in.

I use a notion of uniqueness adapted from the standard theory of Markov processes.

Consider the special case where a(t) = t − 1 for all t > 1, so that {kt} is first-order

Markov. Then it is well-known that the state space K can be uniquely partitioned as

K = T ∪ L1 ∪ . . . ∪ LJ where (1) T is a set of transient states, meaning that P(kt =

k for some t > 1|k1 = k) < 1 for k ∈ T , and (2) each Lj has the properties (1) kt ∈ Lj

implies kτ ∈ Lj for all τ > t and (2) Lj contains no strict subset with this property. The

process {kt} must eventually enter one of these sets Lj and will stay within it from then

on; if there is exactly one such set then we can speak of the process having a unique limit.

To adapt this notion to more general non-Markovian processes I introduce the concept

of agent t’s descendants D(t) = {τ : t ∈ A(τ)}; these are the agents from whom a series

of conversations trace back to t. Call a subset L ⊆ K a limit set if kt ∈ L implies kτ ∈ L

for all τ ∈ D(t) and L does not contain any proper subsets with this property. It is no

longer the case that kt ∈ Lj ⇒ kt′ ∈ Lj for all t′ > t, since it is possible that agent t′

speaks with a predecessor t′′ with kt′′ 6∈ Lj. However, if the chain has a unique limit set

L then Proposition 4 implies that limt→∞ P(kt ∈ L) = 1, so that we can speak of L as the

unique limit of the process regardless of the details of the interaction structure q. Our

next result shows that this is the case whenever V is supermodular.

Proposition 6. If V is supermodular then there exists a limit set L ⊆ K such that

limt→∞ P(kt ∈ L) → 1.

This may at first seem somewhat surprising given the association between comple-

mentarity and multiple equilibria in other models, but the essential idea is simple: for

there to be path-dependence it must hold that the accumulation of one kind of knowl-
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edge tends to discourage the accumulation of another kind, while under complementarity

accumulation of any one kind of knowledge weakly encourages the accumulation of other

kinds. Path-dependence thus requires some degree of substitutability.

Learning about alternative technologies has exactly this feature. Suppose that a

worker can choose between two software packages, A and B, and that his productivity

using either package depends on how skilled he is using it. Let the n units of knowledge

be skills specific to these packages, with skills 1, . . . , n/2 specific to alternative A and the

rest specific to B. A worker’s productivity using a particular package is proportional to

the number of specific skills he knows, with potentially different proportionality constants

αA and αB capturing intrinsic productivity differences. The worker’s value function is

V (k) = max






αA

n/2
∑

b=1

kb, αB

n∑

b=n/2+1

kb






(5)

Communicating each skill costs c and 0 < c < αz for z ∈ {A,B} so that it is locally

optimal to communicate a skill if and only if the recipient will use it. Workers’ initial

skills are concentrated in one or the other technology (this is privately optimal and also

broadly consistent with the outcome of social learning dynamics, as we shall see). Each

worker t knows a random subset of the skills relevant for one of the technologies, and let

lz be the most that any worker initially knows about technology z ∈ {A,B}.

Are there cases in which either technology could be selected with positive probability?

There is always positive probability of a finite sequence k̃1, . . . , k̃T occurring such that

agent T knows all the skills for either one of the technologies, so the key question becomes:

under what conditions will such an agent still choose with positive probability to teach a

peer about the other technology? The net local payoff from teaching about technology z

is at least n
2 (αz − c) (if the learner knows nothing about z). As for teaching z′, if we start

in a steady state in which agents have been communicating exclusively about z then the

teacher will be able to teach at most lz′ things about z
′, and so the net local payoff from

doing this is at most

αz′lz′ + (αz′ − c)min
{n

2
− lz′ , lz′

}

(6)

The first term is the payoff from skills the learner was endowed with, and the second the

payoff from skills transferred to him. We conclude that adoption of z is an absorbing

state if
n

2
(αz − c) > αz′lz′ + (αz′ − c)min

{n

2
− lz′ , lz′

}

(7)

As one would expect, this is more likely to hold when technology z is innately more

productive relative to z′ (i.e. αz large relative to αz′). Interestingly, it is also more likely

to hold as the total amount of available knowledge n/2 increases above the amount lz′

that any one person initially knows. Either technology outcome becomes more stable
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as knowledge is initially more disaggregated, because the likelihood of any one person

knowing enough to warrant a technology switch shrinks. Finally, lock-in on z becomes

(weakly) less likely as the cost c of communication increases, because this lowers the

benefits of teaching an agent accumulated skills relative to letting him use what he already

knows.

