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THE ROSS CHARACTERIZATION OF RISK AVERSION:
STRENGTHENING AND EXTENSION

By MARK J. MACHINA AND WILLIAM S. NEILsON'

This paper offers an interpretive comparison of the Arrow/Pratt and Ross characteriz-
ations of comparative risk aversion for expected utility maximizers. The tools used in this
comparison are then applied to obtain a strengthening of the Ross characterization. This
strengthened result is then extended to the case of general smooth non-expected utility
preferences over probability distributions.
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1. INTRODUCTION

THE PURPOSE OF THIS PAPER is to continue and extend the Ross (1981) analysis
of comparative risk aversion along both intuitive and analytical lines. Section 2
below offers an interpretive comparison of the Ross and standard Arrow/Pratt
characterizations in a manner designed to highlight their similarities and differen-
ces. Section 3 presents a strengthening of the original Ross characterization along
a few different lines. Section 4 extends this strengthened characterization to the
case of general smooth non-expected utility preferences over probability distribu-
tions.

2. THE ARROW-PRATT AND ROSS MEASURES OF RISK AVERSION

One of the most useful results in the theory of individual behavior toward risk
is the Arrow-Pratt characterization of comparative risk aversion for expected
utility maximizers (Arrow (1963; 1974, Ch. 3), Pratt (1964)). This result states
that the following conditions on a pair of twice-differentiable von Neumann-
Morgenstern utility functions U(-) and U*(-) are equivalent:?

(A1) U*(x)=p(U(x)) for some increasing concave function p(-),

(A.2) —Uf(x)/ U¥(x)=-U,;(x)/ Uy(x) for all x, and

! We are grateful to Eddie Dekel, David Kreps, Michael Rothschild, Joel Sobel, Hal White, and
an anonymous referee for helpful comments on this material. Machina would like to acknowledge
the National Science Foundation (Grant SES 83-08165) and the Alfred P. Sloan Foundation for
financial support. After this paper was accepted for publication we became aware of the independent
and related work of Professor Michel Demers of Carlton University, available in revised form as
Demers (1987).

2 Throughout this paper we assume that all von Neumann-Morgenstern utility functions (and later,
all “local utility functions™) are twice continuously differentiable with positive first derivatives. The
subscripts “1”” and “11” denote first and second derivatives, “ * denotes that a variable is stochastic,
E[-] denotes expectation, and terms such as Fg:(-,-), Fe.2(+), and Fg|,\-('|') denote the joint
(cumulative) distribution of (X, £), the distribution of X+ £, and the conditional distribution of £
given x, etc.
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(A3) if #* and 7 solve U*(x—7*)=[ U*(w) dF,.:(0) and U(x—m)=
| U(w) dF, . :(») where E[£]=0, then 7*=m,

and if U(-) and U*(-) are both concave, these are equivalent to:

(A.4) if E[Z]=0and @* and a respectively maximize | U*(w) dF,, .;(w) and
[ U(w) dF,,.;(w), then @*< a.

Condition (A.1) states that the function U*(-) is a “concave transformation”
of U(-). (A.2) states that the “Arrow-Pratt measure of (absolute) risk aversion”
—U,,(x)/ U,(x) is everywhere at least as great for U*(-) as for U(-). (A.3) states
that if U(-) is just willing to pay a “risk premium” of 7 to avoid an actuarially
neutral risk £ about the wealth level x, then U*(-) would be willing to pay at
least this amount to avoid the same risk. (A.4) states that given the choice of
dividing a (normalized) unit amount of wealth between a riskless asset with
(gross) return x and a risky asset with return x+ Z where E[Z]=0, U(-) would
demand at least as much of the risky asset as would U™*(-).

Perhaps the best way to view the role played by the Arrow-Pratt ratio
—U,(x)/ U,(x) is to consider the individual’s marginal rate of substitution
between risk and premium payments about an initial situation of certainty.
Following the argument of Pratt (1964) and others, consider an individual with
initial wealth x who faces an actuarially neutral risk v - £ with var[£] =& (so
that var [Vt - £]=1- o). The premium 7 that the individual would be just willing
to pay to avoid this risk is given by the solution to

(1) U(x—w)=I U(w) dF,.yie(w).

