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In an economy with finitely many agents, one renewable resource, and an 
infinite horizon, it is shown that there is exactly one maximal allocation cor- 
responding to given limiting shares of consumption and this allocation converges 
monotonically. Therefore, if there is no discounting, at most one fair maximal 
program exists-that which gives an equal amount to each individual in the limit. 
In this allocation, envy is always finite. However, only in special cases is it envy- 
free. This is in contrast to the case of finite economies where envy-free and Pareto 
efficient allocations may not exist or, if they exist, may not be unique. 

INTRODUCTION 

Levhari and Mirman [5] consider an infinite horizon economy with a 
single renewable resource. In [5], two countries fish in a common ocean. 
The fish population reproduces in accordance with the usual neoclassical 
production function. Each country has a utility function, and there is a 
discount factor common to both. It is shown that the Cournot-Nash non- 
cooperative duopoly equilibrium is in general not Pareto optimal. 

In this paper the cooperative solution for the same model with a finite 
number of agents is considered. We seek consumption programs that are 
maximal and satisfy some fairness criterion. The main result is that any 
maximal program is globally asymptotically stable in that the value of capital 
stock (fish population) monotonically approaches the “golden-rule” value 
E (that is, f’(2) = l//3, wherefis the production function and ,8 the discount 
rate) and the consumption of the ith agent monotonically approaches some 
fixed value tI& where Bi >, 0, XT=, f$ = 1 (here 2 = f(Z) - I is the “golden 
rule” consumption, and n is the number of agents). Conversely, there is 
exactly one maximal program corresponding to any distribution of limiting 
consumption. Fairness then consists in a reasonable choice of limiting con- 
sumptions. If the agents are thought of as individuals, equal limiting con- 
sumptions would seem appropriate. If they represent countries, the limiting 
shares could be chosen proportional to population. In this way each indi- 
vidual could receive an equal limiting share of consumption. The allocations 
characterized by these definitions of fairness are not in general envy-free. 
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However, in the undiscounted case (/3 = 1) it is shown that our definition 
of fairness is the only one that guarantees that envy will be finite, that is, 
the utility an agent could receive from someone else’s consumption stream 
can exceed the utility he actually receives by at most a finite amount. 

The second and third sections of this paper characterize the maximal states 
of a one-sector growth model. The model differs from the standard models 
in this area since there are many agents (countries). For the proof of existence, 
our model can be reduced to a case that requires the maximization of a 
single social utility function-an appropriate positive linear combination of 
the individual utlities. This is possible since any maximal allocation for the 
single function is maximal for the entire economy. The existence theorem 
of Gale [4] or Brock [l] then may be applied. However, this type of argument 
cannot be used to answer the uniqueness question. In the undiscounted 
case, there is no guarantee that a maximal allocation for the economy is 
maximal with respect to any weighted average of the agents’ utility functions. 
(The reason for this is, essentially, that given any sequence {a:}, t = 1,2,..., 
i = l,..., n, lim inf,,, ‘& uti > CF=, lim inf,,, at and the inequality may 
be strict.) Thus the identification of maximal programs with limiting con- 
sumptions, the object of Section 2, must be carried out directly. Although 
a literature on the uniqueness of optimal paths is available (the one-sector 
case is covered in [3] ; a more general treatment is offered in [2]), it can only 
be applied to assert uniqueness of maximal programs that that result from 
maximizing a single function. Taken together, Sections 2 and 3 show that 
every efficient program can be viewed as a maximal program derived from 
a single function. 

The,existence of a fair efficient allocation is not in contrast to analogous 
finite models. For example, any competitive equilibrium for a pure exchange 
economy in which every agent is assigned an equal share of the initial 
resources is Pareto optimal and envy-free. Indeed, if the discount factor is 
less than one, and the model is treated as a private ownership economy with 
agents sharing profits equally, then any competitive equilibrium is efficient 
and envy-free. This is true only because there is no labor input in the pro- 
duction process. In more general economies with production fair and efficient 
allocations need not exist (an example is given in Es]). 

