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Abstract

This article extends the classic Rothschild–Stiglitz characterization of comparative risk (“increasing risk”) in two
directions. By adopting a more general definition of “mean preserving spread” (MPS), it provides a direct
construction of a sequence of MPS’s linking any pair of distributions that are ranked in terms of comparative
risk. It also provides a direct, explicit construction of a zero-conditional-mean “noise” variable for any such pair
of distributions. Both results are extended to the case of second order stochastic dominance.
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This article offers some contributions to the theory of comparative risk (“increasing
risk”), arising from the work of Hardy, Littlewood, and Pólya (1929: 1934, pp.49,89),
Blackwell (1951, 1953), Strassen (1965), Hadar and Russell (1969), Hanoch and Levy
(1969), and others, culminating in the four-way characterization of Rothschild and Stiglitz
(1970, 1971). Sparked especially by the latter, this topic has received widespread attention
and application in the economics of uncertainty, and at this point it is hard to envision
what the field would look like without it.1

Rothschild and Stiglitz present four notions of what it might mean for a univariate
cumulative distribution function G[ to be “riskier” than a distribution F[ with the same
mean, and show that each is equivalent to the others. Loosely speaking, these are:

• G[ can be obtained from F[ by a sequence of one or more “mean preserving
spreads.”

• G[ can be obtained from F[ by the addition of zero-conditional-mean “noise.”
• G[ and F[ satisfy an “integral condition” over their combined support.
• All risk averse expected utility maximizers weakly prefer F[ to G[.

However, the original Rothschild–Stiglitz characterization is not as general or direct as
it might be. The original definition of a mean preserving spread only included spreads
from one discrete distribution to another, or from one density function to another, and a
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more general definition has since appeared, for which we argue below. Concerning the
characterization itself:2

• Sequences of MPS’s are explicitly constructed only between pairs of finite-outcome
probability distributions. For more general F[ and G[, the formal result consists of
constructing two sequences of finite-outcome distributions, Fn[ R F[ and Gn[ R
G[, such that for each n, Gn[ can be obtained from Fn[ by a finite number of MPS’s.

• The noise variable is also explicitly constructed only for pairs of finite-outcome dis-
tributions. For general F[ and G[, the formal result consists of constructing a noise
variable for each (Fn[,Gn[) pair in the above sequences, and invoking a limit theorem
to establish the existence of a noise variable linking F[ and G[.

The purpose of this article is to present more general and direct versions of these
results. Specifically:

• Given arbitrary distributions F[ and G[ satisfying the integral condition, we explic-
itly construct a sequence of MPS’s, beginning at F[ and converging directly to G[.

• Given arbitrary distributions F[ and G[ satisfying the integral condition, we explic-
itly construct a zero-conditional-mean noise variable «̃, such that if x̃ has distribution
F[, then x̃ 1 «̃ will have distribution G[.

We then incorporate these two results to obtain a more general and direct statement of the
four-way Rothschild–Stiglitz characterization of comparative risk, and extend them to the
case of second order stochastic dominance. We conclude with mention of related work.

1. Argument for a more general definition of MPS

We adopt the Rothschild–Stiglitz setting of all cumulative distribution functions F[, G[,
… over a closed bounded interval, say [0,M].3 In (1970, Section II), they define G[ to
differ from F[ by a mean preserving spread under either of the following conditions:

For pairs of discrete distributions: F[ and G[ assign identical probabilities except
to the points x1 , x2 , x3 , x4, where the differences in their probabilities satisfy:

g1 2 f1 5 a g2 2 f2 5 2a g3 2 f3 5 2b g4 2 f4 5 b. (1)

For pairs of distributions with density functions: F[ and G[ have identical densities
except over the nonoverlapping intervals (x1, x1 1 t), (x2, x2 1 t), (x3, x3 1 t) and
(x4, x4 1 t) with x1 , x2 , x3 , x4, where the difference in their densities satisfies:

104 MACHINA/PRATT

Kluwer Journal
@ats-ss10/data11/kluwer/journals/risk/v14n2art1 COMPOSED: 04/07/97 1:08 pm. PG.POS. 2 SESSION: 10

5% 50% 90% 100%



JOBNAME: Kluwer Journals − RI PAGE: 3 SESS: 14 OUTPUT: Wed Apr 30 09:32:12 1997
/data11/kluwer/journals/risk/v14n2art1

g~x! 2 f~x! [ a
AnnnBnnnC
for all x [ ~x1, x1 1 t!

g~x! 2 f~x! [ 2a
AnnnBnnnC
for all x [ ~x2, x2 1 t!

g~x! 2 f~x! [ 2b
AnnnBnnnC
for all x [ ~x3, x3 1 t!

g~x! 2 f~x! [ b
AnnnBnnnC
for all x [ ~x4, x4 1 t!.

(2)

In each case we require a, b $ 0 (to ensure a spread) and a · (x2 2 x1) 5 b · (x4 2 x3)
(to ensure equal means).

Both these cases exemplify the Rothschild–Stiglitz idea of a single (or “basic”) spread
of mass, from the center of a distribution toward its tails. But there are other types of
“spreads,” arguably just as “basic,” that do not take the form of (1) or (2). For example:

• a spread of the degenerate distribution at 1/2 to the uniform distribution on [0,1]
• a spread of the uniform distribution on [0,1] to a 50;50 chance of 0;1.

However, the most restrictive feature of the Rothschild–Stiglitz definition is that it only
applies to distributions that are discrete, or have density functions. Yet we would also want
to classify the following as basic or “single” mean preserving spreads:

• a spread of the degenerate distribution at 1/2 to the Cantor distribution4 C[ on [0,1]
• a spread of the Cantor distribution on [0,1] to a 50;50 chance of 0;1 even though the

Cantor distribution possesses neither mass points nor a density.

This last example illustrates why a more general notion of mean preserving spread
would be required to obtain a direct “sequence of mean preserving spreads” result for
general univariate probability distributions: Although the two distributions in the example
clearly satisfy each of the other three notions of comparative risk (the integral condition,
addition of noise,5 and unanimity of preference), there can be no sequence C[ 5 F0[,
F1[, F2[ … in which each step takes the form (1) or (2). The reason is that C[ has
neither positive mass points nor any positive density, so there can be no first distribution
F1[ that differs from C[ by either (1) or (2). In light of this, it seems that the original
Rothschild–Stiglitz “double-sequence” result is probably the strongest one that can be
obtained under their definition of mean preserving spread.

We accordingly adopt the following definition, which essentially consists of any mean
preserving transfer of some or all of the probability mass within a finite interval, out to or
beyond its end points. It is worded so that it may be applied to any pair of finite-mean
distributions over (2`,1`):6

Definition. A cumulative distribution function G[ is said to differ from F[ by a mean
preserving spread if F[ and G[ have the same finite expected value, and there exist
outcome levels x8 # x9 such that:7
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G[ assigns at least as much probability as F[ to every subinterval of (2`,x8),
G[ assigns no more probability than F[ to every subinterval of (x8,x9),
G[ assigns at least as much probability as F[ to every subinterval of (x9,1`).

