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Abstract

Individuals with identical preferences each receive a signal about the unknown
state of the world and decide upon a utility-maximizing recommendation on the
basis of that signal. The group makes a decision that maximizes a common util-
ity function assuming perfect pooling of the information in individual signals. An
action profile is a group action and a recommendation from each individual. A col-
lection of action profiles is rational if there exists an information structure under
which all elements in the collection arise with positive probability. With no restric-
tions on the information structure, essentially all action profiles are rational. In
fact, given any distribution over action profiles it is possible to find an information
structure that approximates the distribution. In a monotone environment in which
individuals receive conditionally independent signals, essentially any single action
profile is rational, although some collections of action profiles are not. Journal of
Economic Literature Classification Numbers: A12, D01; Keywords: statistical de-
cision problem; group polarization; behavioral economics; psychology; forecasting.
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1 Introduction

A decision maker asks several informed experts for advice prior to making a decision.
Each expert recommends an action to the decision maker. The recommended action
maximizes the decision maker’s utility given the information available to the expert. The
decision maker selects an action. Suppose that the decision maker appears to ignore
the recommendations of the experts – say by taking an action that is not in the convex
hull of these recommendations. Can we conclude that the decision maker is irrational?
More generally, can an observer examine the experts’ recommendations and form a useful
estimate of the decision maker’s rational action?

A scientist has access to several independent forecasts of the weather. Is there any
relationship between these forecasts and the optimal aggregate forecast based on all avail-
able information? Is the optimal aggregate forecast bounded by the individual forecasts?

Individuals receive information about the facts in a lawsuit. They are asked in iso-
lation to recommend punitive damage awards. Later, these individuals meet together
as a jury, deliberate, and make a collective decision on punitive damages. How does
a rational jury’s decision depend on the expressed recommendations of individual jury
members prior to deliberation?

The paper studies a simple model of information aggregation designed to give answers
to these questions. Individuals have common preferences but different information. Each
individual observes a signal and, using the signal, makes a recommendation. The recom-
mendation maximizes the individual’s utility given the signal. The group then pools all
of the individual signals and makes a decision based on the pooled information. There
is no conflict of interest between group members and the group perfectly aggregates the
information of its members. In this setting, I investigate to what extent the group’s
optimal decision is constrained by the recommendations of the individuals.

I model differences in information by assuming that there is an underlying state of the
world and individuals receive private signals that convey information about the state. The
information structure describes the relationship between states of the world and signals.
Asking individuals to make recommendations separately and then as a group generates
an action profile (consisting of a recommendation from each individual and a separate
group decision). A collection of action profiles is rational if there exists an information
structure under which all elements in the collection arise with positive probability.

Section 2 demonstrates in different ways that individual recommendations do not
constrain the group action. In particular, I show that for fixed preferences essentially
any finite collection of action profiles is rational. Hence essentially no finite data set
consisting of individual recommendations and group actions is inconsistent with rational
decision making. When preferences are not fixed, a much stronger result is possible. Here
for any given probability distribution over action profiles, there exists a specification of
preferences and information that generates a probability distribution over action profiles
arbitrarily close to the given distribution. These results say that there is no connection
between individual recommendations and the group’s optimal decision.

In Section 3 I assume that the information structure is monotone. The state of na-
ture, signals, and action are real numbers. Higher signals are stochastically associated
with higher states of the world. I further assume that preferences are restricted so that
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higher beliefs about the state induce higher actions. In this environment, individual rec-
ommendations do constrain group actions. If all individuals recommend a strictly higher
action, then the corresponding group action must be higher. This cross-profile restriction
need not hold in non-monotone problems. On the other hand, even in monotone models
the group’s optimal action is not restricted by the individual recommendations.

Suppose (as in Section 3) actions are elements of the real line. Here there is a natural,
weak notion of moderation. The group’s decision is moderate if it is bounded by the
lowest and highest recommendations. Group decisions would be moderate if they were
weighted averages of the individual recommendations. The results in Section 2 and 3
demonstrate that moderate problems are special. In Section 4, while still assuming a
monotone structure, I identify a (restrictive) condition that is necessary and sufficient
for moderation.

An example illustrates why group decisions are unlikely to be moderate and provides
intuition for other results in the paper.1 Suppose that the state of the world is normally
distributed with a known mean and variance and that individuals receive a signal that is
equal to the true state plus noise. The noise is normally distributed with mean zero and
individual signals are conditionally independent given the state. The common objective
is to minimize the distance between the recommendation and the state of the world, so
recommendations equal to the expected value of the state given available information.
Suppose an individual’s signal is higher than the prior mean. Her recommendation will be
a weighted average of the signal and the prior mean. If every member of the group makes
the same recommendation, then the group is more confident in the information content of
the signal than any individual. The group’s action is therefore greater than the individual
recommendations. This follows because the aggregate signal as more informative than an
individual signal and hence the group places relatively less weight on the prior mean than
an individual. It is not surprising that a group of individuals with similar biases makes
decisions that are less extreme than recommendations of individual group members.

Research on “expert resolution” (Winkler 1986) studies rules one might use to aggre-
gate the opinions of experts. A typical rule is a function from individual opinions to an
aggregate opinion. This literature contains examples that show linear aggregation rules
need not be optimal. The literature on combining forecasts (starting from Bates and
Granger 1969) also looks at ways in which to aggregate estimates from different sources.
This literature is more in the tradition of classical (rather than Bayesian) statistics so it
is not directly comparable to the approach of this paper, but like the research on expert
resolution, focuses on identifying aggregation rules that are optimal within a parametric
family. These models assume that individual expert opinions or forecasts are available to
the modeler. The literature asks for optimal ways to aggregate the recommendations of
experts. My results indicate that there is no reason to expect aggregation rules in a para-
metric class to perform well. In particular, it may be rational for a decision maker who
receives identical recommendations from several reliable but partially informed experts to
ignore the common recommendation and make another decision. Hence rules that gener-
ate an aggregate decision by taking a convex combination of individual recommendations
may not perform well.

1Roux and Sobel 2012 discuss the example in more detail.
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There is a large literature in social psychology on “group polarization.”2 Group po-
larization refers to the tendency of groups to make decisions that are more extreme than
some central tendency of the individual positions of the members of the group. The
phenomenon, first observed in experiments reported by Stoner 1968, has been widely
replicated. Experiments typically elicit recommendations from individuals and then put
individuals in groups and record a decision made by the group. Hence the experiments
record individual recommendations and group decisions. The structure of these experi-
ments justifies my modeling approach. The experiments observe individual recommenda-
tions and a group decision. I assume the modeler observes these data. The experiments
also provide opportunities for individuals to arrive at the group decision. Neither the
experiments nor I model the deliberation process explicitly. I assume that somehow
individuals use all available information optimally.3

The experiments on group decision making performed by Schkade, Sunstein, and
Kahneman 2000 provide a concrete example of the third motivating example. Indi-
vidual subjects received information relevant to a hypothetical court case. They each
recorded a punitive verdict and a damage verdict. Subjects then were randomly placed
into groups of six; these groups deliberated and decided on punitive and damage ver-
dicts. In this setting, the experimenter observes the individual recommendations about
verdict and damage and the group opinion about these quantities. The experimenter
does not observe detailed information about these quantities. My model assumes that
the deliberation process aggregates this information. When pre-deliberation juror judg-
ments favored a high punishment rating, deliberation tended to increase the rating of the
group relative to the median individual rating. When pre-deliberation juror judgments
favored a low punishment rating, deliberation tended to decrease the rating of the group
relative to the median individual rating. Hence both group punishment and damage
awards were more extreme than individual awards. These results suggest a systematic
relationship between the group’s action and the individual recommendations (group po-
larization). In particular, the group does not moderate individual recommendations.
This paper presents a framework that explains why moderation is not a general property
of information aggregation.