Taking the Taylor expansion in 7 and ¢ at t =0 (which implies = =0) yields
(2) —Ul(x)'d’n'=%'0'2' U“(X)'dt
so that we have

dm

am _ 2 Uiy (x)
dt

1
=—3-0 .
=0 2 U, (x)

(3)

Thus for any risk £, the greater an individual’s Arrow-Pratt ratio, the greater his
or her marginal rate of substitution between the scale-of-risk parameter ¢ and
the premium level 7 about an initial situation of certainty.

Although equation (3) may be used with the same level of rigor as any marginal
rate of substitution in standard consumer theory (i.e. for the comparison of
attitudes toward ‘‘small” risks), the key feature of the Arrow-Pratt result is that,
as in the standard case, the pointwise comparison of these marginal rates of
substitution (or equivalently, of the Arrow-Pratt ratios) is equivalent to the
comparison of attitudes toward “large” (i.e. nondifferential) risks, as seen from
conditions (A.3) and (A.4).
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While the Arrow-Pratt characterization has proven tremendously useful in the
theory of individual behavior toward risk,” Ross (1981) has pointed out that the
risk premium and asset demand conditions (A.3) and (A.4) are both formulated
with reference to situations of complete certainty: i.e. premiums for complete
insurance against risk, and the allocation of wealth between risky and completely
safe assets. However, as Ross has noted, the real world seldom affords such total
security: most forms of insurance typically cover only some types of risks and
not others, and in a world of price level uncertainty and bankruptcy, no asset,
real or nominal, can be completely risk-free.

Accordingly, Ross (1981) (see also Ross (1979)) has developed an alternative
characterization of risk aversion* which states that the following conditions on
a pair of twice-differentiable risk averse (i.e. concave) utility functions U(-) and
U*(-) are equivalent:’

(R.1) U*(x)= A-U(x)+ G(x) for some positive constant A and nonincreasing
concave function G(-), '

(R2)  -Uli(x)/Uf(y)=—-Un(x)/ U,(y) for all x,,° and

(R3) if #* and 7 solve [U*(w)dF;_ ,«(w)=|U*(w)dF;.:(w) and
| U(w) dF;_ () =[ U(w) dF;,:(w) where E[£|x]=0, then 7*= =,

and that they in turn imply:

(R4) if E[Z|x]=0 and a* and & respectively maximize | U*(w) dFz, . :(w)
and | U(w) dF;,.:(w), then @* < a.

Conditions (R.3) and (R.4) differ from (A.3) and (A.4) in that the individual
generally does not have any opportunity for complete certainty. The risk premium
condition (R.3) assumes that initial wealth X is itself random, and that the
individual is at most able to insure against a conditionally actuarially neutral
risk £. The asset demand condition (R.4) involves an asset with random return
x and one with return X+ Z with a higher mean but possibly greater risk.

The following argument, based on Ross (1981, pp. 625-626), helps illustrate
how this formulation differs from that of Arrow and Pratt. We have seen how
an individual’s marginal rate of substitution between risk and premium payments
about a certain initial wealth level depends upon the value of the term
—U,,(x)/ U,(x). Consider now an individual with random initial wealth X who
faces a conditionally actuarially neutral risk v - £ with var [£|x]= o*(x) (so that

3 For additional applications of the Arrow-Pratt measure to the comparative statics of choice under
uncertainty, see Diamond and Stiglitz (1974).

“# For a weaker characterization of comparative risk aversion with random initial wealth involving
the Arrow-Pratt measure, see Kihlstrom, Romer, and Williams (1974).

% As Ross (1981, p. 630) has noted, these conditions can only be satisfied by a pair of non-affinely
equivalent utility functions over a bounded domain. Accordingly, we shall assume throughout that
the supports of all relevant distributions lie within the appropriate bounded interval.