Some remarks:

1. Note that the probabilities assigned to the points x8 and/or x9 could either rise, remain
unchanged, or drop. This follows because x8 and/or x9 could be either part of the central
region that loses probability, or else one of the tail regions that gain probability.

2. Like (1) and (2), this definition implies that each distribution F[ differs from itself by
a mean preserving spread, which we term a null spread.

3. The case of x8 5 x9, which implies that the interval (x8,x9) is empty, does not neces-
sarily imply a null spread. It also includes the case of spreading a strictly positive
amount of probability mass from the point x8 to the intervals (2`,x8) and (x8,1`),
because the condition that G[ assign at least as much probability as F[ to every
subinterval of (2`,x8) and (x8,1`) implies that G[ assigns no greater probability
than F[ to x8.

All subsequent references to mean preserving spread are to this more general definition,8

and we refer to cases (1) and (2) as R-S mean preserving spreads.

2. A direct sequence of mean preserving spreads

The original Rothschild–Stiglitz characterization linked the “sequence of MPS’s” condi-
tion and the other notions of comparative risk to the following “integral conditions” on a
pair of distributions F[ and G[:9

*
0

x
@G~v! 2 F~v!#dv $ 0 for all x [ @0, M! and *

0

M
@G~v! 2 F~v!#dv 5 0.

(3)

It is straightforward to show that if a sequence of distributions F[ 5 H0[, H1[, H2[,
… converges to G[, and each Hn11[ differs from Hn[ by a single mean preserving
spread (R-S or more general), then F[ and G[ will satisfy the integral condition (3).10

As Rothschild and Stiglitz (1970, p. 231) note, however, they did not establish the exact
converse of this statement, but rather that, if F[ and G[ satisfy the integral condition,
then there exist two sequences of discrete distributions, Fn[ R F[ and Gn[ R G[,
such that each Gn[ differs from Fn[ by a finite number of (discrete) R-S mean
preserving spreads.

However, the above more general definition of an MPS does allow us to establish the
full converse, by constructing a sequence H0[, H1[, H2[, … directly from F[ to
G[:11
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Theorem 1 (Construction of a Sequence of MPS’s). If the cumulative distribution func-
tions F[ and G[ on [0,M] satisfy the integral condition (3), then one can construct a
sequence of distributions F[ 5 H0[, H1[, H2[ …, converging to G[, such that for
every n, Hn11[ differs from Hn[ by a mean preserving spread.12

We sketch the construction here. Each step takes a distribution H [ that is “less risky”
than G[ (i.e., satisfies the integral condition with respect to G[), and generates a mean
preserving spread to construct a new distribution H11[ that is still less risky than G[,
but is now “closer” to G[. Each spread in the construction consists of shifting all the
probability mass of an interval out to its end points, and the spreads are chosen so that the
resulting sequence of distributions converges to G[.

Consider Figure 1, which plots the two integrated cumulative functions

H ~x! [ *
0

x
H~v! dv and G~x! [ *

0

x
G~v! dv. (4)

By the integral condition (3), we know that H (0) 5 G(0) 5 0, H (M) 5 G(M), and H [
lies on or below G[ everywhere else on [0,M]. Note that because H [ and G[ are
integrals of nondecreasing nonnegative functions, they are both nondecreasing convex
functions.

Pick any point on the curve G[ and consider its tangent line L[, which by convexity
must lie everywhere on or below G[. We use this tangent to “slice” the curve of H [, in
the sense that we extend L[ northeast and southwest until it meets H [ at the outcome
levels x8 and x9, then define H11[ to be the pointwise maximum (upper envelope) of H [
and the line L[.

Figure 1. “Slicing” the integrated cumulative function H[ to generate a mean preserving spread.
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“Slicing” the integrated cumulative in this manner shifts all the probability mass from
the interval (x8,x9) out to its end points, without changing the mean of the distribution.
This can be seen as follows: Because H11[ is convex, it is the integrated cumulative of
a distribution H11[ that is identical to H[ below x8 and above x9, but is constant over
(x8,x9). Accordingly, H11[ assigns the same probability as H[ to every interval below x8

and every interval above x9, but assigns zero probability to every subinterval of (x8,x9).
This implies that H11[ is obtained from H[ by shifting all the mass from (x8,x9) out to
its end points x8 and x9. The positive probability that H11[ assigns to each point x8 and
x9—that is, its discontinuous jumps at these points—is reflected in the figure by the
convex kinks in its integrated cumulative function H11[ at x8 and x9. In addition, because
H11(M) 5 H(M), H11[ and H[ have the same mean, so H11[ differs from H[ by a
mean preserving spread. Finally, because H11[ lies on or below G[, H11[ still satisfies
the integral condition with respect to G[.

Of course, this slice only generates a single mean preserving spread. However, as
illustrated in Figure 2, we can then slice H11[ to obtain a new integrated cumulative
H12[, closer to G[, whose corresponding distribution H12[ differs from H11[ by
another mean preserving spread. Continuing in this way, the successive slices can be
chosen to generate a sequence of integrated cumulatives H [, H11[, H12[ … ap-
proaching G[, whose corresponding distributions H[, H11[, H12[ … converge to the
distribution G[.

Figure 2. Successive slicing to generate a sequence of mean preserving spreads.
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3. Direct construction of “noise”

The Rothschild–Stiglitz characterization implies that if the distributions F[ and G[
satisfy the integral condition (3), then there exists a joint distribution of the random
variables (x̃,«̃), such that the marginal distribution of x̃ is F[, E[«̃ . x] [ 0, and the
distribution of z̃ 5 x̃ 1 «̃ is G[. Thus, G[ can be thought of as being obtained from F[
by the addition to x̃ of a zero-conditional-mean “noise” variable «̃.

Rothschild and Stiglitz (1970, pp.238-240) construct such a noise variable «̃, and thus
a joint distribution K(x̃,«̃), for any pair of finite-outcome distributions that differ by a
single R-S mean preserving spread. They extend this result to distributions that differ by
a finite number of mean preserving spreads by proving that finite compositions of such
noise variables are also noise.13 To extend the result to arbitrary distributions F[ and G[
satisfying (3), they: (a) construct sequences Fn[ R F[ and Gn[ R G[ of finite-
outcome distributions such that each Gn[ differs from Fn[ by a finite number of MPS’s,
so that by the earlier result there will be a joint distribution Kn(·,·) linking each pair;
(b) use a limit theorem14 to show that the sequence Kn(·,·) has a subsequence converging
to some joint distribution K*(·,·); and (c) prove that K*(·,·) must satisfy the “addition of
noise” condition with respect to F[ and G[.