The psychology literature often interprets polarization as a sign that group inter-
actions lead to non-optimal decisions and introduces behavioral explanations for the
experimental results.4 This paper demonstrates that polarization is consistent with ra-
tional decision making of both groups and individuals. The experimental literature finds
polarization arises systematically in a wide range of settings. This observation leads to
the question of whether there are environments in which polarization is not only possi-
ble, but likely. A companion paper, Roux and Sobel 2012, gives conditions under which
one might expect the polarization found in the experiments of Schkade, Sunstein, and
Kahneman 2000 and Stoner 1968.

Eliaz, Ray, and Razin 2006 present the first, and to my knowledge only other, decision-

2Brown’s 1986 devotes a long chapter to the topic. Isenberg 1986 provides a review.
3In some examples, there is a one-to-one relationship between individual recommendations and in-

dividual information. In these cases, individual recommendations are sufficient statistics for individual
information.

4Brown 1986 surveys the results and the psychological theories.
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theoretical model of choice shifts.5 Groups must decide between a safe and a risky
choice. The paper summarizes group decision making by a pair of probabilities: the
probability that an individual’s choice will be pivotal (determine the group’s decision)
and the probability distribution over outcomes in the event that the individual is not
pivotal. In this framework, choice shifts arise if an individual would select a different
recommendation alone than as part of a group. If individual preferences could be rep-
resented by von Neumann-Morgenstern utility functions, then choice shifts would not
arise. Eliaz, Ray, and Razin 2006 prove that systematic choice shifts do arise if individ-
uals have rank-dependent preferences consistent with observed violations of the Allais
paradox. Moreover, the choice shifts they identify are consistent with experimental re-
sults.6 Assuming that an individual is indifferent between the safe and risky actions in
isolation, she will choose the safe action when a pivotal member of the group if and only
if the probability that the group would otherwise choose the safe action is sufficiently
high. Unlike my approach, this model does not rely on information aggregation. Eliaz,
Ray, and Razin 2006 concentrate on how preferences revealed within groups may differ
from preferences revealed individually, but it is not designed to study how deliberations
may influence individual recommendations. An appealing aspect of the Eliaz, Ray, and
Razin 2006 approach is the connection it makes between systematic shifts in group deci-
sions and systematic violations of the expected utility hypothesis.

There is an experimental literature on group decision making that focuses on topics
traditionally studied by economists. A fundamental question is whether groups make
better decisions than individuals. My model assumes perfect information aggregation,
common interests, and optimization. Consequently, the group’s recommendation must
be better (ex ante) than any individual recommendation and at least as good as any
function of individual recommendations. In practice, groups may not perform better
than individuals, but for reasons not captured in my model.

2 A Benchmark Model

There are I > 1 individuals. Individual i has a utility function that depends on an
action7 a ∈ A and the state of the world, θ ∈ Θ. Denote the utility function by u. Each
individual receives a private signal s ∈ S about the state of the world. I assume in this
section that Θ, A, and S are finite. Let π(θ) be the prior probability of state θ. Assume
that π(θ) > 0 for all θ ∈ Θ. Let P (θ; s) be the joint probability that the state is θ and the
profile of signals is s = (s1, . . . , sI); and p(θ | I) the conditional probability that the state
is θ given the information I.8 Note that π(θ) =

∑
s P (θ; s) and that it is straightforward

to represent p(·) in terms of P (·) and π(·). I refer to (Θ, S, π, p, P ) as the information

5Dixit and Weibull 2007 demonstrate that when individuals have heterogeneous priors, the arrival of
new information may cause their posteriors to diverge. In this way, information may lead to polarization
of beliefs. Dixit and Weibull do not compare group beliefs (or actions) to those of the individuals within
the group.

6Because the set of actions is binary, Eliaz, Ray, and Razin cannot explain situations in which group
actions are strictly more extreme than individual actions.

7I refer to action choices of individuals as recommendations and action choices of groups as decisions.
8I is one signal s or a profile s.
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structure and to (S, P, u) as the decision problem.
I compare two situations. When individuals act privately, they each select a∗i (si)

to maximize
∑

θ∈Θ u(a, θ)p(θ | si). When individuals act collectively, they select a∗0(s).
In general, a∗0(s) depends on the institution by which agents share information. When
preferences differ, it is not clear how the group should decide upon its collective decision.
Even when preferences coincide, psychological or strategic considerations may prevent
the group decision from being optimal given available information.

I focus on the benchmark case in which the interests of the individuals are the same
(ui(·) ≡ u(·) for all i) and in which a∗0(s) is chosen optimally so that a∗0(s) solves

max
a∈A

∑
θ∈Θ

u(a, θ)p(θ | s). (1)

Since u(·) is independent of i, a∗i (·) is also independent of i for i > 0. The group
decision a∗0(·) is a different function because it depends on signal profiles not of individual
signals.

Assume that individual recommendations are chosen optimally. An observer knows
the actions taken at the group and individual level (but not the information structure).
Is it possible for the observer to conclude that a collective decision is not optimal? If so,
then observing that action is evidence that the group decision was incorrect. If not, then
the argument that polarization (or any other tendency of the group decision) is irrational
must be re-examined.

This section contains a series of results that suggest that individual recommendations
do not constrain the group’s action. Propositions 1 and 2 show that given essentially9 any
distribution of action profiles there is an information structure under which these action
profiles arise with positive probability. These results make no restrictions on preferences.
While they show that any combination of individual recommendations and group actions
is possible, they do not rule out the possibility that one can make inferences about the
action of the group from the individual recommendations. Proposition 3 demonstrates
that the distribution of group beliefs does place restrictions on individual beliefs and
characterizes these restrictions. Proposition 4 states that there are preferences and an
information structure consistent with essentially any pattern of individual recommenda-
tions and group decisions. Finally, Proposition 6 shows that similar results are possible
even when individuals receive conditionally independent signals.

Proposition 1 describes a property of aggregate beliefs obtained from information
aggregation. Suppose the observer managed to elicit the beliefs of the group before and
after information aggregation in a finite number of situations. Further suppose that all
of the beliefs elicited place positive probability on all of the states. The proposition
asserts that there is an information structure that is consistent with these observations
in the sense that there are signal profiles that induce all of the observed beliefs. Hence
individual beliefs place no constraints on group beliefs.

To state the proposition, define a belief profile to be a vector q = (q0; q1, . . . , qI)
such that each qi is a probability distribution on Θ. The belief profile q is interior if
qi(θ) > 0 for all i and θ.

9The formal statements of the propositions make the meaning of “essentially” precise.
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Proposition 1. Let Q be a finite set of interior belief profiles. There exist a sig-
nal set S and a joint probability distribution P (θ; s1, . . . , sI) such that for every q =
(q0; q1, . . . , qI) ∈ Q there exists a signal profile s = (s1, . . . , sI) with P (θ; s) > 0 such that
q0(θ) = p(θ | s) and qi(θ) = p(θ | si) for all i = 1, . . . , I.