It is normally not the case that the fair efficient allocation is unique. There 
is no reason to expect a unique competitive allocation in an equal income 
economy. Thus, what is special about the model presented here is that the 
equitable allocation is completely determined by the requirements of maxi- 
mality and finite envy. 

The reason for the distinction between the discounted and undiscounted 
cases is that the competitive equilibrum problem is well posed only when 
/3 < 1. Since output remains bounded, the discounted sum of individual 
utilities is finite, and it is not difficult to modify standard arguments to show 
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existence and optimality of competitive allocations when each agent receives 
a share of the profits from the (fish) production process. Thus the infinite 
horizon economy with /3 < 1 behaves essentially like a finite economy. 

When there is no discounting the situation is altered considerably. The 
fact that there is no envy-free maximal allocation means that the equal shares 
competitive allocation does not exist. Since utility and profits are unbounded, 
this fact is not surprising. However, the positive result-the existence of a 
unique maximal allocation with finite envy-is satisfactory. If we interpret 
the undiscounted infinite horizon model as an idealization of finite horizon 
models we can assert that all efficient envy-free allocations for finite models 
(having sufficient periods) yield nearly equal final period consumption. 

I. DEFINITIONS AND NOTATION 

There are n agents. Each agent i has a utility function for consumption, 
ui : (0, co) + R. ui is assumed to be strictly increasing, strictly concave, 
and twice continuously differentiable. Denote lim,,, ui(c) and lim,,, u:(c) 
by ~~(0) and u:(O), respectively. These values need not be finite. A discount 
factor /3 E (0, l] is common to all consumers. 

The technology is described by a twice continuously differentiable function 
f: [0, co) -+ [0, co) with f(0) = 0. We assume that f’(x) > 0 > f”(x) for 
all x. We also assume that f’(x) > l/p for some x > 0, and that f(2) = k 
for some f > 0. It then follows that there is a unique X E (0,s) satisfying 
f’(X) = l//?. Let C = f(Z) - X. Notice C > /3j(x) - x whenever x # X. 

A program is a sequence {(xt ; rJ}T=, with xt 3 0, yt = (Q,..., ctn), 
cti > 0 for all i and t. Let ct = xi”=, cl. A program {(xt ; rt)} is called feasible 
if, for some x0 > 0, ct = f(xtJ - xt for t 3 1. We assume throughout 
that all programs start from a fixed x,, > 0. 

A sequence {Cti}t”=l is said to catch up to {cti}:, for agent i if lim inf,,, x 
cr=, /3-‘[z@j) - Us] 3 0. A program {(Xt ; yt)} is maximal if it is 
feasible, and for no other program {(xt ; rt)} does (c:} catch up to {Et) for 
each i. Notice that this definition coincides with the usual definition of Pareto 
optimality when /? < 1. A feasible program {(xt ; rt)} is called envy-free if, 
for every i andj, there exists To > 0 such that CL, #F-‘[u~(c~) - ZQ(@] > 0 
whenever T 2 To. 

II. UNIQUENESS OF MAXIMAL PROGRAMS 

The purpose of this section is to show that for every distribution of limiting 
consumption there is at most one maximal program. To do this we restrict 



238 JOEL SOBEL 

attention to programs satisfying a condition necessary for maximality. 
First, properties of feasible programs are deduced. 

Let x, = min(x, , X). For c E [O,f(xnz) - x,) define the function g, by 
gC( y) = f(y) - c. Since g&?) = f(Z) - c > f(x) - (j(X) - X) and g&a) = 
f(s) - c < f, there is a 9 E (X, a] satisfying gC( 9) = 9. Furthermore, 
g,(y)-y>Ofory~[x,,~)andg,(y)-yyOffory>~. 

LEMMA 2.1. The sequence defined by yt = ge( yt-i), y,, = x0 converges 
monotonically to 9. 