The following result constructs the noise variable directly from any pair of distributions
F[ and G[ that satisfy the integral condition (3):

Theorem 2 (Construction of Zero-Conditional-Mean Noise). If the cumulative distribu-
tion functions F[ and G[ on [0,M] satisfy the integral condition (3), then one can
construct a set of random variables {«̃(x) . x [ [0,M]}, with E[«̃(x)] 5 0 for each x, such
that if x̃ has distribution F[ then ỹ 5 x̃ 1 «̃(x̃) has distribution G[.15

Figure 3 illustrates our construction in the case of a pair of strictly increasing, differ-
entiable distributions F[ and G[. In the figure, “1” indicates the area between the
functions where G[ lies to the left of F[, and “2” indicates the area where G[ lies to
the right of F[. The conditional noise variables are defined a pair at a time. Specifically,
pick probability levels u and v such that the horizontal “1” area up to u equals the
horizontal “2” area up to v, and let xu, xv, yu, and yv satisfy u 5 F(xu) 5 G(yu) and v 5
F(xv) 5 G(yv). Define the noise variable «̃(xu) so that it has mean 0 and takes the outcome
xu to the outcomes {yu, yv}, and similarly for «̃(xv). In other words, define16

«̃~xu! 5 5yu 2 xu with probability
yv 2 xu

yv 2 yu

yv 2 xu with probability
xu 2 yu

yv 2 yu

«̃~xv! 5 5yu 2 xv with probability
yv 2 xv

yv 2 yu

yv 2 xv with probability
xv 2 yu

yv 2 yu

(5)
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so that ỹ(x) 5 x 1 «̃(x) will satisfy

ỹ~xu! 5 5yu with probability
yv 2 xu

yv 2 yu

yv with probability
xu 2 yu

yv 2 yu

ỹ~xv! 5 5yu with probability
yv 2 xv

yv 2 yu

yv with probability
xv 2 yu

yv 2 yu

(6)

Adding the random variable «̃(xu) to xu thus serves to split the probability (density)
originally assigned to xu by the distribution F[, sending proportion (yv 2 xu)/(yv 2 yu)
of it down to the outcome value yu, and the rest up to yv. Similarly, adding «̃(xv) to xv splits
the original probability at xv sending proportion (yv 2 xv)/(yv 2 yu) down to yu and the rest
up to yv. This construction yields a zero-conditional-mean noise variable «̃(x) for all x [
[0,M].

To see that the aggregate effect is to yield a random variable ỹ 5 x̃ 1 «̃ with distribution
G[, consider Figure 4, where the horizontal “1” area up to u again equals the horizontal
“2” area up to v, and similarly for u8 and v8. It is clear that the probability ultimately

Figure 3. Construction of the conditional noise variables «̃(xu) and «̃(xv).
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assigned to the interval @yu, yu8#—in other words, Pr$ỹ [ @yu, yu8#%—consists of the amount
of probability sent there from @xu, xu8# plus the amount sent there from @xv, xv8#, so that we
have

Pr $ỹ [ @yu, yu8#% 5 Pr $ỹ [ @yu, yu8#u x̃ [ @xu, xu8#%•Pr $x̃ [ @xu, xu8#%

1 Pr $ỹ [ @yu, yu8#ux̃ [ @xv, xv8#%•Pr $x̃ [ @xv, xv8#%. (7)

The above discussion implies that when the intervals @xu, xu8# and @xv, xv8# are very small,
we can approximate the above two conditional probabilities by (yv 2 xu)/(yv 2 yu) and
(yv 2 xv)/(yv 2 yu), respectively. Indicating first-order approximations17 by ', we accord-
ingly have

Pr $ỹ [ @yu, yu8#% '
yv 2 xu

yv 2 yu

•Pr $x̃ [ @xu, xu8#% 1
yv 2 xv

yv 2 yu

•Pr $x̃ [ @xv, xv8#%

5
yv 2 xu

yv 2 yu

•~u8 2 u! 1
yv 2 xv

yv 2 yu

•~v8 2 v!

Figure 4. Demonstration that ỹ 5 x̃ 1 «̃ has distribution G(·).
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'
yv 2 xu

yv 2 yu

•~u8 2 u! 1
xu 2 yu

yv 2 yu

•~u8 2 u!

5 u8 2 u 5 G ~yu8
! 2 G~yu!, (8)

where the second approximation follows because the “1” area between the levels u and
u8 equals the “2” area between the levels v and v8, so that (yv 2 xv) · (v8 2 v) '
(xu 2 yu) · (u8 2 u). A corresponding argument establishes the first-order approximation
Pr$ỹ [ @yv, yv8#% ' G ~yv8

! 2 G~yv!. Therefore, the random variable ỹ 5 x̃ 1 «̃ has
distribution G[. The formal proof establishes this result for arbitrary (e.g., not necessar-
ily differentiable, continuous, or strictly increasing) distributions over [0,M].18

4. A strengthened characterization of comparative risk

Theorems 1 and 2 can be combined with classical results to fully extend the four-way R-S
characterization from finite-outcome distributions and/or densities to arbitrary pairs of
equal-mean probability distributions over [0,M]:

Theorem 3 (Characterization of Comparative Risk). The following conditions on a pair of
cumulative distribution functions F[ and G[ over an outcome interval [0,M] are equiva-
lent, and each implies that F[ and G[ have the same mean:

(a) G[ can be obtained from F[ by a sequence of mean preserving spreads; that is,
there exists a sequence F[ 5 H0[, H1[, H2[ … converging to G[, such that for
every n, Hn11[ differs from Hn[ by a mean preserving spread.19

(b) There exists a pair of jointly distributed random variables (x̃, «̃) with E[«̃ . x] 5 0 for
all x, such that F[ and G[ are the cumulative distribution functions of x̃ and x̃ 1 «̃,
respectively.

(c) *
0

x
@G~v! 2 F~v!#dv $ 0 for all x [ [0,M), and *

0

M
@G~v! 2 F~v!#dv 5 0.

(d) *
0

M
U~x!dG~x! # *

0

M
U~x!dF~x! for every concave function U[ over [0,M].20

In such a case we say that G[ differs from F[ by a mean preserving increase in risk
(MPIR), and that F[ differs from G[ by a mean preserving reduction in risk (MPRR).