The existence of a signal profile s satisfying the conclusion of the proposition is,
mathematically, the statement that there exists an information structure for which a
family of linear inequalities has a solution. The proof of Proposition 1 constructs an
information structure with the appropriate characteristics.10 There is a signal sk for each
belief profile qk ∈ Q and one distinct residual signal. When an individual receives the
signal sk her updated belief is qki . When all individuals receive the signal sk the group’s
posterior is qk. Such a signaling technology satisfies the conditions of the proposition
and is not difficult to construct.

A simple consequence of Proposition 1 is that individual recommendations place no
constraints on the group’s decision. Let a = (a0; a1, . . . , aI) ∈ AI+1 denote an action
profile. Interpret a0 as the joint action and each ai, i = 1, . . . , I as an action of individual
i. Call an action a ∈ A undominated if there exists qi ∈ int(∆) such that a solves
maxa∈A

∑
θ∈Θ u(a, θ)qi(θ).

11 The signal profile s = (s1, . . . , sI) induces a if a0 = a∗0(s)
and ai = a∗i (si) for all i = 1, . . . , I. The action profile a is possible if there exists a
signal profile s that induces a.

Proposition 2. There exists a signal set S and a joint probability distribution P (θ; s1, . . . , sI)
such that for all profiles of undominated actions a = (a0; a1, . . . , aI) there exists a signal
profile s = (s1, . . . , sI) with P (θ; s) > 0 such that s induces a.

Proposition 2 states that any undominated action profile is possible. Dominated
action profiles are not possible and so observing a dominated action is evidence that
someone failed to optimize. The proposition demonstrates that there need not be any
connection between individually optimal and collectively optimal actions. In particular,
the proposition implies that group decisions that are “extreme” relative to individual
choices need not be a sign of irrationality. In particular, if A is ordered, then nothing
prevents a0 from being greater than all of the other components of a. Therefore it is
premature to assume that the group decision is not optimal even when collective decisions
differ systematically from individual recommendations.

Proposition 2 is an immediate consequence of Proposition 1. Since A is finite, only
a finite number of distinct action profiles exist. If a is one of these profiles, then there
exists a belief profile q such that ai is a best response to qi for each i = 0, 1, . . . , I.

The conclusion that no group decision is inconsistent with individual recommenda-
tions does not depend on the assumption that agents select a recommendation that
maximizes expected utility. The result continues to hold provided that beliefs determine
actions (so the preferences can be described by a non-expected utility functional or a
behavioral rule of thumb).

10The Appendix contains the proof of Proposition 1 and of all subsequent results requiring proof.
11The definition rules out degenerate cases in which action a maximizes the expected payoff only if

one or more states is assigned probability zero.
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There is a possible extension to Proposition 1 and 2. One could ask: Does there
exist an information structure that gives rise to any joint distribution over belief and
action profiles? An affirmative answer to this question would be the strongest possible
“anything goes” result. It would say that it is not only possible to rationalize any finite set
of observations (as in Proposition 2), but it is also possible to rationalize any distribution
over observations. The next two results investigate constraints placed on distributions
over belief and action profiles.

The information structure (Θ, S, π, p, P ) induces a probability distribution over belief
profiles in a natural way. Each s determines a belief profile and P determines the prob-
ability of each s. Proposition 1 demonstrates that for any given family of interior belief
profiles, there is an information structure for which each member of the family arises
with positive probability. The information structure may induce other belief profiles and
Proposition 1 says nothing about the induced probability distribution over belief profiles.
For example, the information structure constructed in Proposition 1 may induce the be-
lief profiles in Q with arbitrarily small probability. Proposition 3 characterizes the set of
distributions over belief profiles that can be generated by an information structure.

Proposition 3. Given a positive integer K and k ∈ {1, . . . , K}, fix a finite family of belief
profiles Q = {qk = (qk0 ; qk1 , . . . , q

I
I )} and positive numbers rk such that

∑K
k=1 rk = 1. If for

all k the information structure (Θ, S, π, p, P ) induces belief profile qk = (qk0 ; qk1 , . . . , q
I
I )

with probability rk, then

1.
∑K

k=1 q
k
i rk =

∑K
k=1 q

k
0rk for all i = 1, . . . , I and

2. there exists λki (j), i = 1, . . . , I and j, k = 1, . . . , K, such that for all i, j and k,
λki (j) ≥ 0, and, for all i and j,

∑K
k=1 λ

k
i (j) = 1 and qji =

∑K
k=1 λ

k
i (j)q

k
0 .

Conversely, if (1) and (2) hold, then for any ε > 0, there exist a signal set S, a
joint probability distribution P (θ; s1, . . . , sI), and, for k = 1, . . . , K, belief profiles q̃k and
positive numbers r̃k with

∑K
k=1 r̃k = 1, such that the information structure (Θ, S, π, p, P )

induces the belief profile q̃k with probability r̃k for k = 1, . . . , K, and

| qk − q̃k |< ε and | rk − r̃k |< ε.

An implication of Proposition 3 is that not all distributions over belief profiles can
be generated by an information structure. The necessary conditions in the proposition
are intuitive and follow directly from Bayes’s Rule. Condition 1 states that the average
belief of individual i is equal to the average belief of the group. Condition 2 states that
any belief that arises with positive probability for individual i is in the convex hull of
group beliefs. Since individual i knows the information structure, she can compute {qk0};
λki (j) is the condition probability that individual i believes that the group’s belief will
be qk0 given that the belief she forms based on her own information is qji . Given (2) it is
straightforward to verify that (1) holds if and only if

∑K
j=1 rjλ

k
i (j) = rk.

Conditions (1) and (2) are approximately sufficient. Given a probability distribution
over belief profiles and a positive ε, there is an information structure that leads to a
distribution over (approximately) these belief profiles within ε of the given distribution.
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The next result describes which distributions over action profiles can be induced by
some decision problem. Proposition 3 suggests that it is not possible to generate all
distributions over action profiles because individual actions contradict information in the
joint distribution. To see this clearly, imagine a distribution over action profiles in which
the group action is constant. In this case, all individuals must recommend the group’s
action with probability one since an individual can infer that the group – acting with
better information – will always take this action. Hence certain distributions of action
profiles are not consistent with my basic model. It turns out that this concern is only
a technicality. The next proposition demonstrates that there is a decision problem that
gives rise to a distribution on action profiles that is arbitrarily close to any given joint
distribution.

Recall that an action profile is an element a = (a0; a1, . . . , aI) ∈ AI+1. A distribution
on action profiles is a probability distribution on AI+1. A decision problem (S, P, u)
induces a distribution on action profiles. The probability of a = (a0; a1, . . . , aI) ∈ AI+1

is the probability of

{s ∈ SI : a∗i (si) = ai, i = 1, . . . , I; a∗0(s) = a0}.

Proposition 4. Given any ε > 0 and any joint distribution on action profiles ρ there
exists a decision problem (S, P, u) such that distribution of action profiles induced by
(S, P, u) is within ε of ρ.

Proposition 4 states that it is not possible to refute the hypothesis that the group is
rational without making a priori restrictions on the information structure or preferences.
The difference between Proposition 2 and Proposition 4 is that the first result fixes
preferences and then shows that any action profile is possible, while the second result
provides a stronger conclusion (rationalizing any distribution over actions) but requires
a possibly different specification of preferences for every distribution.