Proof. If yt E [x, , 9) then 

9 -g?(B) >gc(yt) =Yt+1 >Yt ~xn?. 

Therefore, since y,, > x,, , 9 > y0 implies yt increases to some 3 E (x, , 91. 
Furthermore, 9 = SC(y) so 9 = 3. If y,, > 9 a similar argument shows that 
yt decreases to 9. g 

Lemma 2.1 can be used to establish the boundedness of feasible programs. 

LEMMA 2.2. Let xM = max(x, , a). For any feasible program {(x1 ; yJ}, 
xt , cti < x, for all i and t. 

Proof. Let y, = f( yt-J, y,, = x,, . By Lemma 2.1, yt converges mono- 
tonically to f, and hence yt < xM for all t. Also, for any feasible program 
xt < yt for all t. This follows by induction since x,, = y0 and if x, < y, for 
some s, then 

X s+1 =fW - cs+1 <.fw Gf(Ys) = YS,l. 

Therefore, xt < yt < xM for t 3 0. Since ct < f(xt-r) by feasibility, it 
follows that 

and the lemma is established. 1 

LEMMA 2.3. Let {(xt ; yJ} be afeasibleprogram and let c E (0, f (x,) - x,). 
Suppose xt < X for all t. Then there is an s such that c, 3 c. 

Proof. Let y, = x,, , yt = gC( yt& Pick T so that y, > X. This is possible 
by Lemma 2.1. Suppose ct < c for t >, 1. Since 

Xt = f(xt-3 - Ct 3 f(xt-3 - c 

it follows, by induction, that xt > y, for t >, 0. In particular, xr > yr. > X, 
contradicting xT < X Hence c, > c for some s. 1 
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The idea of the proof of the uniqueness theorem is to exploit two necessary 
conditions. The first, given in the following lemma, is just the usual relation- 
ship between an individual’s intertemporal marginal rates of substitution. 
It will be used to show that maximal programs converge. That knowledge 
will lead us to a boundary condition relating the marginal utilities of different 
agents. 

LEMMA 2.4. Let ((xt ; yt)> be a maximalprogram. Then, for every i and s: 

(1) rf csi > 0, then u~(c,i)/u~(c$+,) > I;lf’(x,J. 

(2) Z~C:+~ > 0, then u~(c,i)/u~(c~+,) < flj’(x,>. 

In particular, zyc:, ci,, > 0 then u~(c,i)/u~(c~+J = pf’(xJ.l 

Proof. For fixed i and s define the function hi by 

k(S) = ps-lMcsi - 6) + b&~,l + f(Xs + 6) - f(x,))l. 

h,(6) is the utility agent i receives from consumption of c,i - 6 in period s 
in period s and ~6,~ + f(x, + S) - f(x,) in period s + 1. Suppose c,i > 0, 
then we claim hi(O) ,< 0. Otherwise h,(6) > hi(O) for some 6 E (0, c,i). 
But then the program identical with {(xt ; rt)> except that agent i consumes 
c,i + 6 in period s and c:+~ +f(xs + S) -f(xJ in period s + 1 would 
dominate {(x, ; rt)}. This contradicts the maximality of {(x6 ; rt)}, so we may 
conclude that csi > 0 implies h;(O) < 0. Similarly, if ct,, > 0 then h;(O) > 0. 
The lemma follows since 

h;(O) = -B”-‘[u;(c,;) - ,5’f’(x,J Z&Y”,+,)]. 1 

The feasible program {(xt ; rt)} is called admissible if it satisfies conditions 
(1) and (2) above, for every i and t. By Lemma 2.4 we can restrict attention 
to admissible programs. Our next result guarantees that admissible programs 
converge. 

PROPOSITION 2.5. Let {(x, ; yJ} be an admissible program. Then 
lim,-,(x, ; rt) exists and is equal to (x; 0) or (x; r) where y = (?,..., C”) 
and Cy=, C” = F. 