The implications (c) ⇒ (a) and (c) ⇒ (b) in this characterization are Theorems 1 and
2 above. The implications (a) ⇒ (c) and (b) ⇒ (d) are straightforward (Rothschild and
Stiglitz’s arguments apply to general probability distributions), and (d) ⇒ (c) can be
proved via integration by parts and proper selection of concave functions U[ (Rothschild
and Stiglitz (1970, p. 238)).
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5. Extension to second order stochastic dominance

The notion of comparative risk is the equal-means case of second order stochastic domi-
nance (SSD) over pairs of probability distributions. Hadar and Russell (1969), Hanoch
and Levy (1969), and others have shown that a distribution F[ is weakly preferred to G[
by all risk averse expected utility maximizers if and only if

*
0

x
@G~v! 2 F~v!#dv $ 0 for all x [ @0,M# (9)

in which case F[ is said to second order stochastically dominate G[. Note that (9)
implies that the mean of F[ is greater than or equal to the mean of G[, and (3) is
stronger only in requiring equality at x 5 M, that is, equal means. Second order stochastic
dominance can be thought of as a combination of a mean preserving reduction in risk
and/or first order stochastic dominance, where F[ is said to first order stochastically
dominate G[ if F(x) # G(x) for all x [ [0,M] (e.g., Quirk and Saposnik (1962)). A
simple special case of a first order stochastically dominating shift is:

Definition. A distribution F[ is said to differ from G[ by a rightward shift of probability
mass if there exists an outcome level x8 such that:

F[ assigns at least as much probability as G[ to every subinterval of (x8,1`),
F[ assigns no more probability than G[ to every subinterval of (2`,x8).

In such a case, G[ is said to differ from F[ by a leftward shift of probability mass.21

Each of the equal-mean constructions of Theorems 1 and 2 can be extended to the case
of second order stochastic dominance. Specifically, given arbitrary distributions F[ and
G[ over [0,M] satisfying the SSD integral condition (9):

• One can construct a sequence of distributions F[ 5 H0[, H1[, H2[ … converging
to G[, such that for each n, Hn11[ differs from Hn[ either by a mean preserving
spread or by a leftward shift of probability mass.

• One can construct a family {«̃(x) . x [ [0,M]} of nonpositive mean noise variables,
such that if x̃ has distribution F[, then x̃ 1 «̃ will have distribution G[.

Each of these constructions involves a simple adjustment to its equal-mean counterpart,
which we can illustrate here.22 In each case, assume that F[ has a greater mean than G[,
so that *0

MF~v!dv , *0
M G~v!dv.23 The SSD sequence F[ 5 H0[, H1[, H2[ …

involves an initial leftward shift of probability mass to obtain a distribution H1[, which
differs from G[ by the equal-mean integral condition (3). Figure 5 shows how H1[ can
be constructed from the integrated cumulative functions F~x! [ *0

x F~v!dv and
G~x! [ *0

x G~v!dv. Because F(M) , G(M) and G[ is a convex function whose slope is
never greater than one, the straight line W[ that passes through the point (M, G(M)) and
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has unit slope must lie everywhere on or below G[, and must intersect F[ at some point
W [ [0,M). Let H1[ be the pointwise maximum of F[ and W[, and let H1[ be the
distribution corresponding to H[. The figure reveals that H1[ differs from F[ by a
leftward shift of probability mass, namely a shifting of all of F[’s mass on the interval
[W,M] to the point W.24 Because the figure also shows that H1[ satisfies the equal-mean
integral condition (3) with respect to G[, the distributions H2[, H3[ … can be obtained
by mean preserving spreads as in the earlier construction.

The SSD noise variable «̃(x) differs from its equal-mean counterpart in that it is
degenerate and negative for some outcome levels x. Because the greater mean of F[
implies *0

M @F~x! 2 G~x!#dx , 0, so that the entire “1” area between F[ and G[
strictly exceeds the entire “2” area, there is some probability level ū such that the “1”
area up to ū equals the entire “2” area, as illustrated in Figure 6. Thus, in addition to
outcome pairs such as xu, xv and their corresponding equal-mean noise variables «̃(xu),
«̃(xv) (as in Figure 3), there will be outcomes such as xû with degenerate noise variable
«̃(xû) [ yû 2 xû , 0. The discussion following Figure 4 can be extended to this case by
noting that, while the random variables such as «̃(xu) and «̃(xv) continue to shift probabil-
ity mass both down and up (leftward and rightward), random variables such as «̃(xû) shift
all of the probability mass at xû leftward to the outcome yû so that the aggregate effect
again yields a random variable x̃ 1 «̃(x) with distribution G[.

We can use these extended constructions to obtain the following four-way character-
ization of second order stochastic dominance:

Theorem 3* (Characterization of Second Order Stochastic Dominance). The following
conditions on a pair of cumulative distribution functions F[ and G[ over an outcome
interval [0,M] are equivalent, and each implies that the mean of F[ is greater than or
equal to the mean of G[:

Figure 5. Generating a leftward shift of probability mass.
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(a8) G[ can be obtained from F[ by a sequence of mean preserving spreads and/or
leftward shifts of probability mass; that is, there exists a sequence F[ 5 H0[, H1[,
H2[ … converging to G[, such that for every n, Hn11[ differs from Hn[ by a
mean preserving spread or a leftward shift of probability mass.

(b8) There exists a pair of jointly distributed random variables (x̃, «̃) with E[«̃.x] # 0 for
all x, such that F[ and G[ are the cumulative distribution functions of x̃ and x̃ 1
«̃ respectively.

(c8) *0
x @G~v! 2 F~v!#dv $ 0 for all x [ [0,M#.

(d8) *0
M U~x!dG~x! # *0

M U~x!dF~x! for every increasing concave function U[ over
[0,M].

Implications (c8) ⇒ (a8) and (c8) ⇒ (b8), proven in the Appendix, are the SSD sequence
and noise constructions. Implications (a8) ⇒ (c8), (b8) ⇒ (d8) and (d8) ⇒ (c8) are straight-
forward extensions of their counterparts from theorem 3.

6. Related work

Landsberger and Meilijson (1990, Note 1) and Scarsini (1994, p. 356) attribute the more
general definition of MPS to Machina, although we would not be surprised to find a prior
appearance in the vast literature on this topic. In the course of completing this article, we
discovered versions of the equal-mean and SSD sequence of spreads constructions among
the results of Kaas, van Heerwaarden, and Goovaerts (1994, chapter 4; forthcoming) and
Müller (1996).

Figure 6. Construction of the conditional noise variables «̃(xu), «̃(xv), and «̃(xû).
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As far as we know, our direct noise constructions have not appeared anywhere except
in Pratt (1990). Fishburn and Vickson (1978, Theorem 2.6), Hadar and Seo (1990, Lemma
2), Kaas, van Heerwaarden, and Goovaerts (1994, Section IV.4), and others have shown
that if F[ and G[ satisfy condition (c8) (i.e. (9)), then there exists a joint distribution (x̃,
«̃), such that E[«̃.x] # 0 for all x, and x̃ and x̃ 1 «̃ have distributions F[ and G[.
However, unlike our construction (c8) ⇒ (b8), those results have been nonconstructive, or
restricted to pairs of distributions that are finite-outcome/have densities/cross a finite
number of times, with extension to general distributions again represented by noise vari-
ables linking each pair (Fn[, Gn[) in the finite-outcome sequences Fn[ R F[ and
Gn[ R G[.

