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Fuel economy standards, which are rapidly 
increasing in stringency in the United States, 
typically alter the composition of the vehicle 
fleet toward smaller and lighter vehicles.1 The 
link between these compositional changes and 
safety has the potential to dramatically alter the 
costs of saving gasoline via fuel economy regu-
lation and is the issue I address here. I provide 
a new empirical model of accident fatality risks 
and combine it with a simulation model of vehi-
cle fleets and fuel economy standards.

This issue is particularly important given the 
risks that driving imposes to life: More than 
37,000 fatalities were recorded in US automo-
bile accidents in 2008.2 Proportional increases 
or decreases in this rate, even relatively small in 
magnitude, have substantial implications for the 
cost of gasoline savings.

The prior literature can be divided into two 
general strands, the first of which is summarized 
in a report from the National Research Council 
(NRC, 2002). Based on engineering studies of 
vehicle weight and safety, they estimate that 
2,000 additional deaths annually are attributable 
to vehicle size changes from existing fuel econ-
omy standards.3 Using conservative assumptions 
(detailed in an Appendix available on the AER 
website), this corresponds to a cost of $1.55 per 
gallon of gasoline saved.

A second, more recent set of studies empha-
size a very different feature in the data: Ted 
Gayer (2004), Michelle J. White (2004), and 
Thomas P. Wenzel and Marc Ross (2005) show 
that while the larger vehicles discouraged by 
fuel economy standards are safer for their own 

1 An effect known in the industry as “mix-shifting,” see 
David Austin and Terry Dinan (2005) and Mark Jacobsen 
(2010) for a description of the incentives. 

2 National Highway Traffic Safety Administration 
(NHTSA 2009). 

3 See Paul Portney et al. (2003) and Robert W. Crandall 
and John D. Graham (1989) for further discussion. 
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occupants, they impose a severe cost on other 
vehicles in a collision. Removing large vehicles 
from the road via fuel economy standards could 
therefore create an improvement in overall 
safety.

My main empirical contribution is to recon-
cile these findings by accounting for selection 
in driving safety behavior: Controlling for driver 
behavior by vehicle type allows me to isolate 
the underlying “engineering safety” of vehicles 
and relate it to the earlier work on weight differ-
ences. At the same time, my estimates of driver 
behavior can explain the more recent findings 
that large trucks and SUVs are represented dis-
proportionately often in fatal collisions.

Separating the riskiness of driving behavior 
(which comes from both observed and unob-
served factors, such as the propensity to drive on 
dangerous roads) is the central empirical chal-
lenge.4 I solve it by proxying for driving behav-
ior using single-vehicle accidents and crash test 
results, recovering an intuitive set of estimates: 
Minivans and small SUVs have the lowest risks 
attributable to the driver’s behavior and location, 
while pickup trucks and large sedans are associ-
ated with the highest risk.

Returning to the motivating policy ques-
tion, I combine my new empirical results with 
a simple model of the automobile industry to 
ask how changes in fleet composition alter fatal-
ity risks. After controlling for driver selection, 
I find that fuel economy regulation that main-
tains the historical separation of light trucks and 
cars involves substantial deterioration in vehicle 
safety. In contrast, I find much better safety out-
comes under a unified standard that encourages 
manufacturers to substitute away from light 
trucks and into cars.

4 Some of driving safety is well known to be correlated 
with observables like age, gender, and income. Important 
factors that are generally not observed include the tendency 
to drive drunk, the time of day driving occurs, types of roads 
used, disregard for traffic signals, or simply taste for safety. 
Steven D. Levitt and Jack Porter (2001) estimate drunk driv-
ing rates using innocent vehicles in accidents as control, but 
in most cases the personal characteristics that go into driving 
safety are quite difficult to measure. 
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I. Empirical Model

I model the count of fatal accidents between 
each combination of vehicle classes as a 
Poisson random variable. Vehicle classes in 
the data represent ten sizes and types of cars, 
trucks, SUVs and minivans; covering all pas-
senger vehicles in the United States. They are 
listed in Table 1.

Define  Z ij  as the count of fatal accidents 
where vehicles of class i and j have collided and 
a fatality occurs in the vehicle of class i. Counts 
of accidents reflect all factors influencing risk 
and exposure. I categorize these into three mul-
tiplicative components: i)  β ij  reflects the engi-
neering safety risk of a fatality in vehicle i when 
vehicles from classes i and j collide, abstracting 
from all aspects of driver behavior or location. 
ii)  α i  represents the portion of risk attributable 
to the behavior or location of drivers in class i. 
iii)  n is  is the number of vehicles of class i that are 
present in bin s.