1 Lemma 2.4 makes it clear why a common discount rate is required. Suppose that 
agent i had a discount rate /3j for i = 1, 2. I f  p1 I- /3? cti :> 0 for I > r, i = 1, 2, then 
Lemma 2.4 implies, for N > 0, 

4(&) 82 N 
( 1 

4(&+,) 
u;(cz,,Jy- =-. u;(c;+J 

Hence, lim,,m ct2 = 0 and so no program satisfying (I) and (2) of Lemma 2.4 can give 
positive consumption to both agents in the limit. 
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Proof. The proof hinges on the fact that every admissible program is 
eventually monotone. Indeed, we claim that 

(2.1) If for some S, x,?-~ > x,~ , X > x, , then xt > X~+~ for t b S. 

(2.2) If for some s, x,-i < x, , X < x,~ , then xt < xt, i for t 3 s. 

It follows from Lemma 2.4 and the concavity of ui that X 3 x, implies 
c 5+1 >, c,i for each i. Therefore, 

and so if xSel 2 x, , then 

x,+1 = f(xJ - c s+1 G f(x,-1) - c.7 = X8. 

Hence if xSel > x,~ and X > x, for some S, X > x, 3 x,+r . Repeated appli- 
cations of this reasoning establish (2.1). A symmetric argument yields (2.2). 

(2.1) and (2.2) guarantee that {(xt ; rt)} is eventually monotone, and, since 
xt and yt remain bounded, it follows that lim,,,(x, ; rt) exists. Let 
lim,,,(x, ; rt) = (2; q), Suppose f > X. Then we claim f = 0. Otherwise 
lim tt* CtZ = ? > 0 for some i. Pick T so that /3f’(xt) < I - 6 for t >, T 
and some 6 > 0. Then crI 2 ci T+N >, Ei for N > 0 and, by Lemma 2.4, 
u~(c,~)/u;(c~+,) = [@‘(xr-)] ... [/3j’(xT+&] < (1 - B)N. Thus lim,,, x 
u~(c,~)/u~(c~.+,) = 0. But this contradicts 

Hence j? = 0 whenever i > x. Therefore, 

0 = p-J Ct = ‘,ill [f(xtJ - xt] = f(2) - f and so 2 = .C. 

To complete the proof it suffices to show that f < X is impossible. In order 
to get a contradiction, assume 3i: < f. Let q be chosen so that /3f’(xt) > 1 + 6 
for all t > q and some 6 > 0. If xt < Z for t > 0, then (rt} is nondecreasing 
and, by Lemma 2.3, there exists c > 0 and an r such that c, > c and so 
et > c for t > r. On the other hand, if xt > I for some t, then by (2.2) 
there exists s such that x,.-r > X > x, and x, >, xt for t > S. 

In this case, for t > S, 

et > c, = f(x,-1) - x, >, f(E) - x = c. 
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Now, let T = max(q, r, s) and E = min(E, c)/n. Then, for some j, ctj > E 
whenever t 3 T. Hence xM > cj for all i and t implies that, for N > 1, 

co > -& > $g = [py(XT>] ... [pj’(xT+N-l)l 3 (1 + w. 
I M 3 T+N 

This is impossible, so 3 < 4 is ruled out. The observation that if lim,,, xt = X 
then lim,,, ct = f(Z) - X = C completes the proof. 1 

We have now restricted possible efficient programs to those that converge. 
Proposition 2.6 guarantees that the limiting consumption will be positive. 

PROPOSITION 2.6, Suppose {(xt ; yt)} is maximal. Then lim,,, xt = X. 

Proof. Suppose the proposition is false. Let {(xt ; rt)} be a maximal 
program such that lim,,, xt = 3. Choose T so that xt > 2, 1 !Z - xt 1 < C/4, 
and j 2 -f(xl)l < T/4 whenever t 3 T. It follows that 

c-t = f(xt-1) - xt < /f&l) - 2 I + I p - xt I < @. 