Appendix: proofs of theorems

Proof of Theorem 1. The proof has three steps. Step 1 shows that if two distributions over
[0,M] have common 1/n-, 2/n-, …, (n21)/n-quantiles, then they differ vertically by at
most 1/n. Step 2 shows how to take a distribution H[ that satisfies the integral condition
with respect to G[, and any probability u, and construct a mean preserving spread of H[
to obtain a distribution H*[ that still satisfies the integral condition with respect to G[,
and has a common u-quantile with G[. Step 3 combines these results to generate the
sequence F[ 5 H0[, H1[, H2[ …, and shows that it converges to G[.

Step 1 (common i/n quantiles implies . H[ 2 G[ . # 1/n). For any distribution H[
over [0,M], xu is said to be a u-quantile of H[ if H(x2) # u # H(x), where H(x2)
denotes the left-hand limit of H[ at x. Say there exist {x1/n, x2/n, …, x(n21)/n} such that
xi/n is an i/n-quantile of both H[ and G[. Define x0 5 0 (which is a 0-quantile of both
H[ and G[) and x1 5 M (a 1-quantile of H[ and G[). By the definition of a quantile,
we must have x0 # x1/n # … # x(n21)/n # x1, so the intervals

@x0, x1/n!, @x1/n, x2/n!,…, @x~n21!/n, x1!, @x1, x1#

form a partition of [0,M].25 If x [ [xi/n, x(i11)/n), then i/n # H(x) # (i 1 1)/n and
i/n # G(x) # (i 1 1)/n. If x [ [x1,x1], then H(x) 5 G(x) 5 1. Thus, . H(x) 2 G(x) . # 1/n
for all x [ [0,M].

Step 2 (construction of the spread).26 Let H[ be any distribution over [0,M] that
satisfies the integral condition with respect to G[, and pick any probability level u [
(0,1). Defining the functions G~x! [ *0

x G~v!dv and H ~x! [ *0
x H~v!dv, the integral

condition implies G(x) $ H (x) for all x [ [0,M), and G(M) 5 H (M). As illustrated in
Figure 1, G[ and H [ are nondecreasing, continuous, convex functions of x, with G(0)
5 H (0) 5 0. The left and right derivatives of G[ at x are given by G(x2) and G(x)
respectively, and similarly for H [.
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Let xu 5 min{x [ [0,M]. u # G(x)}, so that G(xu2) # u # G(xu), xu is a u-quantile
of G[, and u lies between the left and right derivatives of G[ at xu. Thus the linear
(affine) function L[ defined by

L~x! [ G~xu! 1 u•~x 2 xu! for all x [ @0,M#

passes through the point (xu, G(xu)), has slope u, and is subtangent to G[ at xu. This
implies

L~0! # G~0! 5 H ~0!

L~xu! 5 G~xu! $ H ~xu!

L~M! # G~M! 5 H ~M!.

Continuity of H [ implies that there exist values x8 [ [0,xu] and x9 [ [xu,M] such that
L (x8) 5 H (x8) and L (x9) 5 H (x9), in which case convexity of H [ implies

L~x! # H ~x! for x [ @0,x8#

L~x! $ H ~x! for x [ @x8,x9#

L~x! # H ~x! for x [ @x9,M#.

Define H11[ as the pointwise maximum of the functions L[ and H[:

H11~x! [ H ~x! for x [ @0,x8#

H11~x! [ L ~x! for x [ @x8,x9#

H11~x! [ H ~x! for x [ @x9,M#

(so H11(xu) 5 G(xu)). Because H11[ is convex, its right derivative H11[ over [0,M)
(with H11(M) 5 1) is nondecreasing, right continuous, and satisfies

H11~x! [ H~x! $ 0 for x [ @0,x8)

H11~x! [ u for x [ @x8,x9!

H11~x! [ H~x! # 1 for x [ @x9,M#

thus H11[ is a cumulative distribution function on [0,M], with u-quantile xu.27

Because *0
M H11~v!dv 5 H11~M! 5 H ~M! 5 *0

M H~v!dv, the distribution H11[
has the same mean as H[ (see Note 9), and hence the same mean as G[. Because the
above identities imply
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H11~b! 2 H11~a! [ H~b! 2 H~a! for all ~a, b# , ~2`, x8!

H11~b! 2 H11~a! # H~b! 2 H~a! for all ~a, b# , ~x8, x9!

H11~b! 2 H11~a! [ H~b! 2 H~a! for all ~a, b# , ~x9, 1`!.

it follows that H11[ differs from H[ by a single mean preserving spread. In this case,
the spread removes all of the probability mass from the open interval (x8,x9) (because
H11[ is constant on [x8,x9)), and shifts it to the boundary points x8 and x9. Because

*
0

x
H11~v!dv [ H11~x! [ max$L~x!, H ~x!% # G~x!

[ *
0

x
G~v!dv for all x [ @0,M!

it follows that H11[ also satisfies the integral condition with respect to G[.
In preparation for Step 3, we show that xu will remain a u-quantile of any subsequent

such spread of the distribution H11[: Given any subsequent probability level u11 : u
and observing that the integrated cumulative of H11[ is H11[, repeating the procedure
generates a new convex function H12[ lying on or above H11[ (and on or below G[),
with H11(xu) 5 H12(xu) 5 G(xu). This implies the right derivatives of H11[ and H12[,
namely H11[ and H12[, satisfy H12(xu2) # H11(xu2) # u 5 H11(xu) # H12(xu), so
that xu is a u-quantile of H12[.

Step 3 (construction of the sequence and proof of convergence). We construct the
sequence H0[, H1[, H2[, … by setting H0[ 5 F[ and generating Step 2 type spreads
for the successive u values:

u1, u2, u3, … 5 1⁄2
ABC
group 1

1⁄4, 3⁄4,
ABC
group 2

1⁄8, 3⁄8, 5⁄8, 7⁄8
AnBnC

group 3

1⁄16, 3⁄16, 5⁄16, 7⁄16, 9⁄16, …, …
AnnnnnBnnnnnC

group 4
,…

For i . 2n, Hi[ follows all of the “group 1” through “group n” spreads, so by the last
paragraph of Step 2, Hi[ and G[ will have a common u-quantile for u 5 1/2n, 2/2n,
3/2n,…, (2n 2 1)/2n. By Step 1, this implies . Hi(x) 2 G(x) . # 1/2n for all x [ [0,M],
which establishes that the sequence {Hi[} converges weakly (in fact, converges uni-
formly) to G[. n

Proof of Theorem 2. The proof has two steps. Step 1 defines several auxiliary functions
and establishes some relationships between them. Step 2 takes a random variable x̃ with
distribution F[, constructs a noise variable «̃ whose expected value given x is identically
zero, and shows that ỹ 5 x̃ 1 «̃ has distribution G[.
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Step 1 (preliminaries). For each probability p [ [0,1], define the inverse cumulative (i.e.,
minimum quantile) functions F21(p) 5 min{x . F(x) $ p} and G21(p) 5 min{x . G(x) $
p}. Define [F21[ 2 G21[]1 and [F21[ 2 G21[]2 as the absolute values of the
positive and the negative parts of F21[ 2 G21[, and define P1, P2, P5 # [0, 1] as the
sets over which the left continuous function F21[ 2 G21[ is positive, negative, and
zero.