Proposition 2 indicates that for general information structures, individual choices
place no constraints on the optimal decision of the group. It is possible that these results
rely on “strange” information structures. Propositions 1-4 depend on the assumption that
signals can be correlated. A more restrictive assumption is that individuals receive signals
that are conditionally independent. Henceforth, I assume that the information structure
can be described by functions αi : S ×Θ→ [0, 1], where αi(s | θ) is the probability that
individual i receives signal s given that the state is θ (so that

∑
s αi(s | θ)= 1 for all θ

and i).
This environment is considerably more restrictive than the general framework. Propo-

sition 1 asserts that essentially any collection of individual and group posteriors is consis-
tent with some information structure. On the contrary, if individuals receive conditionally
independent signals, then the group posterior is determined by the individual posteriors.

Proposition 5. If the individual signals are conditionally independent, then the group
posterior distribution is completely determined given individual conditional beliefs. In
particular, if individual i has beliefs qi, then the group’s beliefs are

π(θ)ΠI
i=1 (qi(θ)/π(θ))∑

ω π(ω)ΠI
i=1 (qi(ω)/π(ω))

.
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Proposition 5 follows directly from the Bayes’s Rule and the independence assump-
tion.

Although Proposition 5 rules out the strong conclusions of Propositions 1 and 2,
Example 1 demonstrates that it still may be difficult to draw inferences about group
decisions from individual recommendations.

Example 1. Suppose that θ = (θ1, . . . , θI); individual i observes si = θi (that is, individ-
ual i observes the ith component of θ without error); each component of θ is independently
and uniformly distributed on {−1, 1}; and ui(a, θ) = −(a−

∏I
i=1 θi)

2. An individual sets

a∗i (si) = 0 for all si. The group sets a∗0(s) =
∏I

i=1 si for all s.
Information obtained by an individual (or, in fact, any proper subset of the group)

is useless – it conveys no information that improves making decisions – while the entire
group’s information perfectly reveals the state. Individual recommendations therefore do
not depend on private information while the group decision does. Knowing everything
about individual recommendations provides no information about the group’s preferred
action. �

Unlike the construction in the example, the construction in Proposition 2 does permit
an observer to draw inferences from individual recommendations. The example differs
from the construction because it requires a particular specification of the utility function.

It is possible to generalize the logic of the example.

Proposition 6. There exists a decision problem (S, P, u) such that all action profiles are
possible and the distribution of the group action a∗0(s) is independent of si for each i.

Proposition 6 provides conditions under which individual recommendations convey no
information about the group decision. To prove Proposition 6, I generalize the example
by exhibiting preferences and an information structure under which no individual signal
conveys information about the optimal action.12 The information structure exhibits a
strong form of complementarity in that no useful inferences can be drawn from any proper
subset of the signals. If the prior is such that individuals are indifferent over all actions ex
ante, then they continue to be indifferent after they receive their private signals. Hence
observing their individual recommendations conveys no information about the optimal
group action. In this setting, not only are arbitrary action profiles possible, there need be
no relationship between the distribution of individual recommendations and the group
recommendations.

Example 1 and Propositions 6 are perverse because information from any proper
subset of the agents does not lead to better decisions than the decision a single individual
would make. In the next section, I make further restrictions on the information structure
and preferences. I then revisit the basic question in a standard, but restrictive, economic
environment.

12See Börgers, Hernando-Veciana, and Krähmer 2011 for a useful analysis of complementarity of
signals.
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3 Monotone Problems

The previous section shows that with minimal restrictions on the information structure
there need not be any connection between the group’s decision and individual recom-
mendations. In this section I make strong restrictions on the information structure and
investigate the extent to which the results in Section 2 continue to hold. Proposition 7
demonstrates that there are restrictions across problems: if the action profile a is pos-
sible, then some other action profiles are ruled out. This result contrasts with those of
Section 2 and indicates that, within the class of decision problems that I consider in
this section, individual recommendations place testable restrictions on the behavior of
the group when there are several observations. On the other hand, Propositions 8 and 9
demonstrate that when one observes only one action profile, the optimal group decision
is only weakly constrained by individual recommendations.

This section studies monotone information structures, which satisfy the following
conditions. The set A is the unit interval. The conditional probability of a signal s
given the state θ, αi(s | θ), is independent of i so that signals are identically (as well as
independently) distributed. To avoid trivial cases, I assume that S has more than one
element and that signals are distinct in the sense that if s′ 6= s, then p(· | s) 6= p(· | s′).
The information structure and the utility function have a monotone structure: I assume
that both Θ and S are linearly ordered and the signals satisfy the monotone-likelihood
ratio property, so that α(s | θ)/α(s′ | θ) is decreasing in θ for all s′ > s;13 and that for all
a′ > a, the function v(θ; a, a′) = u(a′, θ)− u(a, θ) is either increasing in θ (supermodular
incremental utility) or there exists θ0 such that v(θ) < 0 for θ < θ0 and v(θ) > 0 for
θ > θ0 (single-crossing incremental utility). These conditions guarantee that optimal
actions are increasing in signals, meaning that a∗i (s

′) ≥ a∗i (s) whenever s′ > s.14 I will
refer to these cases as the supermodular and single-crossing models, respectively.

Proposition 2 cannot hold for this restricted class of problems because the monotonic-
ity condition imposes a restriction across problems. If one observes two action profiles a
and a′ such that a′−0 ≥ a−0, then a′0 ≥ a0. Hence there does not exist a single monotonic
information structure that makes all undominated action profiles possible.

Proposition 7. For a fixed monotonic information structure, if a and a′ are possible
and a′i > ai for all i = 1, . . . , I, then a′0 ≥ a0.

Proposition 7 is a special case of Theorem 5 in Milgrom and Weber 1982. It is a
straightforward implication of the the monotone information structure. If an individual
makes a strictly higher recommendation, then she must have received a strictly higher
signal. If all signals are higher, then the group decision must also be higher.

To make the subsequent discussion concrete, consider two leading special cases. A
monotone model is an urn model if u(a, θ) = −(a− f(θ))2 for some strictly increasing

13This condition implies that the posterior distribution of θ given s is increasing in s (in the sense of
first-order stochastic dominance).

14When incremental utility is supermodular, optimal actions are increasing in signals whenever poste-
riors are ordered by first-order stochastic dominance. When incremental utility is single crossing, optimal
actions are increasing in signals when signals satisfy the monotone-likelihood ratio property. See Athey
and Levine 2001.
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function f(·).15 Here v(θ; a′, a) is increasing in θ whenever a′ > a so the urn model is a
supermodular model. In the urn model θ represents the number of balls in an urn and
f(θ) a target determined by the number of balls. The agents want to make the best
estimate of the target f(θ).

A monotone model is a portfolio model if u(a, θ) = U(aθ+(1−a)θ0) where U(·) is a
concave function defined over monetary outcomes. A portfolio model is a single-crossing
model. The problem is to determine the share of wealth to allocate over a safe asset,
which yields θ0, and a risky one, which yields θ. Individuals must pick the fraction a
of the portfolio to invest in the risky asset. Risk averse agents typically select a < 1
even when their information suggests that the mean of θ exceeds θ0. On the other hand,
if sufficiently many agents receive independent information suggesting that the mean
return of the risky asset is high, this induces higher investments in the risky asset when
information is pooled.

