ECONOMICS 100A: MICROECONOMICS

Fall 2013 Tues, Thur 2:00-3:20pm Center Hall 101
Professor Mark Machina Office: Econ Bldg 217 Office Hrs: Wed 9am-1pm

(See other side for Section times & locations, and TA’s offices & office hours)

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>TEXT/CHAPTER/MATH HANDOUT SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep. 26</td>
<td>Introduction & Mathematical Review #1</td>
<td>Ch.1, 2.1, 2.5/Sects. A, B</td>
</tr>
<tr>
<td>Oct. 1</td>
<td>Mathematical Review #1 (cont.)</td>
<td>Sect. C</td>
</tr>
<tr>
<td>Oct. 3</td>
<td>Consumer Preferences: Utility Functions and Indifference Curves</td>
<td>Ch.3.1, 3.2</td>
</tr>
<tr>
<td>Oct. 8</td>
<td>Consumer Preferences: Utility Functions and Indifference Curves (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Oct. 10</td>
<td>Mathematical Review #2</td>
<td>Sects. D, E</td>
</tr>
<tr>
<td>Oct. 15</td>
<td>Mathematical Review #2 (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Oct. 17</td>
<td>Utility Maximization and Demand Functions</td>
<td>Ch.3.3, 3.4,4.1</td>
</tr>
<tr>
<td>Oct. 22</td>
<td>(Tuesday) 1st Midterm Exam</td>
<td></td>
</tr>
<tr>
<td>Oct. 24</td>
<td>Utility Maximization and Demand Functions (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Oct. 29</td>
<td>Utility Maximization and Demand Functions (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Oct. 31</td>
<td>Comparative Statics of Demand</td>
<td>Ch.4.2, 4.3</td>
</tr>
<tr>
<td>Nov. 5</td>
<td>Comparative Statics of Demand (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Nov. 7</td>
<td>Comparative Statics of Demand (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Nov. 12</td>
<td>Comparative Statics of Demand (cont.)</td>
<td>"</td>
</tr>
<tr>
<td>Nov. 14</td>
<td>(Thursday) 2nd Midterm Exam</td>
<td></td>
</tr>
<tr>
<td>Nov. 19</td>
<td>Supply of Labor: The Labor-Leisure Decision</td>
<td>Ch.5.5</td>
</tr>
<tr>
<td>Nov. 21</td>
<td>Supply of Capital: Consumption-Saving Decision</td>
<td></td>
</tr>
<tr>
<td>Nov. 26</td>
<td>Supply of Capital: Consumption-Saving (cont.)</td>
<td></td>
</tr>
<tr>
<td>Dec. 3</td>
<td>Decision Making under Risk and Uncertainty (cont.)</td>
<td>Ch.16.1, 16.2</td>
</tr>
<tr>
<td>Dec. 5</td>
<td>Decision Making under Risk and Uncertainty (cont.)</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>FINAL EXAM (Thursday, Dec. 12, 3:00-6:00pm)</td>
<td>(location TBA)</td>
</tr>
</tbody>
</table>

TEXT & READINGS: *Microeconomics: Theory and Applications*, Third Custom Edition for UCSD, by Jeffrey Perloff, Addison Wesley, 2014. There is also a Soft Reserve Package which contains the Math Handout, practice problems, and old exam questions. Although we will go over some of these questions in office hours and review sessions, the best way to prepare for the exam is to form study groups and practice doing them together.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.

COURSE WEB PAGE: The course web page is at:

www.econ.ucsd.edu/~mmachina/courses/ECON_100A/ECON_100A.html
<table>
<thead>
<tr>
<th>Section</th>
<th>Day, Time</th>
<th>Room</th>
<th>TA</th>
<th>Office & Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Mon 4:00-4:50pm</td>
<td>Pepper Canyon Hall 122</td>
<td>Onyi Lam</td>
<td>Sequoyah Hall 235 Thursday 4-6pm</td>
</tr>
<tr>
<td>C02</td>
<td>Wed 6:00-6:50pm</td>
<td>Cognitive Sciences Bldg. 102</td>
<td>Vincent Leah-Martin</td>
<td>Economics Bldg. 124 Monday 5-7pm</td>
</tr>
<tr>
<td>C03</td>
<td>Tues 7:00-7:50pm</td>
<td>Center Hall 109</td>
<td>Vincent Leah-Martin</td>
<td>Economics Bldg. 124 Monday 5-7pm</td>
</tr>
</tbody>
</table>
ECON 100A COURSE OUTLINE – Fall 2013