For each p [ [0,1], define the horizontal “1” and “2” areas up to p by

A1~p! 5 *
0

p
@F21~s! 2 G21~s!#1 ds A2~p! 5 *

0

p
@F21~s! 2 G21~s!#2 ds.

A1[ and A2[ are nondecreasing over [0,1], and strictly increasing over P1 and P2,
respectively. The equality of the means of F[ and G[ implies A1~1! 5

A2~1!
def

5 Amax.
For each area a [ [0,Amax], define u(a) and v(a) as the smallest probabilities that solve

A1~u~a!! 5 a and A2~v~a!! 5 a;

u[ and v[ are strictly increasing functions from [0, Amax] into P1 ø P5 and P2 ø P5,
respectively, and the integral condition (3) implies u(a) # v(a) for all a. The functions u[
and A1[, as well as v[ and A2[, are pseudo-inverses in that, in addition to the previous
equations,

u~A1~p!! 5 p for p [ P1 v~A2~p!! 5 p for p [ P2.

Define A(p) 5 A1(p) for p [ P1 and A(p) 5 A2(p) for p [ P2. Because A1[ and A2[
are absolutely continuous and nondecreasing, a double application of the change of vari-
able theorem28 yields that for any a [ [0,Amax] and any integrable function k[

*
p#u~a!
p[P1

k~A~p!!@F21~p! 2 G21~p!#dp 5 *
p#u~a!

k~A1~p!!@F21~p! 2 G21~p!#1dp 5

*
a#A1~u~a!!

k~a!da 5 *
a#A2~v~a!!

k~a!da 5 *
p#v~a!

k~A2~p!!@F21~p! 2 G21~p!#2dp 5

*
p#v~a!
p[P2

k~A~p!!@G21~p! 2 F21~p!#dp.

Step 2 (construction of the noise variable). Let x̃ be a random variable with distribution
F[. The distribution of noise at each outcome value x of x̃ will be based on the corre-
sponding value(s) of its induced cumulative probability variable p̃, which equals F(x) if x
is a continuity point of F[, and has a uniform distribution over [F(x2), F(x)] if x is a
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discontinuity point of F[. For every x, F21[ maps the realized value(s) of p̃ back to x,
so that we have x̃ [ F21(p̃). A standard result is that p̃ is uniform over [0, 1].29 For each
p [ P1 ø P2 define the probabilities30

p~p! 5
G21~v~A~p!!! 2 F21~p!

G21~v~A~p!!! 2 G21~u~A~p!!!
and

1 2 p~p! 5
F21~p! 2 G21~u~A~p!!!

G21~v~A~p!!! 2 G21~u~A~p!!!
.

Applying the final equation of Step 1 to the function31

k~a! 5 H 1

G21~v~a!! 2 G21~u~a!!
if u~a! [ P1 or v~a! [ P2

0 if u~a! [ P5 and v~a! [ P5

and replacing G21(p) by G21(u(A(p))) for p [ P1, and by G21(v(A(p))) for p [ P2, yields

*
p#u~a!
p[P1

~1 2 p~p!!dp 5 *
p#v~a!
p[P2

p~p!dp for each a [ @0, Amax#.

For each p [ P1 ø P2, define the noise variable

«̃~p! 5 HG21~u~A~p!!! 2 F21~p! with probability p~p!

G21~v~A~p!!! 2 F21~p! with probability 1 2 p~p!

with «̃(p) [ 0 for p [ P5. Because E[«̃(p)] 5 0 for all p, E[«̃ . x] 5 E[«̃(p̃(x))] 5 0 for
all x [ [0,M].

Define ỹ(p) 5 x(p) 1 «̃(p) 5 F21(p) 1 «̃(p) for all p [ [0,1], so that for p [ P1 ø P2

ỹ~p! 5 HG21~u~A~p!!! with probability p~p!

G21~v~A~p!!! with probability 1 2 p~p!

and ỹ(p) 5 x(p) 5 F21(p) 5 G21(p) for p [ P5. The results of Step 1 imply the following
relations:

for p [ P1: 5
G21~u~A~p!!! 5 G21~u~A1~p!!! # y ⇔ G21~p! # y ⇔ p # G~y!,

G21~v~A~p!!! 5 G21~v~A1~p!!! # y ⇔ v~A1~p!! # G~y!

⇔ u~A2~v~A1~p!!!! # u~A2~G~y!!! ⇔ p # u~A2~G~y!!!,
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for p [ P2: 5
G21~u~A~p!!! 5 G21~u~A2~p!!! # y ⇔ u~A2~p!! # G~y!

⇔ v~A1~u~A2~p!!!! # v~A1~G~y!!! ⇔ p # v~A1~G~y!!!,

G21~v~A~p!!! 5 G21~v~A2~p!!! # y ⇔ G21~p! # y ⇔ p # G~y!,

for p [ P5: G21~p! # y ⇔ p # G~y!.

Because p̃ is uniform over [0,1], it follows that for any y [ [0,M]:

Pr$ỹ # y% 5 I1 1 I2 1 I3 1 I4 1 I5 5 G~y!

where

I1 5 *
G21~u~A~p!!!#y

p[P1

p~p!dp 5 *
p#G~y!
p[P1

p~p!dp

I2 5 *
G21~v~A~p!!!#y

p[P1

~1 2 p~p!!dp 5 *
p#u~A2~G~y!!!

p[P1

~1 2 p~p!!dp 5 *
p#v~A2~G~y!!!

p[P2

p~p!dp

5 *
p#G~y!
p[P2

p~p!dp

I3 5 *
G21~u~A~p!!!#y

p[P2

p~p!dp 5 *
p#v~A1~G~y!!!

p[P2

p~p!dp 5 *
p#u~A1~G~y!!!

p[P1

~1 2 p~p|M))dp

5 *
p#G~y!
p[P1

~1 2 p~p!!dp

I4 5 *
G21~v~A~p!!!#y

p[P2

~1 2 p~p!!dp 5 *
p#G~y!
p[P2

~1 2 p~p!!dp

I5 5 *
G21~p!#y

p[P5

1dp 5 *
p#G~y!
p[P5

1dp

which implies that ỹ has distribution G[ n

Proof of (c*) ⇒ (a*) in Theorem 3*. We first show that if F[ and G[ satisfy the SSD
integral condition (c8)/(9), then there exists a distribution H1[ that differs from F[ by a
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(possibly null) leftward shift of probability mass, and that satisfies the equal-mean integral
condition (3) with respect to G[. Define the function W~x! [ *0

M G~v!dv 1 x 2
M, which has unit slope and passes through the point (M, G(M)). Because

W~0! 5 *
0

M
G~v!dv 2 M # 0 5 F~0! and W~M! 5 G~M! $ F~M!

there exists some W [ [0,M] such that W(W) 5 F(W). Define the distribution

H1[ 5 HF[ over @0,W!

