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Abstract

This paper develops a general definition of perfect Bayesian equilibrium (PBE) for
extensive-form games. It is based on a new consistency condition for the players’ beliefs,
called plain consistency, that requires proper conditional-probability updating on inde-
pendent dimensions of the strategy space. The condition is familiar and convenient for
applications because it constrains only how a player’s belief is updated on consecutive
information sets. The PBE concept is defined for infinite games, implies subgame perfec-
tion, and captures the notion of “no signaling what you don’t know.” A key element of the
approach taken herein is to express a player’s belief at an information set as a probability
distribution over strategy profiles.

1 Introduction
Standard solution concepts for dynamic games are based on the notion of sequential rational-
ity, which requires players to maximize their expected payoffs not just in the ex ante sense
(strategy selection before the game is played) but at all contingencies within the game where
they are called upon to take actions. Trembling-hand perfect equilibrium (Selten 1975) and
sequential equilibrium (Kreps and Wilson 1982) ensure that the rationality test is applied to
all information sets in an extensive-form game, because these concepts are defined relative to
convergent sequences of fully mixed behavior strategies.

Trembling-hand perfect equilibrium and sequential equilibrium aren’t always the best
choice for applications, for the following reasons. First, constructing sequences of fully mixed
strategies with the desired properties can be difficult in complex games. Second, for some ap-
plications, more permissive concepts—allowing for a greater range of beliefs at information
sets—may be desired. Third, while many applications are conveniently formulated with in-
finite action spaces, trembling-hand perfect equilibrium and sequential equilibrium are not
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defined for such games.1 All three of these factors are relevant for many modern applications,
including some models of private contracting on networks, dynamic contracting, sequential
evidence production, and repeated games on networks.

Practitioners therefore often turn to the perfect Bayesian equilibrium (PBE) concept, which
is usually described in the same way as is sequential equilibrium—a behavior strategy profile
and a system of assessments that give the players’ beliefs at information sets as probability
distributions over nodes—but puts structure on the assessments with consistency conditions
that are formulated without reference to strategy trembles. At the heart of PBE is the idea that
the players’ beliefs should be consistent with proper conditional probability updating (Bayes’
rule) where applicable. To state a formal definition of PBE, one must make “where applicable”
precise.

Fudenberg and Tirole (1991) provide the leading formal definition of PBE in the literature,
but this definition applies only to the class of “finite multi-period games with observed actions
and independent types” whereas applications of PBE are increasingly outside this class. A
more general definition of PBE based on Battigalli’s (1996) independence property for condi-
tional probability systems has not been utilized in applications because it lacks a practicable
formulation and because verifying the independence condition appears tantamount to finding a
suitable sequence of fully mixed behavior strategies in a sequential-equilibrium construction.2

Further, an infinite-game extension has not been worked out.
Although applications of “perfect Bayesian equilibrium” are widespread in the literature, a

measure of ambiguity persists regarding the technical conditions that practitioners are actually
utilizing in individual modeling exercises. In some articles, PBE is the stated solution concept
but there is no reference to a formal definition. Thus, for other than finite multi-period games
with observed actions and independent types, it is not always clear what researchers have in
mind. There is a range of possible consistency assumptions, and the assumptions matter in
applications. Questions linger about what “Bayes’ rule where applicable” should mean.

For the analysis of complex games, researchers sometimes retreat to the concept of weak
PBE because of its simple structure and flexibility, despite that it was advanced as a pedagog-
ical stepping stone.3 Weak PBE imposes no constraints on beliefs off the equilibrium path. It
does not imply subgame perfection.

This paper endeavors to support wider application of PBE by providing a general defini-
tion of perfect Bayesian equilibrium that meets several goals. First, it constrains only how
individual players update beliefs on consecutive information sets—that is, from one informa-
tion set to the next one that arises for the same player—thus lending itself to straightforward
application in a way familiar to practitioners. Second, it applies to all finite games as well
as to infinite games with the appropriate measurability structure. Third, it is a refinement

1Myerson and Reny (2015) discuss technical problems with extending sequential equilibrium to infinite
games and propose a new concept called open sequential equilibrium.

2On the unwieldy point, working toward a PBE definition using Fudenberg and Tirole’s (1991) and Batti-
galli’s (1996) framework would amount to the following: Postulate a conditional probability system over strat-
egy profiles, ensure that it has the independence property, calculate an implied strategy profile and a conditional
conjecture system over terminal nodes, derive from it the assessments at information sets, and verify sequential
rationality.

3See Myerson (1991) and Mas-Colell, Whinston, and Green (1995). Some stronger definitions that imply
subgame perfection are discussed in Section 5.
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of subgame perfection. And fourth, it captures the notion of “no signaling what you don’t
know,” implying Fudenberg and Tirole’s (1991) reasonableness condition for multi-period
games with observed actions and independent types.4

The PBE definition proposed herein is based on a new consistency notion called plain con-
sistency, which emulates some of the structure on beliefs inherent in sequential equilibrium.
Central to the definitions of trembling-hand perfect equilibrium and sequential equilibrium is
the assumption that choices made at different information sets are independent of one another,
as represented by behavior strategies. This assumption puts structure on the players’ beliefs,
including at off-path information sets. Likewise, plain consistency imposes some indepen-
dence in the operation of conditional-probability updating. For ease of use, the condition is
limited to updating on consecutive information sets, but it is also strong enough to deliver the
other desired properties stated above.5

To get the basic idea in the abstract, consider a setting in which values x ∈ {a, b, c} and
y ∈ {d, e, f} will be realized. Suppose the prior belief of a Bayesian decision maker has x
and y independently distributed, with positive probability on all outcomes. Imagine that the
decision maker then learns that (x, y) ∈ E = {a, b}×{d, e}. Note that E, as a product set, is
a conjunctive event: “x ∈ {a, b} AND y ∈ {d, e}.” Because the prior satisfies independence
and E is conjunctive, updating about x and y can be done separately. The decision maker’s
posterior belief will be given by the product of the conditional marginal probabilities,

Prob [(x, y) | {a, b}×{d, e}] = Prob [x | {a, b}] · Prob [y | {d, e}], (1)

with the marginal conditional probabilities defined by the conditional-probability formula.
The key idea is that we want the conditional probabilities on the right side of Equation 1 to

be defined, and the equation to hold, even if the prior belief puts zero probability on x ∈ {a, b}
or on y ∈ {d, e}. For instance, if the prior satisfies Prob [{a, b}] > 0 then the marginal
conditional probability for x should be defined by the conditional-probability formula, so
that Prob [{a} | {a, b}] = Prob [{a}]/Prob [{a, b}]. If Prob [{a, b}] = 0 then the marginal
conditional probability for x is arbitrary but we still require it to be defined, and we still require
Equation 1 to hold. It is easy to verify that the conditional properties would be defined and
Equation 1 would always be satisfied if the decision maker’s prior and posterior beliefs were
given by the limit of a sequence of fully mixed joint distributions with x and y independent.

Shifting our attention back to games, components x and y in the abstract example now
represent different dimensions of the strategy profile, and E now represents information a
player receives about the strategy profile by virtue of arriving at an information set. The
independence condition is imposed on updating from this player’s previous information set if
E is a conjunctive event.

A key element of the approach taken herein is to describe a player’s belief at an information
set as a probability distribution over the strategy profile, which I call an appraisal; it captures
the player’s conjecture about both how the information set was reached and what will happen
from this point in the game. Each player is assumed to have a conjecture system that maps the
player’s information sets into appraisals. I specify that every player has a (possibly artificial)

4The idea is that a player i would not use the observation of a surprise choice by a player j to change i’s belief
about a move of some other player k (which could be nature) that player j did not observe.