The greater any of these components—engi-
neering risk, drivers’ risk, and number of vehi-
cles—the more fatal accidents are expected. I 

normalize the measure of driver riskiness such 
that it multiplies the fatality risk. Values of  α i  
come from individual-level factors that may be 
unobservable. The subscript s indicates bins 
of the data by time-of-day, geography, demo-
graphics, and urban density—factors that 
appear to significantly influence both the com-
position of the fleet and the probability of fatal 
accidents.

Combining the three terms, I model the count 
of accident fatalities as:

(1)  E ( Z ijs ) =  n is   n js   α i   α j   β ij .

This form contains an important implicit 
restriction: Behaviors that increase risk are 
assumed to have the same influence in the pres-
ence of different classes and driver types. I argue 
that this is a reasonable approximation given 
that most fatal accidents result from inattention, 
drunk driving, and signal violations;5 such acci-
dents give drivers little time to alter behavior 
based on attributes of the other vehicle or driver.

Given that the  α i  terms include unobserv-
able driving behaviors it is impossible to esti-
mate equation (1) alone; it can’t be separately 
determined if a vehicle class is dangerous in an 
engineering sense (captured in β) or if the driv-
ers who select it just happen to drive particularly 
badly (captured in α).

To separate the two parameters, I include sin-
gle-car accidents in the model defining  Y  is  as the 
count of single-car fatalities:

(2)  E( Y  is ) =  n is   α i   λ s   x i  ,

where  n is  and  α i  are as above and  λ s  flexibly 
captures factors specific to bin s that influence 
the frequency of single-car accidents relative to 
multicar accidents.  x i  refers to the fatality risk to 
occupants of class i in a standardized collision 
with a fixed object. This will be reflected (up 
to a constant) using crash test results. The key 
restriction across equations (1) and (2) is that 
the dangerous behaviors contained in α  i multi-
ply both the risk of single-car accidents and the 
risk of accidents with other vehicles.

Much of the previous work focusing on the 
influence of weight of vehicles (see Charles J. 
Kahane 2003) has parameterized the risks in 

5 NHTSA (2008b). 

Table 1—Vehicle Classes, Accident Rates,  
and Estimated Driver Effects

Vehicle
class

Single-car 
fatality  rate a 

Crash test 
fatality risk

Average
 α  i  

b 

Compact 14.3 1.00 1.14  
(0.06)

Midsize 11.3 0.93 0.98  
(0.06)

Fullsize 10.2 0.67 1.25  
(0.08)

Small luxury 13.5 0.80 1.19  
(0.08)

Large luxury 11.9 0.89 1.05  
(0.07)

Small SUV 9.4 1.18 0.65  
(0.04)

Large SUV 12.8 1.00 1.06  
(0.06)

Small pickup 15.9 1.26 1.09  
(0.07)

Large pickup 18.2 1.11 1.45  
(0.08)

Minivan 4.9 1.09 0.39  
(0.02)

a Per billion miles traveled
b Standard errors in parentheses
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collisions according to weight differences. By 
assigning a complete set of fixed effects for all 
possible interactions,  β ij , I can still recover this 
information while adding considerable flexibil-
ity in form. Wenzel and Ross (2005) estimate 
risks using a similar approach for vehicle inter-
actions but importantly do not include driving 
safety behavior. For purpose of comparison I 
provide estimates of a restricted version of my 
model where I set each of the  α i  parameters to 
unity. The parameter estimates turn out to be 
quite different, so much so that the primary pol-
icy implication is reversed in sign.

II. Data

Accident counts come from the Fatal 
Accident Reporting System (FARS), which 
comprehensively records each fatal automo-
bile accident in the United States. This dataset 
is complete, of high quality, and includes not 
only the vehicle class and information about 
where and when the accident took place (which 
I use to define bin s in the model), but a host 
of other factors like weather, and distance to 
a hospital. I make use of these in a series of 
robustness checks available in the Appendix. 
For my main specification I pool data for 
the three years 2006–2008. My measure of  
n is  comes from the 2008 National Household 
Transportation Survey, detailing the driving 
patterns and vehicles owned by more than 
20,000 US households.

The second key data component is crash 
test results ( x i  in the model above), which I 
take from the National Highway Traffic Safety 
Administration (NHTSA). The head-injury cri-
terion (HIC) is a summary index available from 
the crash tests and reflects the probability of a 
fatality very close to linearly (Irving P. Herman 
2007), important for integration with my model. 
Fatality rates in single-car accidents and the 
average HIC by vehicle class are shown in the 
first and second columns of Table 1.