I. INTRODUCTION
 a. Domain of Microeconomic Analysis
 b. Circular Flow Diagram
 c. Stocks vs. Flows and the Dimensions of Economic Variables

II. MATHEMATICAL REVIEW #1
 a. Calculus Review (Math Handout, Section A)
 Derivatives, Partial Derivatives and the Chain Rule
 Approximation Formulas for Small Changes in Functions (Total Differentials)
 b. Elasticity (Math Handout, Section B)
 Absolute, Proportionate and Percentage Changes in Variables
 Definition of Elasticity
 Constant Elasticity Functions
 c. Level Curves of Functions (Math Handout, Section C)
 Definition and Graphical Illustration
 Algebraic Formula for a Level Curve
 Formula for the Slope of a Level Curve

III. CONSUMER PREFERENCES: UTILITY FUNCTIONS & INDIFFERENCE CURVES
 a. Commodities, Commodity Bundles and Preferences
 Commodities are Typically Flows, not Stocks
 Issue of Divisibility
 The Relevant Time Period
 b. Preference Relations and Utility Functions
 Preferences are defined over Commodity Bundles, not Individual Commodities
 Weak Preference, Strict Preference and Indifference
 Utility Functions and Total Utility Curves
 Important Examples: Linear, Cobb-Douglas, Leontief
 Marginal Utility and Marginal Utility Curves
 Hypothesis of Diminishing Marginal Utility
 Monotonic Transformations of Utility Functions
 c. Indifference Curves and the Marginal Rate of Substitution
 Deriving a Consumer’s Indifference Curves from Their Utility Function
 General Properties of Indifference Curves:
 One Through Every Commodity Bundle
 Downward Sloping and Can’t Cross
 Marginal Rate of Substitution (MRS)
 Graphical Interpretation: Slope of the Indifference Curve
 Algebraic Formula: Ratio of Marginal Utilities
 Hypothesis of Diminishing Marginal Rate of Substitution

IV. MATHEMATICAL REVIEW #2
 a. Scale Properties of Functions (Math Handout, Section D)
 b. Solving Optimization Problems (Math Handout, Section E)
 General Structure of Optimization Problems
 First and Second Order Conditions for Unconstrained Optimization Problems
 First Order Conditions for Constrained Optimization Problems
 c. Inequality Constraints and Corner Solutions
V. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS
 a. Utility Maximization Subject to a Budget Constraint
 - Graphical Illustration
 - First Order Conditions for Utility Maximization
 - Two Interpretations of the First Order Conditions
 - Second Order Conditions (Hypothesis of Diminishing MRS)
 - Corner Solutions: Graphical Illustration and Algebraic Condition
 - Indirect Utility Functions and their Properties
 b. Regular (“Marshallian”) Demand Curves and Demand Functions
 - Plotting Regular Demand Curves
 - Regular Demand Functions
 - General Properties of Demand Functions:
 - Walras’ Law
 - Scale Invariant in Prices and Income
 - Relationship between Price Elasticities & Income Elasticity for a Good
 - Examples: Cobb-Douglas, Leontief, Linear
 - Market Demand Functions

VI. COMPARATIVE STATICS OF DEMAND
 a. Income Changes
 - Income-Consumption Locus
 - Engel Curves: Definition and Graphical Derivation
 - Income Elasticity
 - Superior, Normal and Inferior Goods
 - Income Elasticity and Budget Shares
 - Relationship Between Income Elasticities of All Goods
 - Algebraic Derivation of the Effect of an Income Change
 b. Price Changes
 - Price-Consumption Locus
 - Graphical Derivation of Marshallian Demand Curves
 - Own Price Elasticity
 - Price Elasticity and Expenditures
 - Cross Price Elasticity
 - Gross Substitutes and Gross Complements
 - Algebraic Derivation of the Effect of a Price Change
 c. Compensated Price Changes and Compensated (“Hicksian”) Demand Functions
 - Graphical Illustration of a Compensated Price Change
 - The Expenditure Minimization Problem
 - Compensated Demand Functions and their Properties
 - Expenditure Functions and their Properties
 - Algebraic Derivation of the Effect of a Compensated Price Change
 d. The Slutsky Equation
 - Expressing Each of the Three Basic Changes in Terms of the Other Two
 - Graphical Illustration
 - Algebraic Formulation and Informal Proof
 - Giffen Goods
 e. Consumer Surplus and Welfare Analysis
 - Consumer Surplus
 - Equivalent and Compensating Variation
VII. SUPPLY OF LABOR: THE LABOR-LEISURE DECISION
 Income-Leisure Space and the Labor-Leisure Decision
 First Order Conditions for Optimal Supply of Labor
 Comparative Statics: Income and Substitution Effects
 Backward Bending Supply of Labor Curves
 Kinked Budget Lines and the Overtime Decision