5Battigalli’s (1996) independence condition would be the strongest condition along these lines.
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Figure 1: Independence across information sets of the same player.

information set representing the beginning of the game. Thus, a player starts the game with
an appraisal and then updates it from one information set to the next as play proceeds.

The following examples illustrate the building blocks of the theory. Consider first the
game fragment shown in Figure 1 above. Just part of the extensive-form is pictured; the
rest is inconsequential to the discussion here. Also pictured is a table indicating the possible
combinations of actions for player 1 at his two information sets pictured in the tree. Suppose
that backward induction identifies strategy ac for player 1 so that, at the beginning of the game,
player 2 believes that player 1 will select action a at his first information set and would select
action c at his second information set. This is indicated in the figure by the probability 1 on
actions a and c, and probability 0 on actions b and d.

How should player 2 update her belief in the event that her information set h is reached?
Backward-induction reasoning provides an answer: Player 2 has observed that player 1 se-
lected b at his first information set—which is a surprise given player 2’s initial belief—but
this does not cause player 2 to change her belief that player 1 would select action c at his
second information set.

We can dissect the logic as follows. At the beginning of the game, player 2 initially treats
the actions at player 1’s information sets as independent. Further, from the structure of the
game, arriving at h provides player 2 with information that we can describe as a conjunctive
event: “Player 1’s action at his first information set is in {b} AND player 1’s action at his
second (as yet unreached) information set is in {c, d}.” Thus, the combination of player 1’s
actions that are consistent with information set h being reached (the shaded region of the
table) forms a product set, {b} × {c, d}. And in these circumstances, player 2 updates her
belief about the action at player 1’s second information set based on only what she has learned
from the structure of the game about the action at player 1’s second information set—which
is, of course, nothing. Thus, she maintains the belief that player 1 would select c. Importantly,
this logic applies even though reaching h is a surprise for player 2 in that her initial belief puts
zero probability on h being reached.

Now let us apply the same logic to a player’s belief about the actions of two other players,
which also illustrates the idea of “no signaling what you don’t know.” Consider the game
fragment shown in Figure 2. At the beginning of the game, player 3 believes that player 1 will
select b for sure and that player 2 will choose c, d, and e with probabilities 0.2, 0.2, and 0.6
respectively. At information set h, player 3 has learned that player 1 chose a and that player 2
did not select c. That is, the set of action profiles that reach h is the product set {a} × {d, e},
and so the information at h is a conjunctive event. Player 3 then updates her belief about
player 2’s action on the basis of only what she has observed about player 2’s action. Player 3
does not use the surprise regarding player 1’s choice as an excuse to take liberties with the
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Figure 2: Independence and signaling.

probabilities of c, d, and e. Thus, player 3’s updated belief puts probability 0.25 on d and
probability 0.75 on e, as Bayes’ rule requires for the marginal distribution over player 2’s
action.

The next example, shown in Figure 3 below, demonstrates that the logic of independence
is embedded in the concept of subgame perfection and that weak PBE does not imply subgame
perfection. The table in the figure shows the strategy profiles, with rows representing player 2’s
actions and columns representing profiles of actions taken at the information sets of players 1
and 3. The shaded region denotes the strategy profiles that reach player 3’s information set,
a conjunctive event. This game has a single subgame-perfect equilibrium, (w, a, x). In the
proper subgame, player 3 selects x in response to player 2’s equilibrium action a. There is
also a weak PBE in which (z, a, y) is the strategy profile and, at information set h, player 3
believes that player 2 selected action b. Weak PBE allows for this belief because it imposes no
restrictions on how beliefs are updated off the equilibrium path. Player 3 changes his belief
about player 2 based on player 1’s surprise selection of action w, contrary to the independence
notion. Clearly, (z, a, y) is not a subgame-perfect equilibrium.

In the formal definition of plain consistency, the foregoing logic is applied to the extent
possible for belief updating on consecutive information sets. For instance, consider a player i
who is on the move at information set h in a game, and let L denote any subset of the other
players’ information sets (not necessarily a proper subset and possibly including information
sets of nature). At h, player i will have a belief about the strategies that the other players are
using, including the actions they take at the information sets in L. Suppose that this belief
exhibits independence between the behavior at the information sets in L and the behavior
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Figure 3: Weak PBE and subgame perfection.
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at other information sets, in that player i views behavior in L as uncorrelated with behavior
outside of L.

Suppose that the next information set encountered by player i is h′, and suppose that the
set of strategy profiles consistent with reaching h′ is a product set with respect to L. Then plain
consistency requires that player i’s belief at h′ must be the product of marginals with respect
to L, and the marginal distribution on the information sets in L should be consistent with the
conditional-probability formula restricted to these information sets. That is, player i’s updated
belief about actions taken at information sets in L is conditioned on only what player i has
observed about these particular actions.

The definition of plain consistency goes a bit further by applying the same idea to subsets
of strategy profiles. That is, we can impose the same logic on any subset Z of strategy profiles
on which player i puts positive probability at both information sets h and h′. If Z is a product
set with respect to L and the subset that reaches h′ is also a product set, then what player i
learns by arriving at h′ allows for the L dimension to be separated from its complement. As-
suming that player i’s belief at h, when restricted to the set Z, exhibits independence between
the behavior at the information sets in L and the behavior at other information sets, then his
belief at h′ ought to exhibit similar independence and updating should obey Bayes’ rule on
each dimension (as applicable).

Plain consistency puts no other restrictions on how players update their beliefs. The PBE
definition combines plain consistency with the assumptions that the players’ beliefs at the
beginning of the game are concentrated on the the actual strategy profile and that each player’s
strategy is sequentially rational.

Before launching into the definitions, let me elaborate on why it is helpful to express
beliefs in terms of appraisals rather than assessments. To describe whether beliefs exhibit
independence regarding actions taken at different information sets, one must keep track of
these various actions as separate components, as a strategy profile does. To accomplish this
with assessments, one must put structure on the nodes at every information set so that each
node x describes the actions taken on the path to x. But such a structure is equivalent to
keeping track of the strategy profile, at least its restriction to information sets that came before
the current information set. Further, even if we imagine adding this structure and then using the
equilibrium strategy profile for “future” information sets when calculating expected payoffs,
another complication arises: At a given information set, the other information sets in the game
generally cannot be neatly classified as coming either before or after the current one.6 Thus, I
suggest that the most straightforward approach is to focus on strategy profiles and account for
beliefs as appraisals.

The next section lays out the basic notation and definitions. Section 3 develops the no-
tion of plain consistency and the equilibrium concept. Section 4 provides details on how to
apply the PBE definition to infinite games and extends the definition of plain consistency ac-
cordingly. Section 5 compares plain PBE with other equilibrium definitions. The Appendix
contains additional definitions related to the one-deviation property and a proof.

6See Kreps and Ramey (1987) for an example in which the player on the move does not know whether a par-
ticular information set for another player was already reached. These complications presumably led Fudenberg
and Tirole (1991) and Battigalli (1996) to describe equilibrium in general games as a combination of assessments
and conditional probability systems on terminal nodes.
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2 Basic Concepts

Information Sets, Strategies, and Payoffs
Consider any extensive-form game of perfect recall, with n players and nature taking the
role of “player 0.” For convenience, in this and the next section the definitions and results
are put in a form that applies to finite games; Section 4 extends the definitions to games with
infinite strategy spaces. The definitions also apply to other dynamic representations (substitute
“personal history” or “contingency” for “information set”).