One can verify that (7) may hold for both z = A and z = B, in which case the process

has multiple absorbing states. In particular, many or all agents may become locked in

to an inferior technology. Further examination of (7) shows that as n grows large the

productivity gap αz′−αz can grow arbitrarily large and yet adoption of z remains an equi-

librium. The problem is that once one technology becomes sufficiently well-understood

it is no longer privately optimal to communicate about the other one, even if enough

discussion about the other could lead to its re-adoption. Consequently there may be

situations in which society would be better-off with either more or less communication

amongst early movers. This holds even though in some sense all communication external-

ities are driven by under-communication; here, under-communication of knowledge about

one technology is driven by earlier communication about the alternative.

Set against the literature on adoption, the interesting feature of this example is that

lock-in occurs even though there is no underlying payoff interdependency and no uncer-

tainty about the returns to either technology. Arthur (1989), Kremer and Miguel (2007),

and Brock and Durlauf (2010) are examples of models in which one agent’s returns from

adopting depend on other agents’ adoption choices, potentially leading to multiple equi-

libria. Uncertainty can lead to lock-in through herding (Banerjee, 1992; Bikhchandani et

al., 1992), through the use of decision rules that favor imitation (Ellison and Fudenberg,

1993, 1995), or through the standard bandit mechanism (Bala and Goyal, 1998). The

filtering model lacks both features but still yields lock-in, suggesting it may be a more

general phenomenon than previously appreciated.

5 Conclusion

For standard goods and services, functioning markets help to ensure that localized opti-

mization leads to aggregate efficiency. Markets for knowledge area rarely feasible, how-

ever; instead much of our knowledge flows to us through social interactions. A key issue

is under what conditions individual choices about what knowledge to communicate ag-

gregate up to efficient social learning. This paper addresses these question using a new

analytic framework which explicitly accounts for communication costs and characterizes

their implications for efficiency and for outcomes like technology adoption.

The perspective adopted here, that communication responds to local costs and ben-

efits, could be fruitfully applied to many other issues. One example is the design of
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messages such as product advertisements or social marketing campaigns. A theory of fil-

tering permits a distinction between messages that are individually persuasive and those

that are likely to “go viral” and become socially persuasive as well. Organizations are

another important area of application. Recent models have assumed contractible com-

munication and studied how to design organizations around real constraints (Bolton and

Dewatripont, 1994; Garicano, 2000; Crémer et al., 2007); locally optimal communication

may provide a way to understand and model incentive constraints.

Finally, while this paper has focused on learning how to do things, filtering is also

important for learning whether to do things – whether or not to buy a product, invest

in education, or adopt a technology when the returns are uncertain. The intuitions

developed here should transfer to such settings. For example, a technology with many

small benefits may take longer to catch on than a technology with one “killer app,”

because knowledge of these benefits is complementary.
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A Proofs

Theorems 3.1 and 3.2 of Topkis (1978) establish that V is supermodular (submodular)

if and only if it exhibits increasing (decreasing) differences; I generally use the latter

formulation.

A.1 Useful Lemmas

Lemma 2. If V is supermodular then C(ks, k̃r) is unique.

Proof. Suppose towards a contradiction that both k′, k′′ satisfy

k ∈ arg max
k∈Kr

V (k)− c · (k − k̃r)

where as before Kr = {k : k̃r - k - k̃r ∨ ks}. Let d′′ = k′′ \ k′; k′ and k′′ must be

un-orderable so |d′′| > 0. By local optimality (and invoking the tie-breaking assumption)

V (k̃r ∨ (k′′ \ d′′) ∨ d′′)− V (k̃r ∨ (k′′ \ d′′)) > c · d′′

By supermodularity

V (k̃r ∨ k′ ∨ d′′)− V (k̃r ∨ k′) ≥ V (k̃r ∨ (k′′ \ d′′) ∨ d′′)− V (k̃r ∨ (k′′ \ d′′))

since by definition k′ % k′′ \ d′′. But combining these equations yields V (k̃r ∨ k′ ∨ d′′)−

V (k̃r ∨ k′) > c · d′′, contradicting the local optimality of k′.

Lemma 3. If V is supermodular and k′s % ks then C(k′s, k̃r) % C(ks, k̃r).