6 Although Ross expressed this condition as U% (x)/ U,,(x)= U¥(y)/ U,(y) for all x and y, we
adopt this version in order to highlight the correspondence with the Arrow-Pratt ratio as well as to
be able to apply the characterization to nonconcave utility functions.
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var [Vt - €|x]=t- 0*(x)). The premium 7 that the individual would be just willing
to pay to avoid this risk is now given by the solution to

(4) f U(w) dF;_,(w) =J U(w) dFziyr o(w).

Taking the Taylor expansion in 7 and ¢ at ¢t =0 (where again, 7 =0) yields
1

(5) —[J Ui(w) ng(w)] . d'rr=5' [J o} (w) - Upy(w) - dF,;(w)jl - dt

so that we have
flﬂ' ___1'.‘.0'2(0))' Un(w) - dFy(w)
dtl,.o 2 | U(o) - dFy(w)
Thus an individual with utility function U*(-) would be willing to pay as much
to avoid this same infinitesimal risk about X if and only if
Jo(w) - Ufi(w) - dFz(@) _ [ o*(@) - Un(w) - dF:(w)
J Uf(w) - dF(w) J Ui(w) - dF:(w)

Changing the variable of integration in the denominators to », cross multiplying,
and collecting terms yields that this condition is equivalent to

(6)

(7)

(8) JJ o*(@) - [Ufi(w) - Uy(») ~ Up(w) - Uf(»)] - dF(w) - dF:(v)<0.

It is clear that this inequality will hold for all random initial wealth distributions
and (infinitesimal) conditionally actuarially neutral risks if and only if
[Uf(w) - Uy(v)— Uy (w) - U¥(»)]<0 for all w and v, or equivalently, if and
only if —U¥(w)/Uf(v)= — U;;(w)/ U;(v) for all w and », which is precisely
condition (R.2). And as in the Arrow-Pratt case, the global nature of conditions
(R.3) and (R.4) shows that the pointwise comparison of this ratio can be used
for the comparison of attitudes toward large risks.

3. A STRENGTHENING OF THE ROSS CHARACTERIZATION

Our first result (Theorem 1) strengthens the Ross characterization in three
ways. The first involves dropping the requirement of risk aversion for the
equivalence of the first three Ross conditions. (We are grateful to Eddie Dekel
for providing us with the proper generalization of (R.1) and a proof of its
equivalence to (R.2).”) The second is that, conditional upon risk aversion, the
asset demand condition (R.4) is not merely an implication of the first three
conditions, but in fact equivalent to them, as in the Arrow-Pratt formulation.
The third extension is the most substantive, and consists of replacing the assump-
tion of a certain payment 7 in condition (R.3) with the more general case of a
stochastic nonnegative premium payment.

7 A pair of nonconcave utility functions satisfying conditions (i) through (iii) of the theorem over
the interval [0, 50] is given by U(x)= x>-30x2+7500x and U*(x)= x*—60x>+7500x.
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There are several reasons for the consideration of random premiums in the
demand for insurance and related problems. Since real-world insurance premiums
are usually fixed in nominal terms over a period where prices change randomly,
real risk premiums are invariably stochastic. Second, if premiums are tax deduct-
ible and the marginal tax rate is nonconstant, a stochastic initial wealth implies
a stochastic after-tax premium payment (although regular “market insurance”
premiums are often not deductible, many of the expenses incurred in the “self-
insurance” of income sources (e.g. Ehrlich and Becker (1972)) may be). Finally,
the extension to the case of random premiums is very much in the spirit of Ross’s
program of making the analysis of behavior toward risk as independent as possible
of the assumption of certainty.®

To see how the above “marginal rate of substitution’ analysis may be extended
to the case of random premiums, consider again an individual with initial wealth
% who faces a risk v+ £ with E[£]x]=0 and var[é|x]=0"(x). Let 7 be a
nonnegative random variable with E[#|x]= h(x), and now let 7 be the “scale-of-
premium’ parameter which solves