Define N ≡ {0, 1, . . . , n} and let N+ ≡ N \{0} denote the set of strategic players. Let
H be the set of information sets. It is partitioned into sets H0, H1, . . . , Hn, where Hi denotes
the set of information sets for player i. (As is standard, information sets are distinctly labeled
so that the players’ individual sets of information sets are disjoint.) Let H+ ≡ ∪i∈N+Hi be
the set of information sets for the strategic players. Denote by S the space of pure strategy
profiles, including nature’s strategy. Let ∆S denote the space of probability distributions over
S, which we call the mixed strategy profiles. For any subset T ⊂ S, let us take “∆T ” to mean
the subset of ∆S with support in T . Note that I use the symbol “⊂” to mean “subset,” not
“proper subset.” Finally, let u : S → Rn be the payoff function and extend it to the space of
mixed strategies by the usual expected payoff calculation.

We will be dealing essentially with the agent form of the game, in that beliefs and choice
are analyzed at individual information sets. A key element is that a player’s choice at one
information set is independent of his choice at another information set. For example, if player i
has two different information sets, h and h′, then we think of player i as being separated into
two agents whose names are the information sets themselves: Agent h takes the action at
information set h, agent h′ takes the action at information set h′, and these are independent
choices. The agents in Hi all share the payoff function ui.

Note that a strategy profile s ∈ S maps H to the space of actions and, for each information
set, specifies an action that is feasible at this information set. For any subset of information
sets L ⊂ H , let sL denote the restriction of s to the subdomain L. That is, sL gives the
profile of actions that strategy s specifies for the information sets in L. For any L⊂H , define
−L ≡ H\L. Note that we can then write s = sLs−L.

For X ⊂ S, define XL ≡ {sL | s ∈ X}. In the case of L = {h} for a single h ∈ H ,
we simplify notation by dropping the brackets; so, for instance, we write Xh and sh instead
of X{h} and s{h}. Note that Sh is the set of actions available at information set h. Also, for a
given player i, the subscript “i” refers to the information sets Hi. For example, si means the
same thing as sHi

. Likewise, “−i” refers to H−i. Thus, subscripts “i” and “−i” have their
usual meaning of identifying the strategies of player i and the other players.

Definition 1: For a given set L ⊂ H , say that a set X ⊂ S is a product set (relative to L) if
X = XL ×X−L.

The next definition identifies whether a mixture of strategy profiles treats a specific set of
information sets L ⊂ H independently of the rest, meaning that it can be expressed as the
product of the marginal distribution on L and the marginal distribution on −L.
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Definition 2: Given L ⊂ H and a product set Y = YL×Y−L ⊂ S, say that a distribution
p ∈∆S exhibits independence on Y relative to L if for every product set X = XL×X−L ⊂
Y , we have p(X)p(Y ) = p(XL×Y−L) · p(YL×X−L). In the case of L = {h} for a single
h ∈ H , then let us drop the brackets and say “. . . relative to h.” Say that p exhibits complete
independence if, for every h ∈ H , p exhibits independence relative to h on S.

Independence on Y means that the distribution conditional on Y , which is given by the
standard conditional probability formula, exhibits independence across L and−L. That is, the
conditional probability of a product set X = XL×X−L ⊂ Y is the product of the conditional
marginal probabilities:

Prob [X | Y ] =
p(X)

p(Y )
=
p(XL×Y−L)

p(Y )
· p(X−L×YL)

p(Y )

= Prob [XL×Y−L | Y ] · Prob [X−L×YL | Y ].

In the expression above, the second equality is due to independence on Y relative to L. Note
that independence relative to L on S implies the same on every product set Y ⊂ S.

Let ∆S be the set of mixed strategy profiles that exhibit complete independence. Note that
a mixture in ∆S is equivalent to a behavior strategy profile: It specifies, for every information
set h, a probability distribution over the actions available at h, and the specification is inde-
pendent across information sets. We typically write such a mixture as σ = (σh)h∈H , where
σh denotes the mixed action choice at information set h. Nature’s mixed strategy is taken as
exogenous and we assume that it exhibits independence relative to all of nature’s information
sets.

It will be useful to think about information sets in terms of subsets of strategy profiles. For
each h ∈ H and s ∈ S, let us say that s reaches h if the path of strategy profile s includes a
node in h. Denote by S(h) the set of strategy profiles that reach h. Note that, for any L ⊂ H ,
S(h)L is the set of action profiles for the information sets in L that are consistent with h being
reached.7

Because of perfect recall, the information sets for an individual player have a particular
product structure and precedence relation. For every pair of information sets h, h′ ∈ Hi for
player i, it is the case that S(h) is a product set relative to h′. Further, for h, h′ ∈ Hi with
h 6= h′, either h is a successor of h′, in which case S(h) ⊂ S(h′); or h is a predecessor of h′,
in which case S(h′) ⊂ S(h); or neither, in which case S(h)∩S(h′) = ∅. If h′ is a successor of
h then every path through h′ also passes through h. We call h′ ∈ Hi an immediate successor
of h ∈ Hi for player i if h′ is a successor of h and there is no other information set for player i
between the two; that is, there is no g ∈ Hi such that g is a successor of h and h′ is a successor
of g.

7Expressing extensive-form information sets as subsets of strategy profiles is standard. Mailath, Samuelson,
and Swinkels (1993) formulate solution concepts on the basis of “normal form information sets,” where there
is no reference to an extensive form, and Shimoji and Watson (1998) take such “restrictions” as given (whether
or not they are derived from extensive-form information sets). Note that, here, I am taking the conventional
approach of examining standard extensive-form information sets but simply represent them as subsets of the
strategy space.
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Figure 4: Example to illustrate theoretical components.

An Example
To review some of the definitions just described, consider the three-player game shown in
Figure 4. The space of strategy profiles is S = {a, b, c}×{x, y}×{w, z}×{d, e}, which is
depicted by the table on the right side of the picture. Note that the rows of the table are the
actions feasible at player 1’s information set, whereas the columns are the profiles of actions
for the other players’ information sets. For the information set h identified in the picture
(player 3’s information set), we have

Sh = {d, e} and S−h = {a, b, c}×{x, y}×{w, z}.

The subset of strategy profiles that are consistent with reaching h is

S(h) = S(h)−h×S(h)h =

{(a, y,w), (a, y, z), (b, x, z), (b, y, z), (c, x, z), (c, y, z)}×{d, e}.

This set corresponds to the shaded region of the table in the figure. Clearly S(h) is a product
set relative to h but it is not a product set relative to the information set of player 1. That is,
letting h′ denote player 1’s information set, we have

S(h)h′ = {a, b, c} and S(h)−h′ = {(x, z), (y,w), (y, z)}×{d, e},

and S(h) does not equal the Cartesian product of S(h)h′ and S(h)−h′ .

Appraisal Systems
We must consider the beliefs that the strategic players hold at their various information sets.
It will be useful to think of each player as having an information set that refers to “before the
game begins.” For this purpose, define initial information sets h1, h2, . . . , hn and extended
sets H1, H2, . . . , Hn for the strategic players as follows. For each strategic player i:
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• If there exists ĥ ∈ Hi such that S(ĥ) = S then define hi ≡ ĥ and let H i ≡ Hi.

• Otherwise let hi be defined as an artificial information set with the property S(hi) ≡ S
and let H i ≡ Hi ∪ {hi}.

Assume the players’ artificial information sets are distinctly labelled so that H1, H2, . . . , Hn

are disjoint sets, and let H+ ≡ ∪i∈N+ H i.

Definition 3: For any strategic player i and h ∈ H i, call a distribution ph ∈ ∆S an appraisal
at h if ph ∈ ∆S(h) and if ph exhibits independence on S relative to g for every g ∈ Hi. An
appraisal system is a collection of appraisals, one for each information set of the strategic
players, written P =

(
ph
)
h∈H+

.