VIII. SUPPLY OF CAPITAL: THE CONSUMPTION-SAVINGS DECISION
 Intertemporal Income and Consumption Streams
 Interest Rates and Discounted Present Value of a Stream
 Intertemporal Utility Maximization
 First Order Conditions and Interpretation
 Comparative Statics: Income and Substitution Effects

IX. DECISION MAKING UNDER RISK AND UNCERTAINTY
 a. Outcomes, Lotteries and Expected Value
 Choice over Lotteries
 Expected Value
 The St. Petersburg Paradox
 b. Expected Utility
 Two-Stage Lotteries and the Independence Axiom
 von Neumann-Morgenstern Utility Functions and Expected Utility
 c. Risk Aversion
 Properties of Risk Averse Preferences
 Arrow-Pratt Measure of Risk Aversion
 Risk Aversion and Wealth
 d. Measures of Risk Aversion
 e. Demand for Insurance
 f. Investment in a Risky Asset
FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

<table>
<thead>
<tr>
<th>Optimization Problem</th>
<th>Objective Function</th>
<th>Constraint</th>
<th>Control Variables</th>
<th>Parameters</th>
<th>Solution Functions</th>
<th>Optimal Value Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer’s Problem</td>
<td>$U(x_1,\ldots,x_n)$ utility function</td>
<td>$p_1 x_1 + \ldots + p_n x_n = I$ budget constraint</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n, I prices and income</td>
<td>$x_1(p_1,\ldots,p_n, I)$ regular demand functions</td>
<td>$V(p_1,\ldots,p_n, I)$ indirect utility function</td>
</tr>
<tr>
<td>Expenditure Minimization Problem</td>
<td>$p_1 x_1 + \ldots + p_n x_n$ expenditure level</td>
<td>$U(x_1,\ldots,x_n) = u$ desired utility level</td>
<td>x_1,\ldots,x_n commodity levels</td>
<td>p_1,\ldots,p_n, u prices and utility level</td>
<td>$h_1(p_1,\ldots,p_n, u)$ compensated demand functions</td>
<td>$e(p_1,\ldots,p_n, u)$ expenditure function</td>
</tr>
<tr>
<td>Labor/Leisure Decision</td>
<td>$U(H,I)$ utility function</td>
<td>$I = I_0 + w(168 - H)$ budget constraint</td>
<td>H, I leisure time, disposable inc.</td>
<td>w, I_0 wage rate and nonwage income</td>
<td>$168 - H(w, I_0)$ labor supply function</td>
<td>$V(w, I_0)$ indirect utility function</td>
</tr>
<tr>
<td>Consumption/ Savings Decision</td>
<td>$U(c_1,c_2)$ utility function</td>
<td>$c_2 = I_2 + (1+i)(I_1 - c_1)$ budget constraint</td>
<td>c_1, c_2 consumption levels</td>
<td>I_1, I_2, i income stream and interest rate</td>
<td>$c_1(I_1, I_2, i), c_2(I_1, I_2, i)$ consumption functions</td>
<td>$V(I_1, I_2, i)$ indirect utility function</td>
</tr>
<tr>
<td>Long Run Cost Minimization</td>
<td>$w\cdot L + r\cdot K$ total cost</td>
<td>$F(L,K) = Q$ desired output</td>
<td>L, K factor levels</td>
<td>Q, w, r desired output and factor prices</td>
<td>$L(Q,w,r), K(Q,w,r)$ output-constrained factor demand functions</td>
<td>$LTC(Q,w,r)$ long run total cost function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of Q)</td>
<td>$P\cdot Q - LTC(Q,w,r)$ total profit</td>
<td>none</td>
<td>Q output level</td>
<td>P, w, r output price and factor prices</td>
<td>$Q(P,w,r)$ long run supply function</td>
<td>$\pi(P,w,r)$ long run profit function</td>
</tr>
<tr>
<td>Long Run Profit Maximization (in terms of L and K)</td>
<td>$P\cdot F(L,K) - w\cdot L - r\cdot K$ total profit</td>
<td>none</td>
<td>L, K factor levels</td>
<td>P, w, r output price and factor prices</td>
<td>$L(P,w,r), K(P,w,r)$ factor demand functions</td>
<td>$\pi(P,w,r)$ long run profit function</td>
</tr>
</tbody>
</table>