1 over @W,M#

H1[ is seen to differ from F[ by a (possibly null) leftward shift of probability mass. In
addition:

*
0

x
@G~v! 2 H1~v!#dv

5 5
*

0

M
G~v!dv 2 *

W

M
H1~v!dv 2 *

0

W
H1~v!dv 5

for x 5 M

*
0

M
G~v!dv 2 ~M 2 W! 2 F~W! 5 W~W! 2 F~W! 5 0

*
0

x
@G~v! 2 F~v!#dv $ 0 for x [ @0,W!

2*
x

M
@G~v! 2 H1~v!#dv 5 2*

x

M
@G~v! 2 1#dv $ 0 for x [ @W,M!

so H1[ and G[ satisfy condition (3). We then can use Theorem 1 to construct a sequence
of mean preserving spreads, yielding distributions H2[, H3[ … which converge to G[.n

Proof of (c*) ⇒ (b*) in Theorem 3*. Assume F[ and G[ satisfy the SSD integral
condition (c8) (condition (9)). Define ū as the smallest probability that satisfies

*
0

ū
@F21~s! 2 G21~s!#1ds $ *

0

1
@F21~s! 2 G21~s!#2ds

Note that ū , 1 unless F[ and G[ have the same mean. Define P11 5 {p [
[ū, 1].F21(p) 2 G21(p) . 0}, and define Ĝ[ as the distribution over [0,M] whose inverse
takes the form32

Ĝ21~p! 5 HF21~p! for p [ P11

G21~p! for p 5 P11 or equivalently Hmax~F21~p!, G21~p!! for p . ū

G21~p! for p # ū
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In Figure 6, P11 is the set of probability levels corresponding to the “1” region(s) at or
above ū, and the graph of Ĝ[ corresponds to G[ at or below ū, and to the right envelope
of F[ and G[ above ū.

Because the total “1” and “2” areas between Ĝ[ and F[ are equal, and the “1” area
up to each height is always greater than or equal to the “2” area, Ĝ[ and F[ satisfy the
equal-mean integral condition (3). Thus, the construction of Theorem 2 yields a family of
zero-mean noise variables {ỹ(p) . p [ [0,1]} such that if p̃ is uniform over [0,1], and ỹ(p)
[ x(p) 1 ỹ(p) [ F21(p) 1 ỹ(p), then ỹ(p̃) has distribution Ĝ[. Because Ĝ21[ and
F21[ coincide over P11, the construction will imply ỹ(p) [ 0 for p [ P11, so that ỹ(p)
[ F21(p) [ Ĝ21(p) for all p [ P11.

Define the nonpositive mean SSD noise variable «̃(p), hence the variable z̃(p) [ x(p) 1
«̃(p) [ F21(p) 1 «̃(p), by

«̃~p! 5 HG21~p! 2 F21~p! for p [ P11

ỹ~p! for p 5 P11
so that z̃~p! 5 HG21~p! for p [ P11

ỹ~p! for p 5 P11
.

Because ỹ(p̃) and Ĝ21(p̃) both have unconditional distribution Ĝ[, we have that, for all
z [ [0,M]:

*
p5P11

Pr$ỹ~p! # z%dp 5 Pr$ỹ~p̃! # z% 2 *
p[P11

Pr$ỹ~p! # z%dp

5 Pr$Ĝ21~p̃! # z% 2 *
p[P11

Pr$Ĝ21~p! # z%dp 5

*
p5P11

Pr$Ĝ21~p! # z%dp 5 *
p5P11

Pr$G21~p! # z%dp

So for all z [ [0,M]:

Pr$z̃~p̃! # z% 5 *
p[P11

Pr$z̃~p! # z%dp 1 *
p5P11

Pr$z̃~p! # z%dp

5 *
p[P11

Pr$G21~p! # z%dp 1 *
p5P11

Pr$ỹ~p! # z%dp 5

*
p[P11

Pr$G21~p! # z%dp 1 *
p5P11

Pr$G21~p! # z%dp 5 Pr$G21~p̃! # z% 5 G~z!

which implies that z̃(p̃) has unconditional distribution G[.33 n
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Notes

1. See Sherman (1951), Rothschild and Stiglitz (1972), Fishburn and Vickson (1978), Schmeidler (1979),
Bawa (1982), and Levy (1992) for literature summaries and/or bibliographies, as well as the more recent
work cited in Section 6 below.

2. Rothschild and Stiglitz (1970), Theorems 1b and 2c, respectively. Unless stated otherwise, convergence of
probability distributions (R) refers to weak convergence (e.g., Billingsley (1968; 1986, Section 25)).

3. Rothschild and Stiglitz use the interval [0,1].
4. The Cantor function C[ over [0,1] is continuous, nondecreasing, and satisfies C(0) 5 0 and C(1) 5 1, so

it is a valid cumulative distribution function that assigns probability one to the interval [0,1]. But because
C[ is continuous it has no mass points, and because C8[ 5 0 almost everywhere on [0,1], C[ cannot be
represented as the integral of any density function (e.g., Kolmogorov and Fomin (1970, pp. 334-336), Feller
(1971, pp. 35-36)).

5. For each x [ [0,1], let «̃(x) be a (1 2 x);x chance of 2x;(1 2 x). Clearly E[«̃(x) . x] [ 0, and if x̃ has the
distribution C[ (which is symmetric about the outcome 1/2) then x̃ 1 «̃ is a 50;50 chance of 0;1.

6. Throughout this article we assume the natural extensions F(x) [ 0 on (2`,0) and F(x) [ 1 on (M, 1`) for
all cumulative distributions functions F[ defined “over [0,M].”

7. Because the Borel subsets of [0,M] (or (2`,1`)) can be countably generated from the set of half-open
intervals of the form (a,b], the following conditions can equivalently be written as:

G~b! 2 G~a! $ / #/ $ F~b! 2 F~a! for all ~a,b# , ~2`,x8!/~x8,x88!/~x88, 1`!.

8. Like the R-S spreads (1) and (2), this definition of a mean preserving spread implies that F[ and G[ differ
by a “single crossing”, that is, there exists some x0 such that G(x) $ F(x) for x , x0 and G(x) # F(x) for
x $ x0. To see that the single-crossing condition is strictly more general, however, note that the distributions
assigning probabilities {0 , 2/10 , 0 , 8/10 , 0} and {3/10 , 0 , 1/10 , 0 , 6/10} to the outcomes {1 , 2 , 3
, 4 , 5} differ by a mean preserving single crossing, but not by a mean preserving spread.