) JU(w) dF;w.ﬁ(w)=J’ U(w) dFziyr ().
Taking the Taylor expansion in 7 and ¢ at = =1t =0 yields
1
(10) —[J‘ h(w) - U(w) dF;(w)] dm=2- U (@) - Up(w) dF;(w)] - dt,
so that the marginal rate of substitution between the scale-of-risk and the scale-of-
premium parameters about the initial wealth X is
an 4 1 10) Une)  dFw)
dt|,_¢ 2 [h(w)- Ulw)- dF(w)

and the comparative condition between U*(-) and U(-) becomes
[ o*(@) - Uh(0) - dFs(w) _ [ o%(@) - Uy (w) - dFx(w)

[ h(w) - U (o) - dF(w) [ h(w) - Uy(o) - dFy(w)

Changing the variable of integration in the denominators to » and cross multiply-
ing yields that this condition is equivalent to

(12)

(13) Jj h(v) - 0*(0) - [Ufi(0) Ui(») = Un(@) Uf(#)] - dFx(w) - dFx(v)<0.

But since h(-) and o?(-) are arbitrary nonnegative functions, this inequality is
again equivalent to the Ross condition (R.2).” The following theorem demon-
strates that, as with the Arrow-Pratt and original Ross formulations, this marginal
rate of substitution argument may be extended to the case of global risks:

8 Although expressed in terms of moving up a risk-return tradeoff, Ross’s Application 1 (1981,
pp. 630-631) may also be interpreted as a random premium condition by replacing his variables X, 7,
and £ with our variables X — 7 1, 7 7, and £ respectively.

° Although this comparison of marginal rates of substitution about X in fact only requires the
nonnegativity of h(x)= E[|x], our extension to large risks will require that 1 itself be a nonnegative
random variable.
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THEOREM 1: The following conditions are equivalent for a pair of twice-differenti-
able von Neumann-Morgenstern utility functions U(-) and U*(-) on [0, M] with
Ui(-), UT(-)>0:

(i) U*(x)=A- U(x)+ G(x) for some A > 0 and nonincreasing concave func-
tion G(-) satisfying Gy,(x) < G,(y) - Uy (x)/ Uy(y) forall x, y € [0, M];
(ii) = U¥i(x)/ Uf(y)=—Un(x)/ Ui(y) for all x,y [0, M];

(iii) if #* and w solve [ U*(x)dFz_ .. ;(x)=[ U*(x)dF;,:(x) and
[ U(x) dF;_,. #(x) =[ U(x) dFz,:(x) where 71=0 and E[£|x]=0, then

a*= ;10
and if both U(-) and U*(-) are risk averse, these are in turn equivalent to
(iv) if E[Z|x]=0 and a* and a respectively maximize | U*(w) dFz .:(®)

and | U(w) dF;, .:(w), then @*< a.

Since all risk averse expected utility maximizers are “diversifiers” (see below),
this theorem will follow from Theorem 2 below.

4. EXTENSION TO NON-EXPECTED UTILITY PREFERENCES

The argument of the previous sections as well as Ross (1981) concerned how
conditions sufficient to compare attitudes toward differential risks about a random
or nonrandom initial wealth were in fact sufficient to compare attitudes toward
global risks. In this section we consider a different type of extension, namely
from preferences that satisfy the expected utility property of “linearity in the
probabilities” to general smooth preferences over probability distributions, i.e.
those which are only “locally linear” in the probabilities, as studied for example
by Allen (1987), Dekel (1986), Epstein (1985), and Machina (1982a, 1982b).