An appraisal contains two things: The marginal on Si gives player i’s own strategy and
the marginal on S−i gives player i’s belief about the strategy profile of the other players. In
terms of player-agents, an appraisal at information set h describes agent h’s belief about the
other agents’ behavior (this is the marginal on S−h) as well as agent h’s planned behavior (the
marginal on Sh). The condition ph ∈ ∆S(h) means that the appraisal at h puts probability
one on reaching h. The independence condition means that, at any information set h ∈ H+,
player i views his strategy as independent of the other players’ strategy profile, and player i’s
strategy is represented as a behavior strategy. Conditions on the relation between appraisals at
different information sets are developed in the following sections.

Sequential Best Responses
We can test whether an appraisal at h specifies rational behavior for the player on the move,
meaning that the actions given positive probability at information set h maximize the player’s
expected payoff.

Definition 4: For a given information set h ∈ H+ and two appraisals ph and p̂h, say that
p̂h is an h-deviation from ph if ph and p̂h are identical on all other information sets; that is,
ph(X−h×Sh) = p̂h(X−h×Sh), for all X−h ⊂ S−h.

Definition 5: For a strategic player i and an information set h ∈ Hi, say that an appraisal
ph is rational at h if ui(ph) ≥ ui(p̂

h) for every h-deviation p̂h. Say that an appraisal system
P =

(
ph
)
h∈H+

is sequentially rational if ph is rational at h, for every h ∈ H+.

Here sequential rationality is defined in terms of what are commonly called “one-shot de-
viations,” meaning that we evaluate player i’s rationality at a given information set h ∈ Hi by
looking just at alternative choices at h rather than alternatives that would also adjust player i’s
behavior at other information sets that may be reached in the continuation of the game.8

The familiar one-deviation principle—equivalence between single-deviation optimality and
strategy-deviation optimality—holds here, assuming that player i’s appraisal system has the
property I call “minimal consistency.” See the Appendix for more details. Minimal consis-
tency is implied by the plain consistency condition defined in the next section.

8Note that since all strategy profiles in the support of ph and p̂h reach h, the expected payoffs shown in the
rationality definition are conditional on reaching information set h.
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Example Continued
For an example of an appraisal system and sequential best response, consider again the game
shown in Figure 4. Suppose that the players’ initial appraisals coincide on the distribu-
tion that puts probability one on the strategy profile (c, x,w, e). That is, for each player i,
phi({(c, x,w, e)}) = 1. Suppose that the appraisal is the same at player 2’s lower information
set, which itself is reached by (c, x,w, e). Note that player 2’s upper information set is not
reached by (c, x,w, e), so player 2 cannot have the same appraisal there. Let the appraisal at
player 2’s upper information set put probability one on (a, x,w, e). Finally, suppose that at
player 3’s information set h shown in the figure, player 3’s appraisal puts probability one on
(b, x, z, e). It is easy to confirm that the appraisal system just described is sequentially ratio-
nal. At each information set, the player on the move cannot gain by switching from the action
prescribed by her appraisal to a different action.

3 Perfect Bayesian Equilibrium
The concept of perfect Bayesian equilibrium combines sequential rationality with require-
ments concerning the players’ appraisals, most notably regarding how updating occurs on
consecutive information sets. We start by assuming that appraisals exhibit independence on
product sets, in recognition of the fact that player-agents make their choices independently:

Definition 6: Say that an appraisal system P exhibits product-independence if for every
h ∈ H+, every L ⊂ H , and every product set Y = YL×Y−L ⊂ S(h), appraisal ph exhibits
independence on Y relative to L.

Plain Consistency
This takes us to the key definition. Consider a strategic player i, two information sets h, h′ ∈
H i such that h′ is an immediate successor of h, and a set of information setsL ⊂ H . Let us call
sets Y ⊂ S and Z ⊂ S comparable if Z = ZL×Z−L ⊂ S(h) and Y = YL×Y−L = Z ∩S(h′).
That is, Y and Z are product sets, all strategy profiles in Z reach h, and Y is the subset of
these strategies that reach h′. Figure 5 provides a graphical depiction.

Consider how the appraisal at h is updated to form the appraisal at h′, in particular re-
garding the implied distributions conditional on Z. Note that, within Z, arriving at h′ yields a
conjunctive event Y . Thus, conditional on Z, updating on the L dimension should be separate
from updating on the −L dimension. Further, to calculate the updated marginals conditional
on Z, Bayes’ rule should be used on each dimension if applicable. Product independence
already captures that, conditional on Z, the updated appraisal is the product of conditional
marginals.

Consider updating on the L dimension and take any set XL ⊂ YL. Note that, for the
appraisal at h, the conditional probability formula defines the marginal probability of XL

conditional on Z to be ph(XL×Z−L)/ph(Z), assuming the denominator is nonzero. The
equivalent expression for the appraisal at h′ is ph′(XL×Z−L)/ph

′
(Z), which is equal to
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Figure 5: Illustration of the requirements for plain consistency.

ph
′
(XL×Y−L)/ph

′
(Y ) because Y = Z∩S(h′). Bayes’ rule applied to the conditional marginal

probabilities on the L dimension thus requires

ph
′
(XL×Y−L)

ph′(Y )
=
ph(XL×Z−L)

ph(Z)

/
ph(YL×Z−L)

ph(Z)
,

assuming the denominators ph′(Y ) and ph(YL×Z−L) are strictly positive. This expression
simplifies to

ph
′
(XL×Y−L)

ph′(YL×Y−L)
=
ph(XL×Z−L)

ph(YL×Z−L)
. (2)

Another way to describe this condition is that updating preserves probability ratios at the
margin, for all applicable dimensions of the strategy space.

Definition 7: Say that an appraisal system P is plainly consistent if it exhibits product-
independence and the following property holds for every player i ∈ N+ and every pair of
information sets h, h′ ∈ H i such that h′ is an immediate successor of h: For every set L ⊂ H
and any sets Y andZ that are comparable and satisfy ph(YL×Z−L) > 0 and ph

′
(YL×Y−L) > 0,

Equation 2 holds for every XL ⊂ YL.

Plain consistency has several implications. First, if ph(S(h′)−i×Si) > 0 then plain consis-
tency is equivalent to proper conditional-probability updating (Bayes’ rule) on the space S−i
of the other players’ strategy profile. Second, player i does not change his belief about the
actions of other players at information sets that could not have been reached yet in the game.
That is, if at h′ player i knows that some information set h′′ ∈ H−i has not been reached,
player i’s belief at h′ about the action that would be chosen at h′′ is the same as player i’s
belief at h, which by recursion is the same as player i’s belief at the beginning of the game.
Similarly, for any information set h′′ ∈ Hi that has not yet been reached at h′, player i’s plan
at h′ about the action to take at h′′ is the same as player i’s plan at the beginning of the game.9

Fourth, plain consistency implies Fudenberg and Tirole’s (1991) reasonableness condition for
multi-period games with observed actions and independent types.10

9The first and third implications form the definition of “minimal consistency” described in the Appendix.
10This result is most easily seen by assuming that Nature chooses the types of the strategic players at distinct
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Equilibrium Definition
The next definition means that, at the beginning of the game, the players’ appraisals coincide
on a given strategy profile.

Definition 8: Consider a mixed (behavior) strategy profile σ ∈ ∆S. Say that an appraisal
system P =

(
ph
)
h∈H+

conforms to σ if, for every player i, phi = σ.

With the essential ingredients in place, the general definition of perfect Bayesian equilib-
rium is stated thus:

Definition 9: Taking nature’s strategy (σh)h∈H0
as given, say that an appraisal system P is

a perfect Bayesian equilibrium and say that behavior strategy profile σ ∈ ∆S is a PBE
strategy profile if P conforms to σ, P is plainly consistent, and P is sequentially rational.

This version of PBE is straightforward to apply because it allows the analyst to examine
the players individually and, for each player, one must look only at how beliefs evolve between
consecutive information sets. It also implies subgame perfection.