The next results demonstrate that even in monotone models it is difficult to draw
inferences about the group decision merely by observing individual recommendations. In
light of Proposition 5, such result are not be possible if the utility function is completely
arbitrary. To see this concretely, suppose that the prior is uniform and an individual
has a utility function with the property that he selects a recommendation a ≤ a if and
only if the probability of state θ is greater than .5. It follows from Proposition 5 that
if all individuals make recommendations less than a, then the group posterior places
probability of more than .5 on the event that θ = θ. Consequently, the group’s decision
is also be less that a. It follows that restrictions on preferences when combined with a
monotone information structure may cause individual recommendations to constrain the
group’s decision. Proposition 8 shows that the link between individual recommendations
and group decisions does not exist without restrictions on preferences.

Proposition 8. For all a = (a0; a1, . . . , aI) with ai ∈ [0, 1] there exists both an urn model
and a portfolio model such that there exists s such that s induces a.

Proposition 8 states that an observer who knows the recommendations of all of the in-
dividuals and who knows that a monotone decision problem is either an urn problem or a
portfolio problem (but not the specific form of the utility function) still cannot conclude
that the group has made an irrational decision. This result is weaker than Proposi-
tion 2 for three reasons. First, Proposition 2 constructs one information structure that
is compatible with any given (finite) set of recommendation profiles. Proposition 8 in-
stead constructs a different information structure for each profile. Proposition 7 explains
why the stronger result is not possible in a monotone environment. Second, Proposition 2
holds even if the observer knows the utility function. In Proposition 8 the utility function
is selected to support observed behavior. The utility function is not arbitrary, however.
It is always possible to find a suitable utility function from the class of urn models and
portfolio models that is consistent with the action profile.16 Finally, the construction

15Strictly increasing transformations of the state space Θ do not change the underlying decision prob-
lem, so including f(·) in the specification of u(·) is just a relabeling of the states.

16In the proof of Proposition 8, U(x) can be taken to be of the form U(x) = xβ for β ∈ (0, 1). That
is, it is possible to satisfy the conclusion of Proposition 8 using a narrow class of utility functions.
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requires that there be more than one signal that leads to the same action in some cir-
cumstances. To understand and relax this restriction, it is useful to explain the proof of
Proposition 8.

To prove Proposition 8, I construct an information structure with the property that
if all but two agents receive the lowest possible signal and two others receive the next
lower signal, the group posterior is higher than the posterior of individuals who receive
the second lowest signal. In order for this to be possible, the individual who receives
the second lowest signal must place high probability that everyone else will receive the
lowest signal. When she learns that this is not true, she (and hence the group) revises her
prior strongly upward. Under the assumptions of Proposition 8 it is possible that many
signals induce the lowest action. Therefore even if all individuals wish to take the lowest
action, they may not have received the lowest signal, and the group may prefer a higher
decision. If the optimal action is a strictly increasing function of the signal, however, the
conclusion of the proposition must be weakened.

To make a precise statement, let Ok(a−0) be the kth largest member of the set a−0 =
{a1, . . . , aI} (so that O1(a−0) = maxi=1,...,I ai, O2(a−0) is the second highest, and so on).

Proposition 9. If a = (a0; a1, . . . , aI) with O2(a−0) > 0 and OI−1(a−0) < 1, then there
exists both an urn model and a portfolio model with the property that a∗i (s) is strictly
increasing for all i such that a is possible.

The assumptions in Proposition 9 rule out the possibility that individual information
would lead all but one agent to make the same extreme recommendation (either the
highest or the lowest). Provided these assumptions hold, it can be rational for the group
to make any decision. For monotone problems in which optimal actions are strictly
increasing in the signal, the conditions are necessary. To see this, suppose that all but
individual i wishes to make the lowest recommendation, so O2(a−0) = 0. In this case, the
optimal group decision a0 must be no larger than ai, since learning that all other agents
wish to make the lowest recommendation must be “bad news,” which makes the group’s
decision weakly lower than individual’s i optimal recommendation. Hence an observer
can place bounds on the possible group decision assuming that all but one individual
wants to take the lowest recommendation. Proposition 9 demonstrates that no further
restrictions are possible. In particular, the proposition states that it is possible for the
group to want to make a more extreme decision than any individual in the group.

4 Invariance

The results in Section 3 imply that even in monotone problems it is premature to conclude
that any group decision is irrational given the decisions of individual group members.
While staying within the framework of monotone problems, I now identify conditions
under which group decisions are well behaved in the sense that they are guaranteed to
be bounded by the individual recommendations.

Intuition suggests that for a suitable range of information structures, the group guess
in the urn model should be bounded by individual guesses. If everyone thinks that there
are between 100 and 300 balls in the urn, then it would be surprising if the group’s guess
were outside that range.

12



This section makes the intuition rigorous. To motivate the basic idea, contrast the
problem of information aggregation with the problem of preference aggregation. When
aggregating preferences, it is standard (and usually not controversial) to assume a vari-
ation on Arrow’s 1963 Pareto Principle. If every member of the group ranks choice X
higher than choice Y , then the group should do so as well. In problems of information
aggregation, this property is quite strong, and likely to be inappropriate in realistic set-
tings. Consider the portfolio problem. It could be the case that risk-averse individuals
prefer to invest a substantial fraction of their portfolio in the safe asset even when in-
formed that the mean of θ is greater than θ0. On the other hand, a large enough number
of independent signals that θ > θ0 is sufficient to convince the group to take a more
extreme position.17

This observation suggests a critical difference between the urn and portfolio models
and motivates the following definition.

Imagine a situation in which every member of the group receives the same signal. They
would consequently make the same recommendation. Under what conditions would the
group decision be the same as the common recommendation of each individual?

Call a monotone decision problem invariant if

a∗i (si) = a∗0(si, . . . , si) for all si. (2)

That is, a decision problem is invariant if the optimal group decision when all members of
the group independently observe the same signal realization is that same as the optimal
individual recommendation given one observation of that realization. While (2) is easy to
understand, it is a statement about endogenously determined quantities. Proposition 11
provides conditions on the underlying data of the problem (the information structure and
the utility function) that guarantee that (2) holds.

Proposition 10. 1. In an invariant monotone decision problem, if a is possible, then

a0 ∈ [ min
1≤i≤I

ai, max
1≤i≤1

ai]. (3)

2. Any monotone decision problem in which (3) holds whenever a is possible is invari-
ant.

Proposition 10 (1) is a simple consequence of Proposition 7. It states that invariant
monotone problems are well behaved in the weak sense that the individual recommen-
dations form a bound for the group’s decision. To see Proposition 10 (2), notice that if
invariance failed, then there would exist an s such that (3) would fail if everyone in the
population received that signal.

When the sets of actions and states are small, it is not hard to construct invariant
problems. For example, if there are only two actions, {h, l}, and two states, {H,L}, and
it is uniquely optimal to take h (resp. l) if and only if the probability of H (resp. L)
is greater than one half, then any monotonic information structure in which, for every
signal, the posterior never gives probability one half to both states is invariant.

17In a non-Bayesian framework, Baurmann and Brennan 2005 give examples that illustrate potential
difficulties of the Pareto Principle for problems involving aggregation of beliefs.
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The next example exhibits an invariant problem by describing a situation where (2)
holds.