Specifically, we adopt the L' norm || F*— F|| = |F*(x) — F(x)| dx over the set
D[0, M] of all cumulative distribution functions over [0, M], and assume that
the preference functional V(F) is everywhere Fréchet differentiable with respect
to F(-)."" In Machina (1982a) this was shown to imply the existence of a “local
utility function” U(-; F,) at each distribution Fy(-) such that

(14) V(F*) = V(Fo) = J U(w; Fy)[dF*(w) = dFo(w)]+ o(|| F* - Fo|)

for all F*(-), where o(-) denotes a function which is zero at zero and of higher
order than its argument. Thus, just as in ordinary calculus, the difference V(F*)—
V(F,) can be expressed as the sum of a first order (i.e. linear) term and a higher
order term, where the linear term can be represented as the difference in the
expectations of the function U(-; F,) with respect to the distributions F*(-) and

1% Note that since conditions (iii) and (R.3) are both equivalent to (R.2), it follows that U*(-) will
be willing to pay at least as much as U(-) in all random premium situations if and only if it is willing
to pay as much as U(-) in all certain premium situations. This particular equivalence, however, will
not extend to the case of non-expected utility preferences.

' The main result of this section (Theorem 2) can alternatively be derived using a weaker concept
of differentiability along the lines of Chew (1983), Chew, Karni, and Safra (1986), etc.
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Fy(-). Since the higher order term will disappear in the evaluation of any
differential shift from Fy(-) to F*(-), it follows that all of the local properties
of preferences at F,(-) are determined by the properties of the local utility
function U(-; F,) in the same manner as in expected utility theory. For example,
V(-) will be averse to all differential mean-preserving increases in risk about
Fy(-) if and only if U(x; F,) is a concave function of x. In Machina (1982a) it
was also shown how most of the basic concepts, tools, and techniques of expected
utility analysis may be globally extended in a similar manner. Thus, for example,
V(-) will be averse to all large mean-preserving increases in risk if and only if
U(x; F) is concave in x for each F(-).

It therefore follows that the “marginal rate of substitution” arguments of the
previous sections will generalize to the case of (smooth) non-expected utility
preferences with the Arrow-Pratt and Ross ratios replaced by
—U,,(x; Fy)/ Ui(x; Fy) and —U,,(x; F,)/ U,(y; F,) respectively. And except for
atechnical modification, the global results in Theorem 1 can be similarly extended.

This modification concerns the precise role played by the assumption of risk
aversion in the asset demand condition (iv) of Theorem 1. This role is not to
ensure that the individuals will desire at least some of the less risky asset X (in
other words, that @ <1), but rather to ensure that preferences are quasiconcave
in asset holdings so that the proper comparative static response (iv) will obtain.
As seen in the analyses of Tobin (1958, Fig.6), Machina (1982a, 1982b), and
especially Dekel (1986), the behavioral properties of risk aversion and quasicon-
cavity in asset holdings are in fact independent for general non-expected utility
maximizers. Accordingly, we replace the assumption of risk aversion by the
following condition:'?

DEFINITION: An individual is said to be a diversifier if, for all X, Z such that
E[Z|x]= 0 for all x, his or her preferences over the set of random wealths {X + aZ},
are strictly quasiconcave in a.

In the following, the term ‘“smooth” denotes that the derivatives
U,(x; F), Uy,(x; F), U¥(x; F), and Uf,(x; F) vary continuously in F(-). Given
these definitions, our extension of the Ross characterization to general smooth
non-expected utility preferences is given by:

THEOREM 2: The following conditions are equivalent for a pair of smooth Fréchet
differentiable preference functionals V(-) and V*(-) on D[0, M] with local utility
functions U(-; F) and U*(-; F) with U,(-; F), U¥(-; F)>0:

(i) for each F(-)e D[0, M], U*(x; F)=Ag- U(x; F)+ G(x; F) for some
Ar > 0 and nonincreasing concave function G( - ;, F) satisfying G,,(x; F) <
Gy(y; F) - Un(x; F)/ Uy(y; F) for all x,y € [0, M];

12 Although the definitions of “diversifiers” given in Tobin (1958) and Machina (1982a, 1982b)
differ from this one due to the different contexts considered, they are similar in spirit. Except for the
distinction between strict and weak quasiconcavity, this definition is equivalent to that of Dekel (1986).
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(ii) =Ufi(x; F)/ UY(y; F)=~-U,\(x; F)/ U\(y; F) for all x, y [0, M] and
all F(-)e D[0, M]; and

(lil) lf 7* and 7 solve V*(F;_ﬂ.*. .;,) = V*(F)H.g) and V(F,;A.n.. .,7) = V(F;+g)
where 1=0 and E[€|x]=0, then w*= m;

and if both individuals are diversifiers, these are equivalent to:

(iv) if E[£|x]=0 and @* and & respectively maximize V*(F,,;) and
V(F,;+az'), then a* < a.