Proof. By Lemma 2 C is uniquely defined by

C(ks, k̃r) = arg max
k∈Kr(ks)

V (k) − c · (k − k̃r) (8)

where Kr(ks) = {k : k̃r - k - k̃r ∨ ks}. The objective function is supermodular since V

is supermodular and costs are linear; by Theorem 4 of Milgrom and Shannon (1994) it

is sufficient to show that the constraint sets Kr(ks) are increasing in ks in the strong set

order.

Suppose therefore that k′s % ks and let k ∈ Kr(ks), k
′ ∈ Kr(k

′
s). We know k ∧ k′ -

k - ks ∨ k̃r. Since both k % k̃r and k′ % k̃r we must have k ∧ k′ % k̃r. Together these

facts establish k ∧ k′ ∈ Kr(ks). We know k ∨ k′ % k % k̃r. Since both k′ - k′s ∨ k̃r and

k - ks ∨ k̃r - k′s ∨ k̃r we must have k ∨ k′ - k′s ∨ k̃r. Together these facts establish

k ∨ k′ ∈ Kr(k
′
s). This establishes that Kr(·) is increasing in the strong set order.
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Lemma 4. Consider a sequence {zr} on the n-dimensional simplex with limr→∞ zr = z

and a sequence {yt} such that yt is on the t − 1-dimensional simplex, with ytr denoting

the rth component. The series xt =
∑

r<t y
t
rz

r evolves on the n-dimensional simplex. Let

Y t
r =

∑

s≤r y
t
s. If limt→∞ Y t

r = 0 for every finite r, then limt→∞ xt = z.

Proof. Fix ǫ > 0 and decompose

|xt − z| =

∣
∣
∣
∣
∣
∣

∑

s≤r

yts(z
s − z) +

t∑

s=r+1

yts(z
s − z)

∣
∣
∣
∣
∣
∣

Since zr → z, ∃r such that r > r implies |zr − z| ≤ ǫ
2 . Moreover since Y t

r → 0 for this r,

∃t(r) > r such that t > t(r) implies Y t
r ≤ ǫ

2 . For t > t(r),

|xt − z| ≤
∑

s≤r

yts |z
s − z|+

t∑

s=r+1

yts |z
s − z|

by the triangle inequality. |zs−z| ≤ 1 so the left-hand term is at most Y t
r ≤ ǫ

2 ; |z
s−z| ≤ ǫ

2

for s > r, so the right-hand term is at most ǫ
2 . Thus |xt − z| ≤ ǫ.

Lemma 5. Let ptd be the probability that agent t is d steps from agent 1 in the commu-

nication tree, and let P t
d =

∑

s≤d p
t
s be the probability that agent t is at most d steps from

agent 1. Then for any fixed d, limt→∞ P t
d = 0.

Proof. Agent t is matched to some agent τ < t according to the distribution q(t, τ). The

a priori probability ptd that agent t is d steps away from agent 1 is

ptd =
∑

r<t

q(t, r)prd−1

and so the probability of being at most d steps away from agent 1 is

P t
d =

∑

s≤d

∑

r<t

q(t, r)prs−1

=
∑

r<t

∑

s≤d

q(t, r)prs−1

=
∑

r<t

q(t, r)
∑

s≤d

prs−1

=
∑

r<t

q(t, r)
∑

s≤d−1

prs

=
∑

r<t

q(t, r)P r
d−1

It is trivial that P t
0 = 0 for any agent t > 1 (all agents must be at least one hop away from

the root node) and therefore limt→∞ P t
0 = 0. We will show by induction that P t

u must
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also approach 0 for any u > 0. Suppose then that for u ≤ d− 1 we know limt→∞ P t
u = 0.

Then by applying Lemma 4 to the last line above, it will also hold that limt→∞ P t
d = 0

provided that

lim
t→∞

∑

s≤τ

q(t, s) = 0

Since q(t, τ) is weakly increasing in τ we must have

∑

s≤τ

q(t, s) ≤
τ

t

which carried into the limit gives the desired result. Therefore by induction we have

limt→∞ P t
d = 0 for any finite d as desired.

A.2 Proof of Proposition 4

Proof. The approach is as follows: first, show that πt converges to a limit π when q has

the first-order Markov structure

q(t, τ) =







1 τ = t− 1

0 τ 6= t− 1
(9)

and then show that if this holds then πt must converge to the same π for any other

admissible q.

First, let q be as above so that {kt} is a first-order Markov chain. It is well-known (e.g.

