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This paper presents a direct algebraic (i.e., non-calculus) proof of the well-known equivalence of m-moment preferences and 

m-degree polynomial utility for an expected utility maximizer. 

1. Introduction 

Everyone knows that an expected utility maximizer will evaluate probability distributions on the 
basis of their first two moments ’ if and only if his or her von Neumann-Morgenstern utility 
function U( .) is quadratic, and similarly for higher numbers of moments and higher degree 
polynomials. 2 Although the implication 

{ U( +) is an m-degree polynomial} + {only the first m moments matter} (1) 

is obvious and its converse 

{only the first m moments matter} -+ { U( .) is an m-degree polynomial} (2) 

can be established by a Taylor series argument if U( .) is assumed to be differentiable of a 
sufficiently high order, we have been puzzled by the absence (to our knowledge) of a direct 
non-calculus based proof of this latter result in the literature. The purpose of this letter is to provide 
such a proof, which we hope will help reveal the simple algebraic nature of this result. The next 
section presents the basic idea in the mean-variance case, and section 3 offers a formal proof for the 
case of m moments. 

* We are grateful to Joel Sobel and Michael Rothschild for helpful discussions on this material. 

’ Although our main result (section 3) will be presented in terms of the mean and higher absolute moments E[ X], E[ X2], 

9X3],..., it could be alternatively expressed in terms of the mean and higher central moments E[ X], E[(X- E[X])‘]. 
E[( X - E[ X])3], _, as in the mean variance case of section 2. 

’ Discussions of moment preferences in economics and finance include Bierwag (1974). Borch (1969, 1973, 1974), Hanson 
and Menezes (1971), Levy (1974) Machina and Rothschild (1987) Samuelson (1970). Scott and Horvath (1980) Tobin 

(1958, 1969) Tsiang (1972, 1974) and the references cited in there. Although it will have no bearing on our results. it is 

important to recall that the assumption of polynomial utility typically requires a restriction on the set of allowable outcomes 
if utility is to be non-decreasing. 
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2. Mean-variance preferences and quadratic utility 

It is clear that a continuous function U(a) will possess a constant first difference, i.e., will satisfy 

W(x+C wlx=*w(s)- W)l (3) 

if and only if it is linear (i.e., affine). Similarly, a continuous U( .) will possess a constant second 
difference, i.e., will satisfy 

[u(x+26)-u(x+6)]-[u(x+6)-u(x)]~~6[u(26)-u(6)]-[u(6)-u(o)] (4) 

if and only if it is quadratic. 
Consider the two probability distributions illustrated in fig. 1, where x and 6 are arbitrary. Since 

each has a mean of x/2 + 8 and a variance of x2/4 + a2/2, the assumption of mean-variance 
preferences implies that they will yield equal expected utility, so that we have 

:U(0)+~U(2S)+:u(x+G)X=8:u(8)+:u(X)+:U(X+2S). (5) 

But since (5) is equivalent to (4), it follows that U( .) must be quadratic. 

3. m-moment preferences and m-degree polynomial utility 

The two distributions in fig. 1 were chosen so that (i) they possessed the same first two moments 
for all x and 8, and (ii) equating their expected utility for all x and 6 implied that U( .) possessed a 
constant second difference and hence was quadratic. Not surprisingly, this approach can be extended 
to the general case of m moments. Specifically, we know from Aczel (1966, p. 130) that a continuous 

0 6 26 x X+6 x+26 

Fig. 1. Probability distributions for the mean-variance case. 
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function U( .) will be a polynomial of at most degree m if and only if it possesses a constant m th 
difference, i.e., if and only if 

where (T) denotes the binomial coefficient m!/[k!( m - k)!]. 3 From this we may derive 

Theorem. An expected utility maximizer with continuous von Neumann-Morgenstern utility function 

U( .) will rank probability distributions on the basis of their first m absolute moments if and only if U( .) 

is a polynomial of at most degree m. 

ProoJ Let x and 6 be arbitrary real numbers, and define the probability distributions 4 Y and Z 

by 

prob{Y=x+k8} =2-“‘.(T) for k=O,...,m, keven, 

prob{Y=ka} =2-“.(T) for k=O,...,m, kodd, 

and 

prob{Z=k8} =2-“+(T) for k=O,...,m, keven, 

prob{Z=x+k8} =2-“.(z) for k=O,...,m, kodd. (8) 

For l=l,..., m the lth absolute moments of Y and Z are given by 

E[Y’]= ja (x+k8)‘.2-“m(;)+ k$O(kS)‘Y.(;) 

k even k odd 

and 

E[Z’]= f (x+k#?~(;)+ f (k8)‘.2-“.(;), 
k=O k=O 

k odd k even 

so that 

E[Y’]-E[Z’]= 5 (+(x+k~)t~2-“~(~)- 5 (-l)k.(k8)‘.2-m.(;j 
k=O k=O 

= f (-l)k.[(x+k8)‘-(k8)‘]Y”.(;j. 
k=O 

(7) 

(9) 

(10) 

(11) 

Evaluating eq. (6) at x = w + S and at x = w and subtracting yields that the (m + 1)th difference of U( .) at w will be 0 for 
all w and 6, which from Acz&l (1966, p. 130) implies that U( .) must be a polynomial of at most degree VI. 

4 That the probabilities in (7) and (8) will sum to unity follows from Feller (1968, p. 51, eq. 8.12). 
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Substituting 

(x+kks)‘= ; (~)-x’-‘.(ks)‘=q~)~x’-‘-(k~)‘+(ks)’ 
i=O i=O 

yields 

E[Y’]-E[Z’]= f (-l)k. 
k=O 

= 
. xl-’ .(ka)’ T’“(~j 1 

(12) 

But since the expression in braces will be 0 for all i IS I- 1 -c m [e.g., Feller (1968, p. 65, eq. 12.17)], it 
follows that the first m moments of Y and Z are equal. 

Since the individual evaluates probability distributions on the basis of their first m moments, Y 
and Z must yield equal expected utility, so that we have: 

O=E[U(Y)] -E[U(Z)] = 5 U(x+kl?)Z’$j+ 5 U(k8)T”.(;j 
k=O k=O 

k even k odd 

- t U(x+k8) T”‘.[;j- 5 U(kQ2-“‘.j;j, 

k=O k=O 
k odd k even 

(13) 

which in turn implies 

(14) 

But since the left and right sides of (14) are the mth differences of U(.) at x and 0 respectively [or in 
other words, since (14) is the same as (6)], it follows that U( +) must be a polynomial of at most 

degree m. 
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