Example 2. Assume that Θ = S = {0, 1/K, . . . , (K − 1)/K, 1}; π(·) is the uniform
distribution on Θ and u(a, θ) = −(a− θ)2 for a ∈ A = [0, 1]. Let γ ∈ (0, 1/2) and

α(s, θ) =



1− γ/2 if s = θ ∈ {0, 1/K, 1− 1/K, 1},
1− γ if s = θ ∈ {2/K, (K − 2)/K},
γ/2 if s = θ + 1/K, θ ∈ {0, 1/K},
γ/2 if s = θ − 1/K, θ ∈ {1− 1/K, 1},
γ/2 if s = θ ± 1/K, and θ ∈ {2/K, . . . , (K − 2)/K},
0 otherwise.

(4)

Individuals seek the best estimate of θ. The signal is the true state plus a symmetric
error. Individual i recommends ai(s) = a. If every member of the group receives the
same signal, the recommendation is the same (and the posterior places more weight on
s = θ). �

Clemen and Winkler 1990 say that a decision maker satisfies the unanimity prin-
ciple if she accepts a forecast if both of her two advisors agree. Invariant problems with
binary actions necessarily satisfy the unanimity principle. Clemen and Winkler show
that the principle fails in general when there are two states of the world, but provide an
example under which the unanimity principle holds. They also discuss the compromise
principle which is equivalent to invariance in their context.

One way to get a better understanding of invariance is to think about the condition
when I is large. If all I members of the population receive the signal s, then the group’s
posterior distribution is given by

r(θ | s; I) =
αI(s | θ)π(θ)∑

ω∈Θ α
I(s | ω)π(ω)

. (5)

Let Θ(s) = argmaxθα(s | θ). In follows that the limiting posterior distribution,
r∗(θ; s) ≡ limI→∞ r(θ | s; I), is given by

r∗(θ; s) =

{
π(θ)∑

ω∈Θ(s) π(ω)
if θ ∈ Θ(s),

0 if θ /∈ Θ(s).
(6)

In particular, if α(s | θ) has a unique maximum θ∗(s), then r∗(·; s) is the point mass on
θ∗(s). If a decision problem is invariant for all I, then the optimal response to signal s,
a∗i (s), also maximizes

∑
θ∈Θ u(a, θ)r∗(θ | s).

It is unlikely for a decision problem to be invariant for all I. When α(·) must be a
continuous function on [0, 1]× [0, 1], invariance fails for a given utility function on a set
of information structures that is open and dense with respect to the sup norm.

Nevertheless, the conditions make sense in the urn model (provided that signals are
symmetric estimates of the true state).

14



It is possible to generalize Example 2. First, assume that the information technology
is non-degenerate: for each s, α(s | θ) has a unique maximizer, denoted by θ∗(s). It
follows that r∗(s | θ) is a point mass on θ∗(s) and (2) becomes

E{ua(a∗i (s), θ) | s} = ua(a
∗
i (s), θ

∗(s)). (7)

Second, assume that ∑
θ∈Θ α(s | θ)θπ(θ)∑
ω∈Θ α(s | ω)π(ω)

= θ∗(s) for all s. (8)

That is, the mean of θ given s is equal to θ∗(s) for all s. Call the information technology
uniformly neutral if (8) holds. The first assumption is mild. The second assumption
is restrictive. One would expect that the highest signal is “good news” so that receiving
multiple independent draws strictly increases the mean of the distribution. Indeed, while
there exist uniformly neutral information technologies (see Example 2), (8) requires that
the extreme signals completely reveal the extreme states.

The following result is immediate from the definitions.

Proposition 11. If u(a, θ) = −(a−θ)2, and the information structure is non-degenerate
and uniformly neutral, then the decision problem is invariant.

Propositions 10 and 11 combine to identify a class of decision problems in which group
decisions are bounded by individual recommendations.18

The next example describes a natural situation under which the recommendation of
the most extreme individual becomes the recommendation of the group.

Example 3. Recall that the Pareto distribution with strictly positive parameters θ0 and
β has the probability density function

f(θ | θ0, β) =

{
βθβ0
θβ+1 , when θ > θ0

0, when θ ≤ θ0

.

The following is a standard property of conjugate distributions (see DeGroot 1970,
page 172).

Fact 1. Suppose that each of the I agents receives a signal from a uniform distribution
on [0, θ] where θ itself is unknown. Suppose that the prior distribution of θ is the Pareto
distribution with parameters θ0 and β, θ0 and β > 0. The posterior distribution of θ
given that individual i receives the signal si is a Pareto distribution with parameters s̃
and β + I, where

s̃ = max{θ0, s1, . . . , sI}.
18Chambers and Healy 2010 study a related problem in which they characterize information structures

with the property that the posterior mean given a signal lies between the prior mean and the signal.
When preferences take the form u(a, θ) = −(a − θ)2 (so that recommendations are equal to posterior
means) and there exists an uninformative signal, invariant information structures must satisfy updating
towards the mean.
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Now assume that u(a, θ) = −(a−θ)2. An individual who receives the signal si believes
that θ has a Pareto distribution with parameters s̃i = max{θ0, si} and consequently,
because maximizing u(·) requires choosing a equal to the expected value of θ, selects
a∗i (si) = (β+ 1)s̃i/β while the collectively optimal choice is a∗0(s) = (β+ I)s̃/(β+ I − 1).

In this example, the highest signal provides a lower bound on θ and therefore is a
sufficient statistic for all of the signals. When individuals pool their information two
things happen: the variance of the distribution of θ decreases, because there is more
information;19 the maximum signal determines the lower bound of the distribution. That
is, when the individuals pool their information, only the signal of the most extreme
individual determines the collective decision. Due to the first effect, the collective decision
is less than the choice of the individual who received the greatest signal, but the ratio of
the collectively rational decision to the maximum individual recommendation converges
to one as β and I grow. This problem is not invariant. While the group decision is
bounded above by the maximum individual recommendation, it is possible for the group
decision to be lower than the recommendation of every member of the group.

The specification is special, but could be appropriate for some contexts. For example,
imagine that the signal an individual receives indicates the minimum amount of damage
that could have been done to a plaintiff. When jurors pool their information, it is only
the highest signal that is relevant for estimating damages. Hence, efficient information
aggregation implies that the recommendations of the most extreme member of the group
determines the group decision. �

5 Conclusion

This paper compares the decisions of individuals and groups for information aggregation
problems. I show that generally there is no systematic relationship between recommen-
dations individuals make in isolation and the decision that the individuals make as a
group. I then identify restrictive situations in which individual recommendations bound
the decision of the group.

I establish my results in a narrow setting. I assume that groups have no problems
aggregating information and reaching a joint decision. Anyone who has even served on
a committee knows that these assumptions are unrealistic.

The weight of academic and popular evidence convinces me that groups can often
make bad decisions for systematic reasons, that the reasons can be evaluated, and that
institutions can be created to ameliorate the problems. The decision-making environment
at NASA has been blamed for several tragedies in the U.S. space program. Janis’s 1983
discussion of groupthink among President Kennedy’s national security advisors foreshad-
ows the recent failures of United States intelligence agencies. My model does not refute
the existence flawed group decision making, but it does point out that apparent anomalies
in group behavior are consistent with a simple, rational model of information aggregation.