Consider the program {(a, ; pt)) where 

(4 ; 5) = (Xt ; Yt) if t<T, 

2, = x if t > T, and 

C”t = 
I 
f(xr-1) - 5 if t=T 
C if t>T. 

Since 2, > ct for t > T we can choose jjt = (&l,..., Ztn) such that 
CT=, c”,i = Et and c”i > ~2 for every i. Therefore {(& ; ft)} dominates 
{(xt ; rt)}, contradicting maximality. 1 

Taken together, the last two results demonstrate that all maximal pro- 
grams are globally asymptotically stable. 

PROPOSITION 2.7. Suppose {(x, ; yt)} is an admissible program such that 
lim - t-VW xt - x. Then ((xt ; yt)} is a monotone sequence, increasing if x, < X, 
constant if x, = X, and decreasing $x0 > X. 

Proof. The proposition follows immediately from (2.1) and (2.2). 1 

In order to show that a given distribution of limiting consumption can 
correspond to no more than one maximal program we must relate period t 
consumption to limiting consumption. In order to do this we introduce 
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Mij = u~(~,E)/u;(e,c) for 1 < i, j < ~1. Clearly 0 < Mii < co and 
MijMik = Mik . The fact that the limiting ratio of marginal utilities is related 
to the ratios in period t will guarantee that no two maximal programs will 
yield the same limiting consumption. 

If {(x, ; yt)) is an admissible program with lim,,,(x, ; yt) = (X; ~6) then 

(2.3) #‘(xJ 3 u~(c,j)/u~(c~+J for all j and t 

with equality whenever ctj > 0. 
(2.3) is a consequence of Proposition 2.7 and Lemma 2.4 unless 0 = clj = 

c;+~ . But if cti = ci+r = 0 then /3f’(xJ > 1 = &(0)/u;(O). Therefore if 
Cti > 0, 

for N>l. 

Hence, taking limits, we may conclude 

(2.4) u;(cti)/u;(ctj) >, Mij whenever cti > 0. 

(2.4) is a necessary condition for optimality. In order to show uniqueness, 
we need to show that there is only one solution y = (cl,..., c~) to (2.4) 
satisfying & ci = c. 

LEMMA 2.8. Suppose (cl ,..., P) and (? ,..., F) 
for some j, then ci > Ei whenever 3 > 0. 

Proof. Suppose cj > 9 and F > 0. We have 

u(i(cj) 
__- > M,, and 

ug 2”) 
uf;(c”) u:(c”‘) 

satisfy (2.4). If cj > 3 

3 M,.j 

hence, 

and so 

1 > UXCj) u;(2) --;->----- 
Uj(?) U;(P) 

and thus ck > F. 1 

We now are prepared to prove the main result of this section. 

THEOREM 2.9. There is at most one maximal program {(xt ; yt)} starting 
from x, such that lim,,, yt = 8. 

Proof. Suppose {(xt ; yJ> and NC ; YtN are two different programs such 
that lim,,,(x, ; yt) = lim,,,(f, ; pt) = (X; 83). Then there is an s > 1 
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such that (xt ; rt) = (Zt ; &) for t < S, and ys+l # y8+r . Without loss of 
generality, assume & c:+~ > Cy=, C”f+l. Then we claim that for all t > s 

(2.5) xt < f, and ~2 > ?j whenever cti > 0. 

This follows because Cl”=, cf,, > xzt, c”d+I and 

X s+1 =fW - f cd,, < f(2,) - i g,, = &+I . 
i=l i=l 

But both yS+r and FS+r satisfy (2.4), so it follows from Lemma 2.8 that 
c:,1 > Cl:+1 whenever c”& > 0. This establishes (2.5) when t = s + 1. 
Now if (2.5) holds for some T > s we may apply (2.3) and xr < .%r to con- 
clude, provided cri > 0, 