Theorem: If P is perfect Bayesian equilibrium of a finite game then the PBE strategy profile
σ is a subgame perfect Nash equilibrium.

Examples Continued
Consider the game shown in Figure 3 in the Introduction. As noted earlier, strategy profile
(z, a, y) is a weak PBE strategy profile but it is not subgame perfect and is not a PBE strategy
profile. If it were a PBE strategy profile, then player 3’s appraisal at the beginning of the game
would put probability one on (z, a, y). But at player 3’s information set h, he has learned
only that player 1 deviated, so plain consistency requires that player 3 continue to believe that
player 2 selects action a, and then y would not be optimal.

To express this logic formally, let L be the singleton consisting of player 2’s information
set, let Z = {w, z}×{a, b}×{x, y}, and define Y ≡ S(h) ∩ Z. Observe that Z is a product
set relative to L and

Y = {w}×{a, b}×{x, y} = S(h)

is also a product set relative to L. Note that YL = ZL = {a, b}, so YL×Z−L = Z. Note as well
that h is an immediate successor of h3 for player 3, ph3(YL×Z−L) > 0, and ph(Y ) = 1 > 0.
Plain consistency thus implies that

ph ({a}×{(w, x), (w, y)})
ph(Y )

=
ph3({a}×{(w, x), (w, y), (z, x), (z, y)})

ph3(Z)
.

information sets. That is, for each strategic player i ∈ N+, let h0i be the information set of Nature where
player i’s type is selected, and assume that h0i 6= h0j for distinct strategic players i and j. Then, for a given
player i ∈ N+, let L = Hi∪{h0i} and apply plain consistency with Z = S(h′)L×S(h)−L. Note that, in addition
to the reasonableness condition, Fudenberg and Tirole assume that any two players always have the same belief
about a third player’s type. If we restrict attention to the class of multi-period games with observed actions
and uncorrelated types, then requiring this condition along with plain consistency would produce Fudenberg and
Tirole’s PBE definition for this class of games.
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The denominators equal one and the numerator on the right also equals one, so the numerator
on the left equals one. That is, at h player 3 must believe that player 2 selected action a, and
therefore action y is not optimal.

The only PBE in this example is the appraisal system that, at every information set, puts
probability one on profile (w, a, x). This strategy profile reaches all information sets, so plain
consistency is trivially satisfied, and the appraisal system is clearly sequentially rational. Strat-
egy profile (w, a, x) is also the only subgame-perfect Nash equilibrium of the game.

Next consider the example shown in Figure 4 and the appraisal system described at the
end of Section 2. The players’ initial appraisals all put probability one on (c, x,w, e), and
player 2’s lower information set has the same appraisal. At player 2’s upper information set,
the appraisal puts probability one on (a, x,w, e). Finally, at player 3’s information set h shown
in the figure, the appraisal puts probability one on (b, x, z, e). As noted before, this appraisal
system is sequentially rational. Further, the beliefs trivially satisfy Bayes’ rule updating on
the equilibrium path and each player’s belief about the others’ behavior at future information
sets coincides with the strategy profile, so the conditions for a weak PBE are satisfied and thus
(c, x,w, e) is a weak PBE profile.

However, the appraisal system just described is not plainly consistent. In particular, at
information set h player 3 is supposed to believe that player 1 selected action b rather than
action c, but player 3 has observed nothing from the structure of the game that could allow
him to distinguish between actions b and c. Conditional on b or c having been played, player 3
has learned something about the choice at player 2’s lower information set (that z was played)
but he has learned nothing about the choice of b versus c. At h player 3 may think that action a
was played, but he cannot change from his initial belief that c would be played to now believe
it is b.

To demonstrate this formally, let Z = {b, c}×{x, y}×{w, z}×{d, e} and define Y ≡
S(h) ∩ Z. Observe that Z is a product set relative to player 1’s information set and

Y = {b, c}×{x, y}×{z}×{d, e}

is also a product set relative to player 1’s information set. Note that h is an immediate succes-
sor of h3 for player 3, and ph(Y ) = 1 > 0. Plain consistency thus implies that

ph ({c}×{x, y}×{z}×{d, e})
ph(Y )

=
ph3({c}×{x, y}×{w, z}×{d, e})

ph3(Z)
.

The denominators equal one and the numerator on the right also equals one, so the numerator
on the left equals one. That is, at h, conditional on player 3 putting positive probability on the
subset of actions {b, c}, player 3 must put all of the probability weight on action c, as he did
at the beginning of the game.

The foregoing discussion shows that, in this game, there is no PBE in which actions c
and w are played for sure. There is a PBE in which the appraisals at all information sets
put probability one on strategy profile (a, y, z, d), except at player 2’s lower information set
where the appraisal puts probability one on (b, y, z, d). To summarize, of this game’s four
pure-strategy Nash equilibria (a, y, z, d), (c, x, z, d), (c, y,w, e), and (c, x,w, e), the first and
last are weak PBE profiles, but only the first is a PBE profile.11

11There is a continuum of similar PBE that differ on the appraisal at player 2’s lower information set with
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4 Extension to Infinite Games
This section develops an infinite-game extension of plain consistency, described in a way that
applies to any game. The condition has force wherever the game and appraisals have the
appropriate structure. There are two parts. First, we add the “measurable” qualifier to the sets
considered in Definitions 2 and 6, where measurability is defined for whatever distributions
are considered in the application of interest.

The second part deals with probability densities. To build intuition, consider any finite
game. Fix L and consider an indexed collection {(XL(r), Y (r), Z(r)) | r ∈ R}, where R is a
finite set. Suppose that, for each r ∈ R, it is the case that Y (r) and Z(r) are comparable and
XL(r) ⊂ YL(r).12 Then for each r, plain consistency requires

ph
′
(XL(r)×Y−L(r)) =

ph(XL(r)×Z−L(r))

ph(YL(r)×Z−L(r))
· ph′(YL(r)×Y−L(r)), (3)

assuming that ph(YL(r)×Z−L(r)) > 0.13 Clearly, we can sum both sides over r and the
resulting equation is an implication of plain consistency.

The extended notion of plain consistency considers r on a continuum, allows for ph to
be partly characterized by a density function, and replaces the summation with an integral.
Further, assuming the sets {Z(r)} are disjoint, we can replace the integral on the left side with
the probability of the union of XL(r)×Y−L(r) over r.

Additional notation helps to make this formal. Suppose that r ∈ R = [0, r], where r ≥ 0.
Define

XZ(r) ≡
⋃

r′∈[0,r]

XL(r′)×Z−L(r′) and YZ(r) ≡
⋃

r′∈[0,r]

YL(r′)×Z−L(r′),

and define XY(r), and YY(r) similarly. Suppose that for all r, Y (r) and Z(r) are comparable
relative to L, h, and h′. Suppose that XL(r) ⊂ YL(r) for all r. Assume that the sets {Z(r)}
are disjoint, the sets {XZ(r)} and {YZ(r)} are ph-measurable, and ph(YZ(r)) > 0.

Suppose that on {YZ(r)} and {XZ(r)}, distribution ph is characterized by a density func-
tion except where ph(YZ(r)) is discontinuous, and suppose that the density for {YZ(r)} is
everywhere strictly positive. For values of r where the density at YZ(r) exists, define q(r) to
be the ratio of the density of ph at XZ(r) to the density of ph at YZ(r); and for values of r
where ph(YZ(r)) is discontinuous, define q(r) to be the ratio ph(XL(r)×Z−L(r))/ph(YL(r)×
Z−L(r)). Then extended plain consistency requires that the sets {XY(r)} and {YY(r)} are
ph
′-measurable and

ph
′
(XY(r)) =

∫ r

0

q(r)dph
′
(YY(r)). (4)

regard to the probabilities of actions b and c. There are also PBE in which player 3 randomizes. For instance,
player 1 selects a with probability 1/4, b with probability 1/2, and c with probability 1/4. Player 2 selects y and
z for sure, and player 3 mixes between d and e with equal probabilities. Because all information sets are reached
with positive probability, plain consistency is easy to confirm.