The proof is in the Appendix.

Department of Economics, University of California, San Diego, La Jolla, CA
92093, U.S.A.

Manuscript received April, 1986; final revision received December, 1986.

APPENDIX

Throughout the following we assume that the actual supports of all random variables such as X+ ¢,
X —a, X+ az, etc. lie in the interval [0, M] so that we may assume that all integrals are taken over
(=00, +0) unless otherwise specified. As mentioned above, condition (i) of Theorem 2 and the original
proof of its equivalence to (ii) is due to Eddie Dekel.

LEMMA: If E[£]=0, then

J [U(x+e)—U(x)] - dF:(¢)

o fefs o oo
=J J‘ J’ U“(x+w)-dw~ds-dF5(e)+J' J' J U (x+w) - do-ds- dF:(e).

[ 0 Jo

PROOF:

J[U(X+ £) = U(x)]- dFg(e)

0

=Im[U(X+E)— Ux)]- dFs(E)—J [U(x)-U(x+e)]- dFg(e)
0

—oc0

o € 0 )
=J '[ U,(x+s)-ds-dF§(e)—J J U,(x+s) - ds- dF:(e)
0 0 —o0 J e
o

=J‘OOJ'E[U,(x+s)—Ul(x)]-ds-dF;(e)-’-j J‘[Ul(x)—Ul(x+s)]-ds~dF£~(s)
o Jo .

—o0

o & s 0 1] 0
=J J J U“(x+w)-dw-ds-dF5(E)+J. J J U,(x+tw) do-ds- dF:(e)
0 0 -0 Vg K

0

where the second-last equality above follows since E[£]=0 implies

oo 0 o fe 0 0
0=J E-dFE-(e)+J £~dFE-(E)=J’ J 1~ds~dF5(£)—J Jl'ds-ng(E)

0 —00 0 0 —0o

so that

o e [ 0
0=—J‘ J Ul(x)-ds~dF;(s)+J' J Ui(x) - ds- dF:(¢). Q.E.D.
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PROOF OF THEOREM 2: (i)~ (ii): For each x, y, and F(-), (i) implies G,,(x; F) - U,(y; F)<
U, (x; F)- G(y; F), which implies [Gu(x; F)+Ap- Uy (x; F)]- U(y; F)< U, (x; F)
-[Gy(y; F)+Ap- Uy(y; F)] and hence that U§,(x; F) - U,(y; F)< U, (x; F) - U¥(y; F), which by
positivity of U,(-; F) and U¥(-; F) implies (ii).

(ii) > (i): For each F(-), define Ar =max {U¥(y; F)/ U,(y; F)|lye[0, M1} = U¥(7; F)/ U,(7; F)
for some j € [0, M] (so that A >0) and G(x; F)= U*(x; F)—Ap- U(x; F). This implies G,(x; F)=
Ut(x; F)=Ap- Uy(x; F)<O  and  that Gy (x; F)= U%(x; F) = Ap- Uy (x; F)= U¥(x; F)
—[U¥(7; F)/U\(7; F)]- Uy, (x; F), which by (ii) is nonpositive. For each x, y, and F(-), (ii) implies
Ufi(x; F) - U(y; F)s U, (x; F)- U¥(y; F)  which  implies  [Gy,(x; F)+Ag- Uy (x; F)]
-Uly; F)s U, (x; F) - [G(y; F)+Ag- U(y; F)] and hence that G, (x; F)- U(y; F)
< U, (x; F)- G,(y; F), which by positivity of U,(-;F) implies G, (x; F)<G,(y;F)

Ui (x; F)/ Uy(y; F).