u;(c:) 
qgl 

= /y(XT) > /y(ET) 3 * . 
I T+l 

Hence, since cri 3 Zri, cri > 0 implies c$+~ > .$+r . Moreover, by Propo- 
sition 2.7, crj > 0 for some j, so c:+r > pi+r and therefore, since $++1 and 
~r+r both must satisfy (2.4), it follows from Lemma 2.8 that c$+~ > ?i+1 
whenever Zi+1 > 0. Hence 

and 

XT+1 = f&T> - f c:+1 -=I f(%T> - f &+1 = fT,l . 
i==l i-l 

Claim (2.5) then follows by induction. 
Now select T b s so that for t 3 T, Ztl > 0. This is possible since 

lim,,, Ztl = 0,Z > 0. From (2.5), cl1 > Ftl for t > T. Therefore, for all IV, 

Butx, <4,fort>, Tso,forN> 1, 

Thus 

1 > 4(CT1) > 4(4+N) 
qq’ qq 

This is impossible and the contradiction establishes the theorem. i 

642i21/2-3 



244 JOEL SOBEL 

III. EXISTENCE OF MAXIMAL PROGRAMS 

The purpose of this section is to prove that maximal programs exist. 
It turns out that this is an easy consequence of the existence of maximal 
programs in economies with a single utility-maximizing agent. The function 
U we choose is defined by 

n Uj(Ci) 
U(c) = max 2 ) 

j=l u,(Q) 
subject to ci > 0, i 13 = C. 

i=l 

Clearly, U is continuous and strictly concave. Also, since each ui is strictly 
concave, every c > 0 determines a unique vector y(c) = (cl,..., c”) such that 
ci >, 0, c = C 8, and U(c) = C (ui(ci)/u;(O,?)). We call {(xt , ct)> a feasible 
sequence (from x,) if xt >, 0, ct > 0, and ct = f(xt-,) - xt for all t 3 1. 
Thus, associated with every feasible sequence ((xt ; ct)} is a feasible program 
KG ; cd> where yt = Y(G). 

It is not surprising that efficient allocations can be generated by an appro- 
priately weighted sum of individual utilities. The relationships among efficient 
allocations, weighted averages of utilities, and competitive equilibria are 
well known (see, for example, [6]). In this case the situation is altered some- 
what because (when p = 1) competitive equilibria may not exist. 

For reference we state 

LEMMA 3.1. Given any x, > 0 there is a unique feasible sequence {(Xi ; &)) 
such that for any other feasible sequence 

liy+$f f /WU(c,) - U(E,)] -c 0. 
t=1 

Lemma 3.1 is the standard existence theorem, well known in the theory of 
optimal growth. Proofs can be found (for the case /3 = 1) in Brock [I] or 
Gale [4]. 

We can now prove 

THEOREM 3.2. There exists a maximal program {(X, ; yt)} such that 
lim,,, yf, = ez;. 

Proof. Let ((Xt ; Et)} be a feasible sequence guaranteed by Lemma 3.1. 
Let $jt = &). Then ((Z& ; TJ} is maximal. For suppose ((xt ; rt)} is a feasible 
program such that lim inf,,, xi=, /3-‘[ui(ct) - ui(Cti)] > 0 for each i. Then 

lim+inf C p”-‘[U(c,) - U(E,)] 
t=1 

T  n pt-1 

= liF+inf C C - t=l i=l u’(e.c) Mcti) - %(&?I 
I z 
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But, by Lemma 3.1, this can only happen if {(x1 ; rt)} = {(X, ; YJ). Hence 
((S, ; yt)} is maximal. 

It remains to show that lim,,, yt = 8C. Because {(Xt ; jQ} is maximal, 
it follows from Proposition 2.5 that limt+m yt exists. Denote this limit by 
(Cl ,**-, C,). But, by Propositions 2.5 and 2.6, xi”=, Ei = Z and so (C1 ,..., E,) 
solve: 

n Wi) Maximize 1 
i=l q6, 

subject to i Ci = 2, ci > 0. 
i=l 

Therefore, u~(CJu’(8$) > u;(C,)/u;(8,C) whenever Ci > 0. Thus, CyZIZi = C 
and u;(Q/u@J > Mij whenever Ei > 0 and we must have ci = Oi? by 
Lemma 2.8. It follows that lim,,, yt = fl?, completing the proof. 1 

Combined with Theorem 2.9, this result guarantees the existence of a 
unique maximal program associated with every distribution of limiting 
consumptions. 