12Recall that comparable means that Z(r) = ZL(r)×Z−L(r) ⊂ S(h) and Y (r) = YL(r)×Y−L(r) ≡
Z(r) ∩ S(h′).

13This is just Equation 2 with the left-side denominator multiplied through. Note that Equation 3 is valid even
if ph

′
(YL(r)×Y−L(r)) = 0. Further, Y (r) = ∅ is allowed.

15



The basic definition of plain consistency in Section 3 follows from this expression in the
special case of r = 0.

Example – Evidence Disclosure
Consider a version of the evidence-disclosure game studied by Bull and Watson (2017). At
the beginning of the game, nature chooses a vector (θ, ω, e), where θ ∈ {0, 1}, ω ∈ [0, 1],
and e ∈ {doc, φ}. Nature’s selection is made according to an atomless joint distribution, with
density f(θ, ω, e) defined everywhere and integrable. The value ω represents a private signal
to player 1. The value e refers to a document that player 1 may possess and, if so, can be
disclosed to player 2. Existence of the document is signified by e = doc, whereas e = φ
means the document does not exist. Assume that f(1, ω, doc) + f(0, ω, doc) > 0 for all ω.

Player 1 privately observes ω and e. If e = doc, then player 1 decides whether to disclose
the document. If e = φ then player 1 has no action. Player 2 observes only whether the
document is disclosed. If the document is not disclosed, then player 2 cannot distinguish
between the case in which the document does not exist and the case in which it exists but
player 1 did not disclose it. Player 2 then chooses an action a ∈ [0, 1]. Player 1’s payoff is a
and player 2’s payoff is −(a− θ)2.

Because e, ω, and θ are generally correlated, player 1’s disclosure or nondisclosure of the
document may provide information about θ to player 2. The document itself provides hard
evidence, because it cannot be disclosed when it does not exist. The document can also serve
as a “soft” signal of ω and θ, to the extent that player 1’s disclosure choice depends on ω.

Regardless of nature’s distribution, this game has a weak PBE in which no information is
transmitted from player 1 to player 2 in equilibrium. Player 1’s strategy is to never disclose the
document. If the document is not disclosed then player 2 believes that (θ, ω, e) is distributed
according to f and she selects a = E[θ]. If the document is disclosed then player 2 believes
that θ = 0 and she chooses a = 0. Note that, essentially, disclosure of the document perfectly
signals θ = 0 to player 2.

This equilibrium could possibly make sense if there is a value ω̂ ∈ [0, 1] for which
f(0, ω̂, doc) > 1 and f(1, ω̂, doc) = 0, because then there is a contingency in which player 1
learns from his private signal and the existence of the document that θ = 0. Player 2 can
believe that player 1 would err in implementing his strategy only if ω̂ was realized, and so a
surprise disclosure would lead player 2 to believe that θ = 0. But if there is no such value
ω̂ then this equilibrium is unrealistic, because off-equilibrium-path disclosure would be sig-
naling something that player 1 does not know. How can we rule out such an equilibrium in
this case? The game is not finite, so definitions of sequential equilibrium and PBE from the
prior literature do not apply. Additionally, this setting is not a multistage game with observed
actions and independent types. But we can apply plain consistency and the PBE definition
developed herein.

Let h2(doc) denote the information set in which player 2 has observed disclosure of the
document. We can apply the extended plain consistency condition to get an expression for
player 2’s belief about θ at this information set. Let L = H0 = {h0}, so that −L ≡ H−0 is the
set of information sets for players 1 and 2. For every ω ∈ [0, 1], let Sω1 be the set of strategies
for player 1 that disclose in the event that ω is the private signal and the document exists. Note
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that the sets {Sω1 } are distinct and not disjoint. We have

S(h2(doc)) =
⋃

θ∈{0,1}
ω∈[0,1]

[{(θ, ω, doc)}×Sω1 ×S2] .

Define:
XL(ω) ≡ {(1, ω, doc)} YL(ω) ≡ {(θ, ω, doc) | θ ∈ {0, 1}}
Y−L(ω) ≡ Sω1 ×S2 Z(ω) ≡ YL(ω)×S1×S2.

Note that S(h2(doc)) is not a product set relative to L, but it is the union over ω of the
product sets YL(ω)×Y−L(ω), which we recall is written YY(1). Also, XY(1) is the subset of
S(h2(doc)) in which θ = 1.

We want an expression for ph2(doc)(XY(1)), which is the probability that player 2 puts on
θ = 1 in the event that the document is disclosed. We can use plain consistency by relating
player 2’s appraisal at h2(doc) to her appraisal at h2, the beginning of the game.

The required conditions to apply plain consistency are satisfied. For all ω, Y (ω) and
Z(ω) are comparable (relative to L, h2, and h2(doc)) and XL(ω) ⊂ YL(ω). The sets {Z(ω)}
are disjoint, the sets {XZ(ω)} and {YZ(ω)} are ph2-measurable, and ph2(YZ(1)) > 0 by
assumption. Observe that the density of ph2 at XZ(ω) is f(1, ω, doc) and the density of ph2 at
YZ(ω) is f(1, ω, doc) + f(0, ω, doc). The ratio,

f(1, ω, doc)

f(1, ω, doc) + f(0, ω, doc)
≡ q(ω),

is the probability of θ = 1 conditional on the value of ω, using the standard conditional-
probability formula for the density f .

Plain consistency requires that the sets {XY(ω)} and {YY(ω)} are ph2(doc)-measurable
and

ph2(doc)(XY(1)) =

∫ 1

0

q(ω)dph2(doc)(YY(ω)).

Since S(h2(doc)) = YY(1), we know that dph2(doc)(YY(ω)) integrates to 1. Thus, in the
event of disclosure, the probability that player 2 puts on θ = 1 must be a convex combination
of the conditional probabilities {q(ω)}. That is, essentially player 2 updates her belief about
player 1’s strategy (for which values of ω he discloses) but does not change her belief about
nature’s strategy. An implication is that if f is bounded away from zero, then the probability
player 2 puts on θ = 1 in the event of disclosure must be similarly bounded and the unreal-
istic equilibrium described above is not a PBE. Additional implications can be easily derived
regarding the relation between the hard and soft aspects of the evidence.

Extended plain consistency also implies that, upon observing ω and e, player 1’s belief
about nature’s selection of θ is properly derived from f . For example, let L = {h0} as before
and consider the information set h1(ω) where player 1 observes ω and has the document. For
every ω, define

XL(ω) ≡ {(1, ω, doc)} YL(ω) ≡ {(θ, ω, doc) | θ ∈ {0, 1}}
Y−L(ω) ≡ S1×S2 Z(ω) ≡ YL(ω)×S1×S2.
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The conditions for plain consistency are clearly satisfied. Note that, for any specific private
signal value ω′, S(h1(ω

′) ∩ Z(ω) is nonempty only for ω = ω′. So plain consistency requires
ph1(ω)(XL(ω)×S1×S2) = q(ω)ph1(ω)(YL(ω)×S1×S2), where q is defined as before. Because
ph1(ω)(YL(ω)×S1×S2) = 1, player 1’s belief about θ is given by the standard conditional-
probability formula for densities.