19This follows because the exponent in the Pareto distribution increases.
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Appendix

Proof of Proposition 1. Given qk and Ck > 0, define λki (θ) by

λk0(θ) = Ckq
k
0(θ) (9)

and for i = 1, . . . , I by

λki (θ) = Ck
(
qki (θ)− qk0(θ)

)
+ dkq

k
i (θ), (10)

where dk = Ckq
k
0(θ)/(mini>0 q

k
i (θ)). The choice of dk guarantees that λk(·) > 0.

Because qki (·) is a probability distribution, it follows from these definitions that∑
θ∈Θ

λk0(θ) = Ck (11)

and, for i > 0, ∑
θ∈Θ

λki (θ) = dk. (12)

It follows from (9) and (11) that

qk0(θ) =
λk0(θ)∑
ω∈Θ λ

k
0(ω)

. (13)

Further, it follows from (9) and (10) that

(dk + Ck)q
k
i (θ) = λk0(θ) + λki (θ) (14)

and so, by (11) and (12), that

qki (θ) =
λk0(θ) + λki (θ)∑

ω∈Θ(λk0(ω) + λki (ω))
. (15)

Now consider a signaling technology in which there is a signal sk for each k and an
additional signal s̃. Let

P (θ; s) =


λk0(θ) if sj = sk for all j,

λki (θ) if si = sk and sj = s̃ for all j 6= i,

π(θ)−
∑

k λ
k
0(θ) +

∑
i,k λ

k
i (θ) if sj = s̃ for all j,

0 otherwise.

(16)

By taking Ck sufficiently small, it is possible to make P (·) > 0.
If the joint distribution of θ and s is given by P (·), then it follows from (13) that if

the group receives the signal profile s = (sk, . . . , sk) for some k, then the group posterior
is qk(·), while equation (15) implies that if individual i receives sk, then her posterior is
qki (·). �
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Proof of Proposition 3. Replace qk0 by a rational distribution q̃k0 , where q̃k0(θ) =
mk(θ)/M (and

∑
θmk(θ) = M) such that | qk0(θ)− q̃k0(θ) |< ε for all θ and k.

Create a set Λ by taking N copies of Θ. A typical element of Λ is (θ,m) for θ ∈ Θ and
m = 1, . . . ,M . Assume that there is a uniform distribution on Λ. Consider a partition
of Λ into sets Λk,

Λk = {(θ,Mk−1(θ) + 1), . . . , (θ,Mk(θ)) : θ ∈ Θ},

where Mk(θ) =
∑k

j=1mj(θ) (and M0(θ) = 0 by convention).
Assuming a uniform distribution on Λ, learning the partition element Λk induces the

belief q̃k0 because for each θ, Λk has mk(θ) elements associated with θ.
Now form Γ. An element of Γ is of the form g = (g1, . . . , gI), where gi ∈ {1, . . . , G} and

G is sufficiently large so that there is a rational approximation to r = (r1, . . . , rK), r̃, with
r̃k = nk/G and a rational approximation λ̃ki (j) to λki (j) such that λ̃ki (j) = Ilki (j)/G

I . The
approximation partitions Γ into sets Γk such that the cardinality of Γk is nk. Associate
every element in Γk with Λk.

Note that a subset H of Γ corresponds to a probability distribution over the Λk (the
fraction of elements of H in Γk is the probability of Λk), which in turn can be viewed as
a probability distribution over Θ (because each Λk corresponds to the distribution qk0).

I claim that one can induce the distribution over belief profiles in which q̃k arises
with probability r̃k. Associate with each g in Γj subsets Hi(g) ⊂ Γ for each i. Hi(g) =
g∪Gi(j), where Gi(j) consists of lki (j) elements from Γk for k 6= j and lji (j)− 1 elements
from Γj and Gi(j) ∩ Gi′(j) = ∅ for i 6= i′. It follows that ∩Ii=1Hi(g) = g. On the other
hand, with the information in Hi(g) i believes that the probability that g is in Γk is
λ̃ki (j). Using the natural association of elements in Γ to elements in Λ and to Λk and
beliefs, this means that Hi(g) induces beliefs q̃ji , which completes the construction. �

Proof of Proposition 4. Given a distribution over action profiles ρ and ε > 0, let
ρ̂ be a distribution over action profiles that assigns positive, rational probability to all
action profiles and is within ε of ρ. Denote the N elements of A by the integers 1, . . . , N .
Without loss of generality, assume that the marginal probability of a0 is a uniform dis-
tribution over {1, . . . , N} (if the probability that a0 = j is kj/K under ρ̂ create a new

action set in with
∑N

j=1 kj elements, replacing each state j by kj identical copies).

Let Θ = AI ×AI . Denote an element of Θ by (θ,b) where θ = (θ1, . . . , θI) ∈ AI and
b = (b1, . . . , bI) ∈ AI . S = A× A. States and signals are selected as follows. A uniform
distribution selects θ. The remainder of the state is selected so that the distribution of
(b0; b1, . . . , bI) is given by ρ̂, where b0 = σ(θ) = 1 +

∑I
i=1 θi (mod N). In state (θ,b)

individual i receives the signal (θi, bi). Finally, define u(·) so that

u(a,θ,b) =

{
1 if a = σ(θ),

−c(a, σ(θ),b) if a 6= σ(θ)

and

c(a, σ(θ),b) =

{
C if b = (b, . . . , b) and a 6= b,

0 otherwise.
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The optimal decision for the group is to set a∗0 = σ(θ). This earns payoff 1. All
other actions receive non-positive payoffs. For sufficiently large C, the optimal action for
individual i is to set a∗i = bi. This action earns positive payoff (equal to the probability
that a∗i = σ(θ)). Any other decision earns negative payoff for sufficiently large C (this
requires that ρ̂ assign strictly positive probability to all action profiles). It follows that
the induced distribution of action profiles is equal to ρ̂. �

It may be useful to describe the construction in the proof of Proposition 4 in a bit more
detail. The objective of the group is to guess the target σ(θ). If it does so, then its payoff
is 1. Otherwise, the group may pay a cost. When it pools its information, the group has
enough information to compute the target exactly. Individuals do not. Interpret b as a
recommended action profile. If an individual follows the recommendation, then it does not
pay a cost. If an individual ignores the recommendation, then with positive probability
it pays a cost. (In order to maintain symmetry across individuals, the cost is paid only
when each individual receives the same recommendation.) Individuals therefore have a
choice between following the recommendation and earning a positive expected payoff or
ignoring the recommendation and paying a cost with positive probability. By assumption,
no individual has perfect information about the group’s best action. Consequently there
is a positive probability that failure to follow the recommended action will trigger the
cost. For sufficiently large C it will be strictly optimal for individuals to follow the
recommendation.

