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A resource is owned jointly by m agents, the ith agent’s share of the resource being 0;. The 
output of the resource, and the utilities of each agent are functions of the state of nature. An 
admissible distribution scheme is one which (1) is (Pareto) optimal and which (2) gives each 
agent an expected consumption proportional to his share of the resource. We show that with the 
usual concavity assumptions on utilities there always exists one and only one admissible 
distribution scheme. The proof is achieved by constructing a suitable social welfare function 
which is maximized at the desired distribution scheme. 

1. Introduction 

This study deals with situations of the following sort. A resource is owned 

jointly by a number of agents, each agent’s share being some exogenously 
specified number. The prototypical example would be a firm owned by 
stockholders. The resource produces some homogeneous output (profit) 

which is assumed to be a random variable with known distribution. The 
problem is then to determine some rule for distributing the output among 
the agents which is consistent with their ownership shares. Such a rule will 
be called a distribution scheme. 

The situation described above may be though of as a special case of the, 
much studied bargaining problem in which a number of agents are faced with 
a set of possible outcomes. An outcome which is unanimously agreed to is 

implemented. If the agents fail to agree some prescribed disagreement. 

outcome results. 
The modern theory of this subject probably begins with the work of Nash 

(1950). The Nash theory is not concerned with the actual negotiations 
among agents (as the word bargaining might suggest) but is interested only 
in determining some rule for redistribution which satisfies certain conditions, 
or axioms, which would presumably be acceptable to the bargainers or 
required by the situation. The main result of the theory is a theorem 
asserting the existence of a unique redistribution rule satisfying the given 
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axioms. The Nash formulation has often been criticized, however, because it 
depends only on the set of possible utility vectors achievable by the agents 
and not on the underlying situation which gave rise to the original problem. 

In analyzing our distribution problem we have followed the Nash 
approach. The notable feature in this special case is that the requirements 

(axioms) are extremely simple. We require only (1) the scheme should be 
weakly Pareto optimal, meaning that no other scheme should give every 

agent a greater expected utility, and (2) each agent’s expected share of output 
should be proportional to his share of ownership. Notice that although (1) 
depends on considerations of utility it is perhaps the weakest such 
requirement one could make, and (2) is completely independent of any 
considerations of utility depending only on the objective data of the problem, 
namely the random output and the relative shares of ownership. Our result 
asserts that, assuming agents have smooth concave utility functions, there is 

exactly one distribution scheme consistent with (1) and (2). Moreover, like 
the Nash bargaining solution the distribution rule is characterized as the 
solution to a constrained maximum problem. 

A few further remarks may help to illuminate the nature of the problem: 

Remark 1. This investigation was originally motivated by the observation 
that the ‘obvious’ solution to the problem, namely, give each agent a share of 
output proportional to his share of ownership will almost always violate 
Pareto optimality. This is not hard to see. Consider for example the simple 
case of the two agents owning equal shares of a firm, but having different 
utilities for income, suppose there are only two states of nature, so the firm 

either makes or loses money. Then it will almost always be the case that a 
fifty-fifty split of profits or loss would be dominated by some scheme in 
which one agent agrees to accept less than half the profits in a good year in 
return for having to bear less than half the losses in a bad one. 

Remark 2. It does not seem immediately clear that there even exist rules 

satisfying both (1) and (2) though this can be established by means of fixed 
point arguments. The uniqueness can also be given a separate proof using 

semi-combinatorial methods. This approach is in fact used by the second 
author in a related paper [Sobel (1981)]. 

Remark 3. The model we treat allows an agent’s utility function as well as 
output to depend on the state of nature. This generalization has a natural 
interpretation. Thus, if the state of nature was such that an agent 
(stockholder) suffered some serious financial reverse (say, his house burned 
down) then his utility for income would presumably be higher than normal. 
This interpretation has in fact been exploited in Buhlmann and Jewel1 
(forthcoming a, b) which are concerned with insurance pooling or ‘risk 
exchange’. 
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Remark 4. Our solution to this distribution problem possesses many of the 

properties required of bargaining solutions for other models. Specifically the 

axioms of Pareto optimality and invariance with respect to positive afine 
transformations are satisfied by our solution. Further the solution is 
symmetric when the shares of the agents are equal. Symmetry, invariance 
with respect to positive afflne transformations and Pareto optimality are the 
axioms common to the Nash (1950) and the Raiffa (1953) and Kalai- 

Smorodinsky (1975) theories of bargaining. 

2. The model and the social welfare function 

We formalize the problem described in the introduction. The given 

parameters of the problem are: 

(i) there are m agents Ai for i = 1,2,. . ., m; 
(ii) a non-negative, bounded, measurable function h (the amount of output) 

defined on a probability space S (the states of nature); 

(iii) real-valued utility functions ui defined on S x R for i = 1,. . ., m. 