5 Comparisons and Conclusion
Other versions of PBE that have appeared in the recent literature include concepts defined by
Bonanno (2013), González-Dı́az and Meléndez-Jiménez (2014), and Mailath (2016). Their
technical conditions apply to assessments and are engineered to strengthen weak PBE enough
to ensure subgame perfection. Bonanno’s (2013) definition has a plausibility-logic foundation
(“AGM-consistency”) that provides an intuitive lexic support restriction.14 González-Dı́az
and Meléndez-Jiménez (2014) take the more direct approach of generalizing the notion of a
subgame to “regular quasi-subtree,” which they define as an information set and the nodes that
follow, with the property that in this set each player knows he or she is in this set. González-
Dı́az and Meléndez-Jiménez require weak PBE on every regular quasi-subtree, which implies
Nash equilibrium on every subgame as a special case. Mailath’s (2016) definition of “almost
PBE” is similar, imposing proper conditional-probability updating of assessments from one
information set to the next (generally for a different player) in the case in which the latter
information set follows with positive probability given the assessment at the former.

The PBE definitions proposed by Bonanno (2013), González-Dı́az and Meléndez-Jiménez
(2014), and Mailath (2016) do not address conditional-probability updating on separate di-
mensions of the strategy space—as is needed for reasonableness—and thus in this sense are
weaker than plain PBE. For example, in the game shown in Figure 2, these definitions do not
restrict the belief of player 3 at information set h regarding player 2’s actions d and e, whereas
plain consistency nails it down to probability 0.25 on d and probability 0.75 on e. On the
other hand, their definitions all assume a greater level of conformity for the assessments of the
various players, so in this sense they impose stronger requirements than does plain PBE.15

Next consider the relation between plain PBE and sequential equilibrium. Plain consis-
tency is implied by full consistency (Kreps and Wilson 1982), in which the beliefs at all infor-
mation sets are derived from a sequence of fully mixed behavior strategies.16 Thus, plain PBE

14Bonanno requires Bayes’ updating in the sense of minimal consistency (see the Appendix here), although it
is characterized in terms of plausibility of nodes and a requirement that information-set assessments are derived
by calculating the product of action probabilities on the feasible paths. In a given subgame, where plausibility
of various nodes are anchored by the plausibility level of the subgame’s initial node, the conditions imply that
assessments at on-path information sets (conditional on reaching the subgame) are consistent with the strategy
profile, which implies subgame perfection.

15Weibell (1992) proposes another definition that sits between subgame perfection and perfect equilibrium; it
is based on strategy trembles. Weibull examines beliefs as probability distributions over strategy profiles, as I
advocate here.

16Specifically, full consistency considers a convergent sequence of fully mixed behavior strategies (satisfying
complete independence), {σk}. For each element k of the sequence, we define an appraisal system P k using
the standard conditional probability formula: ph(X) ≡ σk(X ∩ S(h))/σk(S(h)) for all X ⊂ S and h ∈ H+.
An appraisal system P is called fully consistent if it is the limit of such a sequence {P k}. It is not difficult to
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Figure 7: Path dependence.

is weaker than sequential equilibrium, and existence is ensured for finite games. Existence for
classes of infinite games is beyond the scope of this note.

To see how plain PBE is weaker than sequential equilibrium, consider the game fragment
shown in Figure 6. Suppose player 3’s belief at the beginning of the game is as indicated in the
game tree (that player 1 will select b and player 2 will select d with certainty) so that player 3
would be surprised to arrive at information set h. Because S(h)−3 does not have a product
structure allowing player 1’s and player 2’s actions to be separated, the only requirements of
plain consistency are that ph ∈ ∆S(h) and that ph treats player 3’s own actions independently
of s−3. Full consistency, as well as Battigalli’s independence condition, requires putting zero
probability on the profile ac (node x).

The example shown in Figure 7 demonstrates that plain PBE allows for some path de-
pendence in beliefs. Suppose player 3’s belief at the beginning of the game is as indicated
in the game tree: that player 1 will select b and player 2 will select d with certainty. Plain
consistency allows player 3 at information set h′ to have any probability distribution over
S(h′)−3 = {(a, e), (a, d), (b, e)}, because his initial belief puts zero probability on reaching
h′ and S(h′)−3 does not have a product structure that allows for separating the actions of play-
ers 1 and 2. This means that player 3’s beliefs about the relative likelihood of e and d may be

directly verify that a fully consistent appraisal system is plainly consistent. A two-step route to this conclusion
is that Kohlberg and Reny (1997) show that full consistency implies Battigalli’s (1996) independence property,
and Watson (2017) shows that this implies plain consistency.
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different at h and h′′, whereas full consistency and Battigalli’s independence condition require
these to be the same.

One could strengthen plain PBE, and rule out the path dependence just described, by as-
suming that the condition of plain consistency must be applied between every information
set and all of its successors, not just to immediate successors. The most stringent PBE con-
cept, called “mutual PBE” in Watson (2017), requires that all of the players’ appraisals be
derived from a single conditional probability system that satisfies Battigalli’s (1996) indepen-
dence condition.17 It is the closest PBE concept to sequential equilibrium, but it is still weaker
than sequential equilibrium. Although it may have normative appeal, mutual PBE shares with
sequential equilibrium some disadvantages relative to plain PBE. One is computational com-
plexity, as it appears the most straightforward way to find a conditional probability system
that satisfies the independence condition in a finite game is to construct a convergent sequence
of fully mixed behavior strategies with desired properties, which means calculating a sequen-
tial equilibrium anyway. And there is the issue of how to analyze infinite games.18 Another
reason to focus on plain PBE is that, for some applications, it may not be realistic to impose
many restrictions on appraisals across information sets of the same player and across players.
By imposing conditions on only the relation between appraisals at each player’s consecutive
information sets, plain PBE is meant to capture how practitioners typically construct beliefs
in applications and it affords flexibility to accommodate theories of belief revision.

A Appendix
This appendix contains some additional definitions related to the one-deviation property and a
proof of the theorem presented in Section 3. Let us start by defining minimal consistency for
a player’s appraisals on consecutive information sets to mean that (i) the player maintains his
plan of action for the current and unreached information sets and (ii) the player’s belief about
the other players’ strategy profile is updated using Bayes’ rule if possible.

Definition 10: Say that an appraisal system P is minimally consistent if the following con-
ditions hold for every strategic player i:

1. For every pair of information sets g, h ∈ Hi such that g is not a predecessor of h (with
g = h allowed), ph(Xg×S−g) = phi(Xg×S−g) for all Xg ⊂ Sg.

2. For every pair of information sets h, h′ ∈ H i such that h′ is an immediate successor of
h, if ph(S(h′)−i×Si) > 0 then for all X−i ⊂ S(h′)−i we have:

ph
′
(X−i×Si) =

ph(X−i×Si)
ph(S(h′)−i×Si)

.

17It is without consequence to require that each player i’s beliefs about the others is derived from a conditional
probability system on S−i. The restriction is in requiring all of the players’ appraisals to be derived from the
same conditional probability system, and the independence condition further restricts the beliefs.

18The computational issues lead to trade-offs in modeling choices. For instance, continuum action spaces offer
a convenience for some applied settings, especially where calculus can be used to characterize optima. For these
settings, a plain PBE construction on the infinite game may be preferred to examining sequential equilibrium on
a finite version.
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Under minimal consistency, each player i starts the game with an appraisal phi and then,
as the game progresses, he maintains his own strategy for the current and future information
sets and, regarding his beliefs about the others, he updates from one information set to the
next using a proper conditional probability calculation wherever possible. In the event that
the conditional probability expression is not well defined (the denominator is zero), player i
develops a new belief about the others that is consistent with reaching the current information
set.19 Minimal consistency is clearly implied by plain consistency.

Consider an information set h ∈ Hi where player i is on the move. LetKh be the subset of
Hi consisting of h and all of its successors. Then at information set h ∈ Hi, the continuation
strategy for player i that appraisal ph prescribes is simply the marginal distribution on Kh,
that is ph(·×S−Kh).