Proof of Proposition 5. If individual i has belief qi(·) given the signal si, then it follows
from Bayes’s Rule that the probability individual i receives signal si given θ, αi(si | θ),
satifies:

αi(si | θ) = µi(si)
qi(θ)

π(θ)
, (17)

where µi(si) =
∑

ω αi(si | ω)π(ω) is the probability that individual i receives si. Con-
sequently, after any vector of signals s = (s1, . . . , sI) that gives rise to the belief profile
{q1, . . . , qI}, the group’s posterior is

π(θ)ΠI
i=1αi(si | θ)∑

ω π(ω)ΠI
i=1αi(si | ω)

=
π−(I−1)(θ)ΠI

i=1qi(θ)∑
ω π
−(I−1)(ω)ΠI

i=1qi(ω)
, (18)

where the equation follows from (17) (the normalization factors µi(·) cancel out). This
completes the proof. �

Proof of Proposition 6. Denote the N elements of A by the integers 1, . . . , N . Let
S = A, Θ = AI and π(·) be the uniform distribution on Θ. For θ = (θ1, . . . , θI) ∈ Θ, let
σ(θ) = 1 +

∑I
i=1 θi (mod N), and

u(a,θ) =

{
0 if a = σ(θ),

−1 if a 6= σ(θ)

An individual is indifferent over all a ∈ A while the group sets a∗0(s) = σ(s). �
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Lemma 1. There exists a monotone information structure with the property that if all
but two of the individuals receive the lowest signal and two others receive the next lowest
signal, then the posterior distribution given the group’s information is greater (in the
sense of first-order stochastic dominance and the monotone likelihood ratio property)
than any individual posterior.

Proof of Lemma 1. Assume that there are only two signals, s−1 and sI+1 and the
technology satisfies α(s−1 | θk) = bk−1 for b ∈ (0, 1) and k = 1, . . . , N and α(sI+1 | θk) =
1−α(s−1 | θk). When the group receives a profile of individual signals s containing I− 2
copies of the signal s−1 and two copies of the signal sI+1, then the posterior distribution
satisfies, for k = 1, . . . , N ,

P (θk | s) = λπ(θk)b
(k−1)(I−2)

(
1− bk−1

)2
, (19)

where λ is a normalization constant selected so that
∑N

k=1 P (θk | s) = 1.
On the other hand, the posterior probability of state θk given sI+1 (as an individual

signal) is µ(1− bk−1)π(θk), where µ is another normalization constant. I claim that if b
is sufficiently close to one, then

P (θk | s)

P (θk+1 | s)
=

(
1

b

)I−2(
1− bk−1

1− bk

)2
π(θk)

π(θk+1)
<

1− bk−1

1− bk
π(θk)

π(θk+1)
=

P (θk | sI+1)

P (θk+1 | sI+1)
. (20)

To establish the claim, observe that the inequality in expression (20) is equivalent to

bI−2 1− bk

1− bk−1
> 1. (21)

Since the left-hand side of inequality (21) converges to k/(k− 1) as b approaches one,
the claim follows. It follows from inequality (20) that the profile of signals s leads to a
posterior that dominates the individual signal sI+1. �

Proof of Proposition 8. Add additional signals to the technology constructed in
Lemma 1 that are mixtures of the signals s−1 and sI+1. Specifically, for j = 0, . . . , I
define si so that s−1 < s0 < · · · < sI+1 and

α∗(sj | θ) = λ(θ) (cjα(s−1 | θ) + (1− cj)α(sI+1 | θ)) for j = −1, . . . , I + 1, (22)

where
∑I+1

j=−1 α
∗(sj | θ) = 1 for all θ, 0 ≤ cI < · · · < c0, and c1 is close enough to zero so

that if the group receives I copies of the signal s1, then the posterior will still dominate
the posterior given only the signal sI+1. This is possible by Lemma 1 and continuity.

First, I show that given a profile of actions (a1, . . . , aI) ordered so that a1 ≤ a2 ≤
· · · ≤ aI , it is possible to pick ci and a utility function so that a∗i (sj) = aj for j = 1, . . . , I
and a∗0(s1, . . . , sI) = 1. Set a0 = 0 and let aI+1 ∈ [aI , 1]. Let u(a, θ) = −(a − f(θ))2.
I claim that it is possible to find λ(θ), ci, and a strictly increasing f(·) such that for
j = 0, . . . , I + 1, ∑

θ

α∗(sj | θ)π(θ)∑
ω α
∗(sj | ω)π(ω)

f(θ) = aj. (23)
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To establish the claim, define Ai and Bi for i = −1 and I + 1 as:

Ai =
∑
θ

α∗(si | θ)π(θ)f(θ) (24)

and
Bi =

∑
θ

α∗(si | θ)π(θ). (25)

Using (22), (23) can be written:

cjA−1 + (1− cj)AI+1 = aj (cjB−1 + (1− cj)BI+1) . (26)

It follows that for j = 0, . . . , I

cj =
AI+1 − ajBI+1

AI+1 − A−1 − aj(BI+1 −B−1)
. (27)

The fact that the posteriors are ranked by the monotone likelihood ratio property and
the monotonicity of {aj} guarantee that it is possible to find f(·) such that the values of
cj defined in (27) are non-negative and decreasing. This establishes the claim.

When u(ai, θ) = −(ai − f(θ))2, (23) guarantees that a∗i (sj) = aj, for j = 1, . . . , I + 1.
Since the posterior distribution given (s1, . . . , sI) dominates the posterior given sI+1, a
suitable choice of aI+1 ∈ (aI , 1) guarantees that a∗0((s1, . . . , sI)) = 1.

This construction therefore guarantees that it is possible to create an information
structure in which the group’s decision is 1 no matter what the individual recommenda-
tions are. The same type of construction can be used to create an information structure
in which the group’s decision is 0 given any individual recommendation. It is straight-
forward to modify the argument to information structures that induce group decisions
that are inside the range of individual recommendations.

The construction used a utility function of the form u(ai, θ) =−(ai − f(θ))2 for an
increasing function f(·). One can modify the argument to show that it is possible to
do so for u(ai, θ) = (aiθ + (1 − ai)θ0)β for appropriate choices of θ0 > 0 and β < 1.
Specifically, let

θ0 =
∑
θ

α∗(s0 | θ)π(θ)θ∑
ω α
∗(s0 | ω)π(ω)

. (28)

The definition of θ0 in (28) and the fact that the distribution generated by the signal
sI+1 dominates that of s0 guarantees that there exists β ∈ (0, 1) such that∑

θ

α∗(sI+1 | θ)π(θ)θ∑
ω α
∗(sI+1 | ω)π(ω)

θβ−1(θ − θ0) = 0. (29)

If u(ai, θ) = (aiθ+(1−ai)θ0)β, then equation (28) guarantees that the best response to s0

is the action 0 and (29) guarantees that the best response to sI+1 is the action 1. Having
constructed the utility function, given (a1, . . . , aI) it is routine to find appropriate values
of ci so that a∗i (si) = ai for i = 1, . . . , I. �
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Proof of Proposition 9. Suppose that a0 = (a1, . . . , aI), with 0 ≤ a1 ≤ · · · ≤ aI
and aI−1 > 0. Proposition 8 implies the result unless a1 = 0. If a1 = 0, then set
s−1 = s0 = s1, but construct the information structure as in the proof of Proposition 8
so that a∗i (si) = ai and a∗0(s) = 1 (which, provided aI−1 > 0, is still possible, since the
posterior given s will dominate the posterior given the signal associated with aI). �

Proof of Proposition 10. Without loss of generality, let a1 = min1≤i≤I ai and aI =
max1≤i≤I ai. Let si satisfy a∗i (si) = ai. By invariance, a1 = a∗1(s1) = a0(s1, . . . , s1) and
aI = a∗I(sI) = a0(sI , . . . , sI). By monotonicity, sI ≥ s1 and si ∈ [s1, sI ] for all i. It follows
from Proposition 7 that a∗0(s1, . . . , sI) ∈ [a1, aI ]. �
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