III. Estimation

Since the parameters for driving behavior and 
quantity are relevant only up to a constant (they 
express relative riskiness and vehicle density, 
respectively) I combine them into a single term 
for estimation: δis ≡ nis α i  . The average risks by 
class α i can be recovered after estimation using 

aggregate data on miles traveled.6 I estimate the 
parameters of the following two equations:

(3)   Y  is  ~ Poisson ( ω is )

  E ( Y  is ) =  ω is  =  δ  is   λ s   x i 

(4)   Z   ijs  ~ Poisson ( μ ijs )

  E ( Z    ijs ) =  μ ijs  =  δ  is   δ  js   β ij  ,

where  x i  and the realizations of  Y  is  and  Z ijs  are 
data. All remaining parameters are estimated 
simultaneously using maximum likelihood. 
Estimates are robust to fitting a negative bino-
mial distribution in place of the Poisson. For 
comparison with other work, and to demonstrate 
the importance of allowing driver selection 
across vehicle classes, I compare my estimates 
with a restricted version of the model. It is esti-
mated identically to the above with the restric-
tion that  α  i  is equal to unity for all classes.

IV. Empirical Results and Policy Simulation

I first estimate the restricted version of the 
model, such that all drivers are assumed to have 
average risk. This version of the model reflects 
aggregate trends in the data well but conflicts 
with typical assumptions in the engineering 
literature. For example, minivans, while much 
larger and heavier than the average car, appear to 
impose very few fatalities on any other vehicle 
type.

My full model resolves this puzzle by describ-
ing a set of selection effects in vehicle safety 
across classes. The third column of Table 1 
displays estimates of  α  i  normalized to 1.0 for a 
driver of average risk. Minivans and small SUVs 
receive the lowest coefficients, with minivan 
drivers having fatal accident rates less than half 
that of the average driver. The drivers of large 
cars and pickup trucks bring the highest risks.

The corresponding set of estimated β coeffi-
cients appears in the Appendix, both before and 
after accounting for driver behavior. The cor-
rection for driver selection reconciles accident 
risks across classes with engineering predic-
tions: Minivans appear similar to the light trucks 
they are based on in terms of engineering risk, 

6 See Appendix for the derivation. 
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and light vehicles more generally appear riskier 
than heavy ones. My corrected coefficients also 
reflect the weight externality: The β parameters 
reflecting standardized risk in accidents between 
compacts and large pickup trucks, for example, 
show a risk nearly eight times larger for occu-
pants of the compact car.

I apply my estimates to a simple model of 
fuel economy standards in the US, consider-
ing two possible regulatory regimes. The first is 
an extension of the current Corporate Average 
Fuel Economy (CAFE) rules: Light trucks and 
cars are separated into two fleets, which must 
individually meet average fuel economy targets. 
This produces a distinctive pattern of shifts to 
smaller vehicles within each fleet, but without 
substitution between cars and trucks overall. I 
hold the total number of vehicles and riskiness 
of drivers fixed, keeping track of individual driv-
ers as substitution across vehicle classes occurs.

The first column of Table 2 displays results 
from my restricted model, before accounting 
for selection. A reduction of 135 fatalities per 
year is predicted from a 0.1 mile-per-gallon 
(MPG) increase in fuel economy via composi-
tional changes.7 The second column reflects the 
full model and presents a very different conclu-
sion: An increase of 150 fatalities is predicted. 
Intuitively, I am finding that much of the danger 
of large vehicles comes from their drivers, who 
will remain on the road and are now more vul-
nerable in accidents. The effect is particularly 
strong for single-car accidents, which represent 
nearly two-thirds of fatalities in the data.

My second policy simulation is a unified stan-
dard that regulates all vehicles together based 
only on fuel economy. This has the effect of 
shifting consumers away from trucks and SUVs 
and into cars. The results appear in the fourth 
column of Table 2, showing an increase of only 
eight fatalities per year with a zero change 
included in the confidence bounds. This signifi-
cant improvement over an increment to current 
CAFE comes as the result of shifts out of trucks 
and into cars, which I predict confers a safety 
benefit even after accounting for driver behavior. 
The benefit almost exactly offsets the deteriora-
tion of safety within the car and truck fleets due 

7 If, for example, an additional 0.9 MPG appeared through 
changes in technology within vehicle class, the simulation 
would represent a total increment of 1 MPG. 

to the downsizing of vehicles, for a near-zero 
change in total fatalities.

V. Future Work

My empirical estimates can inform a vari-
ety of other policy considerations, importantly 
including the “footprint” based standard that 
is in effect for the 2012–2016 model years. It 
assigns target fuel economies to each size of 
vehicle (as determined by width and wheel-
base), limiting the incentives for any change in 
fleet composition. This increases the technology 
costs of meeting a given target but may miti-
gate the safety consequences.8 My simulations 
can address these issues directly. I also plan a 
further separation of risk factors that will allow 
me to relax assumptions in the simulation model 
regarding the constancy of driver behavior.
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