Definition 11: For a given information set h ∈ H+ and two appraisals ph and p̂h, say that p̂h

is a continuation-strategy h-deviation from ph if ph and p̂h are identical on information sets
H\Kh; that is, ph(X−Kh×SKh) = p̂h(X−Kh×SKh), for all X−Kh ⊂ S−Kh .

In other words, for player i’s information set h, a continuation-strategy h-deviation alters
only the actions played at player i’s information sets in the continuation of the game (that is,
at h and successor information sets for player i). Standard arguments can be used to prove the
following one-deviation result (see Hendon, Jacobsen, and Sloth 1996 and Perea 2002).20

Result: [One-Deviation Property] Consider a minimally consistent appraisal system P for
a finite game. Then P is sequentially rational if and only if for every player i ∈ N+, every
h ∈ Hi, and every continuation-strategy h-deviation p̂h, it is the case that ui(ph) ≥ ui(p̂

h).

The theorem on subgame perfection is restated next, along with a proof.

Theorem: If P is perfect Bayesian equilibrium of a finite game then the PBE strategy profile
σ is a subgame perfect Nash equilibrium.

Proof: Let P be a PBE for a given finite game and let σ denote the PBE strategy profile.
Consider any subgame and let G be the set of information sets in this subgame. For any
player i, define Gi = G ∩ Hi and G−i = G ∩ H−i. The initial node of the subgame is a
singleton information set, denoted ĥ. We must show that σG is a Nash equilibrium in the
subgame—that is, for every strategic player i, σGi

is a best response to σG−i
.

If ĥ = hi then the subgame is the entire game, player i’s strategy in the subgame is σi,
and we know from rationality at ĥ and the single-deviation property that σi is a best response

19To extend the definition of minimal consistency to infinite strategy spaces, the game must have enough
structure so that sets of the form S(h) are measurable, and we must restrict attention to measurable setsX−i. The
condition ph(S(h′)−i×Si) > 0 becomes “S(h′)−i×Si is in the support of ph” and the conditional-probability
expression should be put in density-function form where appropriate. Note that by requiring Bayes’ rule on
unreached paths (those not assigned positive probability by appraisals at the beginning of the game), minimal
consistency is in one sense more stringent than the condition for weak PBE. However, weak PBE is more stringent
in another respect: It captures the idea that “future play” is specified by the strategy profile, even following zero-
probability events.

20Hendon, Jacobsen, and Sloth’s (1996) notion of “preconsistency” is equivalent to the second condition of
minimal consistency.
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to pĥ−i = σ−i. Otherwise, there is a unique sequence of information sets {h1, h2, . . . , hM} ⊂
Hi\Gi, such that:

• h1 = hi;
• for each m = 1, 2, . . . ,M − 1, hm+1 is an immediate successor of hm; and
• there is an information set in Gi that is an immediate successor of hM .

Let Gi be the subset of Gi that are immediate successors of hM for player i.
Suppose that σGi

is not a best response to σG−i
in the subgame, and we will find a con-

tradiction. Observe first that, for every h ∈ H+, S(h) has a product structure relative to G.
To see this, note that if h 6∈ G then actions taken at information sets in G cannot influence
whether h is reached and S(h)G = SG. Further, if h ∈ G then the player on the move knows
that the initial node of the subgame was reached, implying a unique sequence of actions on
the path leading to the subgame and no implications for the other information sets outside of
G.

To evaluate payoffs in the subgame, we can let σ̂ be any element of ∆S that exhibits
independence on S relative to G, exhibits independence on S relative to all of player i’s
information sets, puts probability one on the actions needed to reach ĥ so that σ̂ reaches
the subgame with probability one, and otherwise coincides with σ (in particular, σ̂G = σG).
Player i’s payoff in the subgame (that is, conditional on the subgame being reached) under
strategy profile σ is ui(σ̂).

On the presumption that σGi
is not a best response to σG−i

in the subgame, there exists
a mixture σ̂′ ∈ ∆S that exhibits independence on S relative to all of player i’s information
sets and that differs from σ̂ only on Gi, such that ui(σ̂′) > ui(σ̂). In words, player i gains by
altering his behavior in the subgame. Note that player i’s expected payoff in the subgame can
be written as a weighted sum over payoffs from each of the information sets in Gi. Further,
changing his behavior from one such information set does not affect the expect payoff from
any of the other information sets in Gi. Therefore, for at least one information set h̃ ∈ Gi,
player i can increase his expected payoff in the subgame by altering his behavior in the con-
tinuation from h̃. That is, we can assume that σ̂′ differs from σ̂ only on the information sets in
the continuation of the game from h̃.

Note that distributions σ̂ and σ̂′ reach ĥ for sure, the path from ĥ to h̃ does not involve any
actions of player i, and σ̂′G−i

= σ̂G−i
(behavior of the other players in the subgame is the same

for these distributions). These facts imply σ̂(S(h̃)) = σ̂′(S(h̃)). Also, with both distributions,
h̃must be reached with positive probability, or otherwise player i’s behavior from h̃ would not
affect his expected payoff in the subgame. Thus, we have σ̂(S(h̃)) = σ̂′(S(h̃)) > 0. Using
the fact that σ̂′ differs from σ̂ only from h̃, we can rewrite the inequality ui(σ̂′) > ui(σ̂) by
conditioning on h̃. Specifically, define probability distributions σ̃ and σ̃′ with support S(h̃) by

σ̃(X) =
σ̂(X)

σ̂(S(h̃))
and σ̃′(X) =

σ̂′(X)

σ̂′(S(h̃))
(5)

for all X ⊂ S(h̃). We then have ui(σ̃′) > ui(σ̃).
The final step involves showing that ph̃G = σ̃G. That is, regarding behavior in the subgame,

player i’s appraisal at h̃ coincides with σ̃. This follows from plain consistency using induction.
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Start with m = 1 and note the following for Z = S(h2)G×S(h1)−G and Y = S(h2) =
S(h2)G×S(h2)−G: By construction, h2 is an immediate successor of h1. By definition, ZG ⊂
YG (in fact, these sets are equal) and S(h2) is a product set relative to G. Also, ph2(Y ) = 1
and ph1(Z) = 1. Using the definition of plain consistency, we conclude that ph2G = ph

1

G = σG.
Repeating the argument establishes that phMG = σG. Note that, at each of the information sets in
the sequence, the appraisal exhibits independence on S relative to G, due to plain consistency.

Let us conduct one more application of plain consistency, from hM to immediate successor
h̃, using Z = S(h̃)G×S(hM)−G and Y = S(h̃) = S(h̃)G×S(h̃)−G. We obtain:

ph̃(XG×S−G) =
ph

M
(XG×S−G)

phM (S(h̃)G×S−G)
=

σG(XG)

σG(S(h̃)G)
(6)

for all XG ⊂ S(h̃)G. Recall that σ̂ and σ exhibit independence on S relative to G and satisfy
σ̂G = σG. Recall as well that σ̂ reaches the subgame for sure and that actions planned for
unreached information sets outside of G are irrelevant for determining whether h̃ is reached.
Using Equation 5, these facts imply that

σ̃G(XG) =
σ̂G(XG)

σ̂G(S(h̃)G)
=

σG(XG)

σG(S(h̃)G)
. (7)

Combining Equations 6 and 7 yields ph̃G = σ̃G.
We therefore can translate inequality ui(σ̃′) > ui(σ̃) into ui(ph̃

′
) > ui(p

h̃), where h̃′ is
the continuation strategy h̃-deviation that plays according to σ̂′ at player i’s information sets
starting from h̃. From the single-deviation property, this implies that P is not sequentially
rational, which is the contradiction that completes the proof. �
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