We write U&X) and assume the ui are increasing, strictly concave, and 
differentiable in x. Letting U; denote differentiation with respect to x, we 
assume ui and ui are bounded and measurable in s. [The quantity ui(s,x) 
measures the satisfaction to Ai of receiving x in state s.] 

(iv) positive numbers ol,. . ., 8, summing to 1 (the shares of the m agents). 

A distribution scheme is a vector-valued non-negative measurable function 

d=(dl,..., d,) on S, where d,(s) represents the amount distributed to Ai in 

state s. We denote by D the set of all distribution schemes. The scheme d in 
D is called feasible if 

for all s. (2.1) 

If in addition we have 

idi(s)=Bijh(s) for all i, (2.2) 

we say that d is proportional.’ 

Note that the set of all proportional schemes forms a convex subset of 
L,(S)“’ (bounded measurable functions from S to R”). 

‘Throughout the paper integration over S of function f(s, ) will be denoted by ls f(s, ). 



54 D. Gale and J. Sobel, Optimal distribution of output 

For each d in D we define the m-vector u(d) by 

u(d)= Bu,(s,d,(s)),...,~u,(s,d,(s)) . > 
Thus, u(d) is the set of expected utilities of the A:s under the scheme d. A 

feasible scheme d is called optimal if there is no other feasible scheme d such 

that u(d)>u(d) (we use the usual vector inequality notation). 
We now define the social welfare function @. First, define & on S x R, by 

4i(s, x)= jlogu:(s,r)dt, 

and note that c$~ is differentiable and strictly concave in x since 

&ys, x) = uI’(s, x)/u#, x), 

which is negative from the assumptions on the ui. 
Now for any d in D define 

(2.3) 

(2.4) 

Observe that CD is a strictly concave function on D so that it achieves at 
most one maximum on any convex set. 

To prove our main result we will show: 

Theorem 1. A distribution scheme is proportional and optimal if and only if 
it maximizes @ among all proportional distribution schemes. 

The analysis to follow hinges critically on the particular functions 4i we 
have chosen. It would be illuminating to have some economic interpretation 
of these functions. In that direction H. Btihlmann has observed that the 
quantity on the right of (2.3) is the negative of the Arrow (1971) and Pratt 
(1964) measure of ‘risk aversion’. In fact, any second integral of the risk 
aversion would do as well as the 4i for suppose $,(s,x)= ~&(s,x)+a~x+ bi, 
and let 6 be the corresponding integral as in (2.4). Then 
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but by (2.2) the second term on the right is aiBiJ,h(s), so 

~(d)=~(d)+ CUiei Jh(S)+Cbiy ( 1 S 

and so d maximizes @ if and only if it maximizes 4:. 
In the next section we will prove the existence of a welfare maximizing 

proportional distribution scheme. Section 4 will present the needed results 
from optimization theory (Kuhn-Tucker theorems) and these will be applied 

in section 5 to prove Theorem 1. 

3. Existence of a welfare-maximizing proportional distribution scheme 

We endow the set D with the weak-star topology. This means that d is a 
limit point of the sequence d” if for any function f in L?(S), lim,,, J,(d,(s) 

-d;(s))f(s)=O. 

Let D, be the set of proportional distribution schemes. From the feasibility 
condition (2.1) D, is bounded. It is also an easy verification to show that D, 
is weak-star closed and hence, by a well-known result, compact [see, e.g., 
Lang (1969)]. Now let a=sup{@(d)(dED,}. By compactness of D, there is 
a function d in D, and a sequence d”+d such that @(d”)+u. We claim 
that @(d)=o for 

(3.1) 

but by concavity of the $i we have 

(3.2) 

SO, since &(s,di(s)) is in L,(S) (from our assumption on the ui), we have 

lim J&(s,cT,(s))(d,(s)-d;(s))=O, 
n+m s 

by weak-star convergence. Combining (3.1), (3.2) and (3.3) gives 

lim (@(6)--W(d))20 so @+?)=a. n 
n+m 

4. Theorems on constrained maximization 

We shall need two lemmas on constrained maximization. The first is a 
simple infinite dimensional version of the Kuhn-Tucker Theorem. 
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Let @ be a concave function defined on a convex set K in a real linear 
space X. Let L be a linear function from X to R”, and assume for each y in 
L(K) that the function @ attains a maximum on L-‘(y). Let b be in the 
relative interior of L(K). 

Lemma 1 (Kuhn-Tucker). The point X maximizes Q(x) subject to XEK, 

and L(x) = b if and only if there exists an m-vector v such that X maximizes 

Q(x)-v.L(x)for x inK. 

The sufficiency of the condition is immediate and the necessity follows just 
as in the finite-dimensional case as proved e.g. in Gale (1968). Namely, for 
y in L(K) define p(y)=maxLc,,=y a(x) and verify that I_L is concave in y. 
The fact that b is in the relative interior of L(K) means that p has a support 
(or super gradient) at b, thus, there is an m-vector u such that 
p(y)-p(b)5u*(y-b) for all y in L(K). One easily verifies that u satisfies 
the conclusion of the lemma. 