(ii) » (iii): Let F(x, &, n) be a joint distribution for which E[£|x]=0 and % =0, and let 7 solve
V(F;_ V(F¢, ;). Defining the joint distribution

n»;,)=

D(x, &, n)E'[ Fiu(elw) - Fy(nlw) - dFe(w),
0

it is straightforward to verify that @; (-, )= F(-,*) and ®; (-, )= F;;(-, "), so that ¢‘+F( )=
Fzio(v) and @z, 5(+)=Fz_,. ,,( ) Note also that under the distributlon &(-,-,), € and 0 are
conditionally mdependent given x.!
For each 7€[0, 1], define 6(r) as the solution' to

VI(1=7) Perzpry.- 51T Pecon.5)= V(Pior. 5) = V(Psys),

andlet @(-; 7)=(1-7) Ptz 6(ry. 57" Pi_gr). 7 Notethat 8(0)=0, 6(1) =, P(+;0) =Dz, :(-)
and @(-; 1)— - ,,( ), so that the set{tb( ,T)TE[O 1]} forms a path from @, (- ) Fe :() to

D, ,,( )= (+) in D[0, M]. From Machina (1982a, eq. 8) it follows that for each 7€[0, 1]
we have
o dV(@(5m)
- dr 5
d
=d—[(1—f) : JIJ Ux+e—0(7) m; ®(+; 7)) dP(x, & n)
-

+7- J‘JJ U(x—6(7) - n; @(-; 7)) dP(x, ¢, n)]
—_”J [Ux+e—06(7) n; P(-; 7))~ U(x—0(7) - n; (-5 7))]1dDP(x, &, 1)

—0'(7) - JJJ n-[(1=7) Ui(x+e—6(7) - n; (-5 7))

+7 U(x—0(7) - m; @(-; 7))]1dP(x, &, 7)
so that 6'(7) is given by
_ ITU(x+&—6(7) - m; D(-3 )= U(x=0(7) - 73 P(-5 7)1 dP(x, & 1)
Hin-[(1=7) - Ux+e—0(7) - n; ®(-; 7))+ 7 Uy(x—0(7) - ; B(-; 7)1 dP(x, £, 1)

By the definition of ®(x, ¢, ) we may write the numerator of (15) as

JI[J[U(x+€—0(f)‘n;¢(';f)) ‘

—U(x—6(7) - n; ®(-; 7))] dF, \(Elx] dF; 5(x, )

(15)

13 When F(x, €, n) possesses a density function f(x, €, ), the density of @(x, g, 7) is ¢(x, &, )=
Saslelx) - fope(nl) - £(0).
4 Except for the trivial case where 7 =0, the existence and uniqueness of 6(7) for each 7 follows
from strict first order stochastic dominance preference for V(-), which in turn follows from the
assumption that U,(-; F)>0 (see Machina (1982a)).
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which from the Lemma is seen to equal

J‘J‘ UmJI Un(x+w=6(7) - 1; &(+; 7)) - do - ds - dFy(elx)
o Jo Jo

0o oo
+J‘ j J- Uy(x+w—6(7) - n; (-, 7)) dw- ds- dFE|X(E|X)] dF; -(x, m).

Since the numerator and denominator of (15) can therefore be expressed as nonnegative weighted
integrals of U,,(-; @(+; 7)) and U,(-; ®(-; 7)) respectively, an argument identical to that following
equation (12) yields that (15) (i.e. 6'(7)) is less than or equal to

B I LU*(x+e—6(7) - m3 (-5 7)) = U*(x = 6(7) - m; B(-; )] db(x, &, )
in-[A=7) - UF(x+e=6(7) - m; @(-; ) +7 UF(x—0(7) - m; D3 )] db(x, . 7)"

But by an argument identical to the derivation of dV(®(-; 7))/dr|; above this implies that
dV*(®(-; 7))/ dr|,=0 for all 7€[0, 1], so that V*(Fe_,.5)= V¥(Feiz)= V*(Fi_,». ), and hence
that 7%= 7.