Theorem 6.4.21 of Grimmett and Stirzaker (2002)) that the corresponding probabilities

πt(k) converge if the chain is aperiodic, and since πt is finite dimensional this also implies

convergence of πt using the Euclidean metric. To establish aperiodicity, note that if

k̃t+1 = k̃t then by local optimality we must have kt+1 = kt. Consequently for any state k

that is reached with positive probability it is possible to return to k after m periods for

any integer m. Ignoring states that are never reached, this implies that the entire process

{kt} is aperiodic as required.

Now consider an arbitrary admissible q and let πt be the a priori distribution over K

for agent t. Let π(d) be the corresponding a priori probability distribution for an agent

conditional on being d steps removed from the root agent 1; by appeal to the above result

for Markov chains, π(d) → π for some π as d → ∞. Finally, let ptd be the probability

that agent t is d steps from the root agent. Then

πt =
∑

τ<t

pτdπ(d) (10)

By Lemma 5, limt→∞ P t
d = 0. By Lemma 4, this along with π(d) → π as d → ∞ implies
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limt→∞ πt = π as well.

A.3 Proof of Lemma 1

If. Consider any admissible sequence of knowledge endowments and let τ be such that

k̃1 ∨ . . . ∨ k̃τ = k. V (k)− V (k) > c · (k − k) clearly implies that if kt = k then it must be

efficient to have kt′ = k for all t′ > t. Thus in order for complete learning to be long-run

inefficient it would have to be that the optimum involved kt ≺ k for all τ < t ≤ T and for

arbitrarily large T . The welfare change from switching from this policy to one in which

all agents communicate everything to their successors is at least

[
T∑

t=τ+1

(
V (k)− V (kt)− c · (k − kt)

)

]

−

[

τ
∑

b

cb

]

(11)

where the summation captures the benefits to agents indexed greater than τ and the

last term is an upper bound on the costs to agents indexed less than τ . Letting B =

mink≺k V (k) − V (k) − c · (k − k), we obtain a lower bound on the welfare change equal

to B(T − τ)− τ
∑

b c
b, which is positive for sufficiently large T .

Only If. Suppose there exists some k ≺ k such that V (k) − V (k) ≤ c · (k − k).

For any T , k̃T - k occurs with positive probability (since (0, . . . , 0) ∈ support(F )). If

V (k)−V (k) < c · (k− k) then kT = k is inefficient; if V (k)−V (k) = c · (k− k) then there

is an efficient communication pattern with kT ≺ k. Either case contradicts the definition

of long-run efficient learning.

A.4 Proof of Proposition 5

Long-run Learning is Inefficient. By Lemma 1 this implies there exists k such that

V (k)− V (kt) < c · (k − k). For any t, k̃t - k with positive probability, since (0, . . . , 0) ∈

support(F ). Regardless of whom t speaks with, kt ≺ k by local optimality.

Long-run Learning is Efficient for Submodular V . I will show that the unique

limit on a chain is complete learning and then appeal to Proposition 4 to extend the result

to general processes satisfying Assumption 4. Fix any kt and any k̃t+1. Suppose towards

a contradiction that kt+1 ≺ kt ∨ k̃t+1 and let d ≡ k̃t+1 ∨ kt − kt+1 be the knowledge not

communicated to t+1. By submodularity, V (kt+1 ∨ d)− V (kt+1) ≥ V (k)− V (k \ d). By

Lemma 2, V (k)−V (k\d) ≥ c ·d. Together these imply a contradiction of local optimality.

Thus kt+1 = kt ∨ k̃t+1 and complete learning eventually obtains with probability 1.

Long-run Learning is Efficient for Supermodular V . Proposition 4 establishes

that there is a unique long-run limit and that it can be found by studying the linear

case in which agent t speaks with agent t− 1. It remains to establish the necessary and

sufficient conditions for this limit to be complete learning.
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If. Suppose there exists a sequence {k∗t } with the given properties. By admissibility

of F , k1 = k̃1 % k∗1 occurs with positive probability. Inductively suppose that the event

{kt % k∗t } occurs with positive probability for some t. Suppose kt+1 % k∗t+1 does not hold;

then the message m from t to t+ 1 must satisfy m ≺ k∗t , and if d = k∗t −m it must be

that |d| > 0. Then

V (kt+1 ∨ d)− V (kt+1)− c · d ≥ V (k∗t+1)− V (k∗t+1 \ d)− c · d

= V (k∗t+1)− V ((k∗t − d) ∨ eb(t+1))− c · d

> 0

The first weak inequality follows from supermodularity and kt+1 % k∗t+1 \ d; the second

strict inequality inequality is by assumption, since |d| > 0. The result contradicts local

optimality; we can conclude that kt+1 % k∗t+1. Thus by induction an entire sequence

{kt} such that kt % k∗t arises with positive probability, and in particular k is reached

with positive probability. Relevance requires that V (k) − V (k) > c · (k − k) for all k so

that once reached the state k persists and thus {k} constitutes a limit set. Finally by

Proposition 6 this limit is unique.