9. To see that the condition *0
M @G~v! 2 F~v!#dv 5 0 is equivalent to the condition that F[ and G[ have

the same mean, apply the integration-by-parts formula for Stieltjes integrals (e.g., Billingsley (1986, p.
240), Feller (1971, p.150)) to obtain that it is equivalent to 0 5 2*0

M v@dG~v! 2 dF~v!#
5 2*0

M vdG~v! 1 *0
M vdF~v!. (See also Hanoch and Levy (1969, Lemma 1)).

10. As in Rothschild and Stiglitz (1970), this follows because every mean preserving spread satisfies condition
(3), and this condition is transitive over distributions. This same argument and result hold for mean
preserving single crossings.

11. Full proofs of theorems 1 and 2 are given in the Appendix.
12. By Note 8, we can replace “mean preserving spread” by “mean preserving single crossing” in the statement

of this theorem.
13. Cf. Note 18.
14. See, for example, Feller (1971, p. 267, Section VIII.6), who says the theorem is usually ascribed to Helly.
15. The joint distributions of (x̃,«̃) and (x̃,z̃) can thus be derived directly from F[ and the distributions of «̃(x).
16. If xu 5 yu (whether or not a crossing occurs) we define «̃(xu) [ 0, and similarly if xv 5 yv.
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17. That is, first order as the difference between the primed and nonprimed values of each variable goes to zero.
For purposes of this informal version of the argument, we assume that the slopes of F[ and G[ are
bounded away from both zero and infinity, so that all these differences go to zero at a common rate.

18. Each of the successive slices in the construction of Theorem 1 above can be equivalently represented as the
addition of a zero-conditional-mean noise variable, so that their sum provides a noise variable linking F[
and G[, as noted independently by Robert Nau. The partial sums of this series form a bounded martingale,
which implies both convergence and the zero-conditional-mean property of the infinite sum. Persi Diaconis
tells us that this is a case of “balayage” (Choquet (1969, Index)). The noise variable in Theorem 2 differs
from this and is constructed in a single step (equation (5)).

19. See Note 2 for the specific type of convergence used here. As in Theorem 1, “mean preserving spread” can
be replaced by “mean preserving single crossing” (see Notes 8, 10, and 12).

20. A standard restatement of (d), more suited to the case when x denotes income or wealth, is “F[ and G[
have the same mean, and *0

MU~x!dG~x! # *0
MU~x!dF~x! for every increasing concave function U[ over

[0,M].”
21. As with mean preserving spreads: (a) this condition can be written as G(b) 2 G(a) $ (resp. #) F(b) 2 F(a)

for all (a, b] , (2`,x8) (resp. (x8, 1`)); (b) the probability assigned to the point x8 itself can rise, remain
unchanged, or drop; and (c) each distribution differs from itself by null rightward and leftward shifts of
probability mass.

22. Proofs of the extended constructions appear in the Appendix, as parts of the proof of Theorem 38.
23. Otherwise, the equal-mean constructions apply directly.
24. Family loyalty and royal protocol require one author to point out that, in data analysis, replacing the tail of

a distribution by equal mass at the cutoff point is termed “Winsorization.” (The other author’s middle name
is Joseph.)

25. An interval [xi/n, x(i11)/n) will be empty if xi/n 5 x(i11)/n, which can happen if H[ and G[ have a jump of
size 1/n or greater at that outcome level. This will have no bearing on the argument.

26. In this step we invoke the following results from convex analysis: If H [ is a convex function, then its right
derivative exists at each point, is nondecreasing and right continuous and integrates back to H [. Con-
versely, if H[ is nondecreasing and right continuous, then its integral H [ is convex, with left and right
derivatives at x given by H(x2) and H(x). Corresponding results hold for left derivatives. These results are
implied in our context by Rockafellar (1970, Theorems 23.1, 24.1, 24.2, Corollary 24.2.1).

27. If x8 5 x9 the interval [x8,x9) is empty, so H11[ 5 H[. This has no bearing on the argument, which will
still demonstrate (somewhat redundantly) that H11[ is a (null) mean preserving spread of H[, that H11[
satisfies the integral condition with respect to G[, and (not so redundantly) that xu is a u-quantile of
H11[ 5 H[.

28. The change of variable theorem invoked here (Klambauer, 1973, p. 168, Proposition 27) does not require
differentiability of A1[ or A2[, merely that each be the integral of some nonnegative integrable function.

29. For any value p [ [0,1], if x 5 F21(p) is a continuity point of F[, then Pr{p̃ # p} 5 Pr{F(x̃) # p} 5
Pr{x̃ # F21(p)} 5 F(F21(p)) 5 p. If x 5 F21(p) is a discontinuity point of F[, then Pr{p̃ # p} 5
Pr{p̃ , F(x2)} 1 Pr{F(x2) # p̃ # p} 5 Pr{F(x̃) , F(x2)} 1 Pr{x̃ 5 x}. Pr{F(x2) # p̃ # p . x̃
5 x} 5 Pr{x̃ , x} 1 [F(x) 2 F(x2)]·[(p 2 F(x2))/(F(x) 2 F(x2))] 5 F(x2) 1 (p 2 F(x2)) 5 p. Thus,
Pr{p̃ # p} 5 p, for all p [ [0,1].

30. The condition p [ P1 (resp. p [ P2) implies G21(u(A(p))) , (resp. #) F21(u(A(p))) # F21(p) #

F21(v(A(p))) # (resp. ,) G21(v(A(p)), which implies p(p) and 1 2 p(p) are in [0,1] for all p [ P1 ø P2.
31. To see that the denominator of k(a) is nonzero when u(a) [ P1 (resp. v(a) [ P2), note that these conditions

imply G21(u(a)) , (resp. #) F21(u(a)) # F21(v(a)) # (resp. ,) G21(v(a)).
32. Given any nondecreasing, left continuous function F[ from [0,1] into [0,M] with F(0) 5 0 (such as the

function specified in the display), the function Ĝ(x) [ max{p [ [0,1].F(p) # x} will be a distribution
function over [0,M] with inverse F[.

33. An alternative, two-component SSD noise variable can be derived as follows: Assume F[ and G[ satisfy
(c8), let x̃ have distribution F[, and define W and H1[ as in the proof of (c8) ⇒ (a8). Defining a(x) [ min
(0,W 2 x) # 0, it follows that z̃ [ x̃ 1 a(x̃) [ min (x̃,W) has distribution H1[. Because H1[ and G[
satisfy condition (3), Theorem 2 yields a zero-mean variable h̃(z), such that if z̃ has distribution H1[ then
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z̃ 1 h̃(z̃) has distribution G[. Define the nonpositive-mean SSD noise variable «̃(x) [ a(x) 1 h̃(x 1 a(x)).
Because x̃ 1 a(x̃) has distribution H1[, we have that x̃ 1 «̃(x̃) [ x̃ 1 a(x̃) 1 h̃(x 1 a(x̃)) [ z̃ 1 h̃(z̃) has
distribution G[.
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