(iii) > (ii): Assume that — U\ (xo; Fo)/ U (33 Fo) <— Uy, (xo3 Fo)/ U, (yo; F,) for some Xo, Yo €
[0, M] and Fy(-)e D[0, M] (by smoothness we may assume Xx,# y, and that p,=prob (x,) and
9o =prob (y,) are both positive). Define F(x, », ) such that F:(:)=Fy(*),1=1if £=y(5=0
otherwise), and 7 is a 50:50 chance of +1 if X = xo (¥ =0 otherwise). Defining #*(¢) and (t) as
the solutions to V*(F;_,x(). )= V*(Fz, ;) and V(Fe_n(y-5) = V(Fzyur 5) for each t, we have
from Machina (1982a, eq. 8) and equation (11) that dr*(t)/dt|,_o=—1- U¥(x,) - Po/ UF(y0) - go<
=3 Uy (%) po/ Ur(¥o) * o= dm(t)/dt|,_o, so that 7*(t,) < m(t,) for some small positive t,. Defining
£=+/1,+ 7 yields a contradiction of (iii).

(i)~ (iv): Let F(-, -) be the joint distribution of (%, 7). Defining F(-; a)= F¢, .:(+), we have from
Machina (1982a, eq. 8) that & satisfies

=i [j'[ U(x+az; F(-; &) dF(x, z)]
da

=J‘J‘ z- U(x+az; F(-; a)) dF(x, z).

A similar derivation yields that

i[V(F(';Ol))] =IIZ' Ui(x; F;) dF(x, z)
da °

=J Ui(x; Fe)[J z sz'|x(z|x)] dF:(x)=0
which implies @ =0. We also have, '

i V*F .o
2o [V¥(F(-; )]

=-'-J z- U¥(x+az; F(-; a)) dF(x, z)

a

=IJ z2-[Ap(a) - Ul(x+az; F(-; @)

+G(x+az; F(-; a))] dF(x, z)

which from above is seen to equal

J’J‘ z- G(x+az; F(-; &)) dF(x, z)

= f“ 2 Gy(x+az; F(-; @) sz-|_\~<z|x>] dFy(x).
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Since G,, G,;<0,a@=0 and E[Z|x]=0, the bracketed term will be nonpositive. Since this implies
that dV*(F(-; ))/da|; <0 and V*(-) is a diversifier, it follows that a* < a.

(iv) > (ii): Assume — U (xo; Fo)/ U¥(yo; Fo) <A <—U, (xo; Fo)/ U(o; Fy) for some x,, y,, A,and
F,(+). By smoothness we may assume that x,, yo, A, and Fy(-) are such that x,# y,, prob (x,) =
prob (y,) =0, and that there exist small positive y and p, such that prob (x,+y)=prob (x,—7v) =
prob (y,+ Ay) = p, and such that

Ut (xo+y; Fo) Ut (=% Fo) | Ui+ y; Fo) — Ui(Xo— 73 Fo)
Ut(yo+Ay; Fo) Ui(3o+Ay; Fo)

Define (%, %) such that Fz(-)=Fo(+)+2po- 8,()+Po 8y,(*) = Po" Sxpry)(*)=Po " Sxo-p( )~
Po* 8,5+x,(+), where 8.(-) denotes that distribution which assigns unit probability to ¢, and 7 is a
50:50 chance of +1 if ¥=x,, Z=A if X=y,, and Z=0 otherwise. We therefore have that F;,,:(-)
equals Fy(-) when a=v It follows that dV(F;MZ-)/dala:y:po- U,(xo+7v; Fp)
—po - Ui(xo—7v; Fo)+ A po- U(yo+ Ay; Fp), which by the previous inequality must be negative, so
that the optimal value & is less than y. A similar argument establishes that the optimal value a* is
greater than vy, which is a contradiction. Q.E.D.
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