Only If. It is enough to show that the given conditions are necessary for some

particular class of admissible distributions F ; here I consider those such that |k| = 1 for

all k ∈ support(F ). Suppose that in the unique limit kt = k. Then there must exist a

finite sequence k̃1, . . . , k̃T generating k1, . . . , kT such that kT = k. The proof proceeds by

repeatedly pruning this sequence to obtain a subsequence with the stated characteristics.

First, prune elements from the beginning of the chain until k2 = k̃1 + k̃2. Next,

suppose that there exists 1 < τ < T such that mτ+1 ≡ kτ+1 − k̃τ+1 - kτ − k̃τ ≡ mτ .

mτ denotes the “message” or knowledge passed in conversation to agent τ , and we have

defined a situation where knowledge passed to τ is not passed to τ + 1. Consider the

modified sequence k̃1, . . . , k̃τ−1, k̃τ+1, . . . , k̃T generating k̂1, . . . , k̂τ−1, k̂τ+1, . . . , k̂T . I claim

that k̂τ+1 % kτ+1. Let d = kτ+1 \ k̂τ+1 - mt+1 and suppose towards a contradiction that

|d| > 0. Then

V (k̂τ+1 ∨ d)− V (k̂τ+1) = V (k̂τ+1 ∨ (kτ+1 \ d) ∨ d)− V (k̂τ+1 ∨ (kτ+1 \ d))

≥ V ((kτ+1 \ d) ∨ d)− V (kτ+1 \ d)

> c · d

where the first inequality follows from supermodularity and the second from local opti-

mality in the original sequence. But since d - mt+1 - mt - kτ−1 = k̂τ−1 it is feasible to

send d to agent τ +1 in the modified sequence, so we have a violation of local optimality

in the modified sequence. Hence |d| = 0, i.e. k̂τ+1 % kτ+1. By repeated application of
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Lemma 3 it must then hold that the modified sequence still finishes with k̂T = k.

Finite repetition of this pruning yields a chain k̃′1, . . . , k̃
′
T ′ in which m′

t ≻ m′
t−1 for all

1 < t ≤ T ′ – or in other words, m′
t = k′t−1 and k′t = k′t−1 + k̃′t – and still k′T ′ = k. By

local optimality V (k′t) − V (k) > c · (k′t − k) for any k ≺ m′
t = k′t−1. The sequence {k′t}

thus satisfies the desired conditions.

A.5 Proof of Proposition 6

Proof. By Proposition 4 it is sufficient to prove the result for the case in which agent t

speaks with agent t − 1, so that {kt} is a Markov chain on a finite state space K. It is

well-known (see for example Grimmett and Stirzaker (2002)) that it eventually reaches

a limit set L ⊆ K such that all elements in L intercommunicate and no element in

L communicates with an element not in L. Suppose towards a contradiction that two

such limit sets L and L′ exist. Let l and l′ be maximally-valued elements within them,

i.e. let V (l) ≥ V (l̂) for all l̂ ∈ L, and similarly for l′. If both limit sets are reached with

positive probability then there exist endowment sequences {k̃t}
T
t=1 and {k̃′t}

T ′

t=1 generating

knowledge sequences {kt}
T
t=1 and {k′t}

T ′

t=1 that reach l and l′, respectively. Without loss

of generality let V (l) ≤ V (l′).

Now consider the evolution of the process beginning at kτ = l, and suppose that

that (as occurs with positive probability) ensuing draws from the support of F yield the

sequence {k̃′t}. Trivially kτ+1 % k̃′1, and by repeated application of Lemma 3 kτ+T ′ % l′,

which implies V (kτ+T ′) ≥ V (l′). If this is strict then V (kτ+T ′) > V (l′) ≥ V (l) which

contradicts the maximality of V (l) on L; if instead V (kτ+T ′) = V (l′). If kτ+T ′ ≻ l′

then since l′ % k̃′T ′ the difference kτ+T ′ − l′ must be contained in kτ+T ′−1, but then the

conversation between τ + T ′ − 1 and τ + T ′ violated local optimality. So kτ+T ′ = l′, and

therefore l communicates with l′, contradicting the definition of L.
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