Next let A(s, x), i = 1,. . ., m, be functions on S x R, where S is a probability 
space, and assume eachi is differentiable and strictly concave in x andf; and 

f f are bounded and measurable on S x R. Let h be a bounded measurable 
function on S. In the class of non-negative bounded measurable functions 
p=(pi,. . .,p,) from S to R,” consider the problem: 

(II) Find a function p which maximizes 

@(P)= jCf;(s,Pi(s)) ( 1 1 
subject to 

(4.1) 

Lemma 2. The function p solves (lI) if and only if there exists a function g 
on S such that, for almost all s, 

fl(s3&(S))i5g(s)9 

(4.3) 
=g(s) if &(s)>O. 

Let p solve (II) and let g(s)=max, f ;(s,pi(s)). Suppose (4.3) does not hold. 
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Then there is a set S, of positive measure, an E>O, and a pair of indices, say 

1 and 2, such that for all s in S,, 

We get a contradiction by showing that ii does not maximize @. For 6 in 
(0,~) define p”a by 

~a(s)=(~I(s)-6,~,(s)+6,~,(s),...,~,(s)) for ~ES~, 

=P(s) for s$S,. 

Clearly pLa is bounded and measurable. 

Let 

=,s (fi(s,lil(s)--6)-fi(s,~I(s))-f2(s,~2(s)) 
1 

+_fz(s,iG(s)+4). 

Because of the hypotheses on thef;: we may differentiate under the integral 
sign giving 

4’(O)= j (-f;(s,~(s))+f;(s,~(s))>o, 
S, 

so for 6 small q(6) is positive, and so @&J>@(p) which is the desired 
contradiction. 

Conversely, suppose (4.3) holds for some s. It then follows that P(S) 
= (X 1,. . ., 2,) maximizes cfi(s, xi) subject to 2 xi = h. To see this, first note 
that (4.3) implies 

fi(s,Xi)(Xi-Xi)~g(s)(xi-Xi), (4.4) 

for all xi20 (note xi<& means Xi>0 sof;:(s,Xi)=g(s)). 
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Next by concavity off;, 

(4.5) 

so we get 

but if c xi = h, the right side above is zero. This shows that (4.3) implies that 
p(s) maximizes the integrand of (4.1) for almost all s, and hence the integral 
(4.1) is also maximized. n 

5. Proof of Theorem 1 

Let d maximize @. Let & be the set of all feasible distribution schemes and 

define L on b by 

L(d)= plw..>p) . ( > 
Note that I@) consists of all non-negative vectors y= (yl, . . ., y,) such that 
cz 1 yi= h. Since all Bi are positive, the point (0, h,. . .,6,h) is in the relative 
interior of L(6), so the Kuhn-Tucker Theorem implies there exists an m- 
vector u such that d maximizes Q(d)-u . L(d) for d in 6. Now applying 

Lemma 2 to the case where the functions fi(s, x)=+i (s, X)-Z)iX 

=Jfloguf(s,c)d - i , c u x we get the existence of a function g such that 

l”gul(s,di(s))-ui~g(s), (5.1) 

with equality if 6, (s) > 0 for almost all s. Letting cli = e- “i and b(s) = es’“‘, we 

get 

aiu!(s~Jii(s))~P(s)~ (5.2) 

with equality if &i(s) > 0. 
Applying Lemma 2 in the other direction shows that d maximizes 

C~~u~(s,d,(s)) subject to xd,(s)=h(s). Therefore if d is in 6 we have 

for almost all s, so (5.3) 
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for all d in fi, so since cli > 0 for all i there cannot be d in D with js (ui(s,d (s)) 
-ui(s, d,(s)))20 with inequality holding for some i, and therefore d is 
optimal. 

Conversely, suppose d is proportional and optimal. Let U be the set of all 
points u in R” such that there exists a d in D with u(d )2 u. From concavity 
of the ui it follows that U is convex and since d is optimal u(d) is an efficient 
point of U. By the standard efficiency theorem, therefore, there exist non- 

negative numbers cli such that 

d maximizes c ai j u(s, d,(s)), 
s 

(5.4) 

for d in D,. 
In fact ai > 0 for all i, for suppose c(~ =O, a2 >O. Then since d1 >O we must 

have d,(s)>0 on some set S, of positive measure, but then (5.4) could be 
increased by decreasing d, and increasing d, on the set S, since the function 
u2 is increasing in x. 

Applying Lemma 2 to (5.4) gives the existence of a function /3 such that, 

for almost all s, 

with equality for d,(s)>O. Since the cli are positive so is /I(s). Setting vi = 
-log IZQ and g(s)=log p(s) we get (5.1), and by Lemma 2 once more and the 
Kuhn-Tucker Theorem in the easy direction we see that d maximizes @. n 
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