IV. FAIR ALLOCATIONS 

The results of Sections II and III show that there is a unique maximal 
program corresponding to every limiting distribution of consumption. This 
section discusses the properties of maximal programs, with emphasis on 
that program which gives equal shares to each agent in the limit. 

Throughout this section we assume p = 1. It is necessary to distinguish 
between the /3 < 1 and the Ramsey case because when /3 < 1 the utility 
stream received by an agent is finite and the fact that an agent’s envy is 
finite is of no interest. Furthermore, the maximal allocation with equal 
limiting shares of consumption need not be free from envy (as Theorem 4.5 
shows) while in the p < 1 case the envy-free allocations exist by analogy 
to finite horizon models. 

LEMMA 4.1. For every maximal program {(Xt ; yt)}, C,“=, / Et - X j < co. 

Proof. If x,, < X, Proposition 2.7 guarantees that x0 < xt < X for all t. 
Hence, by Lemma 2.3, there is a T, a c > 0, and a j such that ctj > c for 
t 3 T. It follows from Lemma 2.4 that 

4(c) uJ(C,i) ?a----- 
Uj(XJ qg+*1 

= f’(%> *-- f’(%+d for N > 1. 

Therefore, u~(c)/u;(x~) > ntzNf’(xt) and so JJEJ’(%) < co. It is well 
known that this implies C,“=, [f’(ZJ - l] < co; hence, since f’(Z) = 1 
we have CO > Czl [f’(Q - f’(Z)] t m xz=, (X - 2,) where m = 
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min(,3?0,,,(-~“(~)) > 0. This proves the lemma when x, < X. A similar 
argument establishes the lemma when x0 > E. # 

THEOREM 4.2. For any maximal program {(X, ; yt)), Cy=, \ E - Ct ( < co. 

Proof. Since Et = f(F+J - Xt and f(x) - x < Z for all x > 0 we have 

il Gt - 3 = 2 [VW - 9 - 4 + fW - fG7) < f&J. 

This establishes the theorem when x, > X for in that case Et 3 i! for all 1. 
If x0 < X, then Z > Et for all t and 

z - .i?t = (f(E) - X) - (f(&-1) - Xt) 
= (f(Z) - f(%-3) + Gt - %-3 - (2 - %-II 
G (X - x,-l)f’(XJ + (X, - x,-3 - (X - f&--l) 
= (X - Et-&f’(xo) - 1) + (Xt - xt-1). 

Hence Czl (Z - &) = (f’(xJ - 1) C,“=l (Z - Z&-r) + EL, (X, - &). This 
completes the proof since EL, (Z - Zt-J < co by Lemma 4.1 and 
c;1 (Xt - &-I) = 2 - x0 * I 

Theorem 4.2 says that no program can yield infinitely more consumption 
than a maximal program. CoroIlary 4.3 makes an analogous statement about 
utilities. 

CoRoLLARy 4.3. Suppose {(Zt ; j&)} is a maximalprogram. Iflim,,, yt = E8, 
then XL, I Et - BiE 1 < CO and cf, ( t&(0$) - ui(Q)l < 03. 

Proof. By Proposition 2.7, 1 Zti - 8$ ) < \ Zt - C \ for all i and t. So 
CE”=I 1 ITi - eg I < co by Theorem 4.2. Also 

1 ~~(2~) - u,(etq = u;((J(l zti - Oii; I) < Mi(l Et - E I) 

where Mi = max(u&), u;(eiZ)). The corollary now follows from another 
application of Theorem 4.2. 1 

The next result guarantees that the maximal program giving each agent 
limiting consumption z/n is almost envy-free, in that each individual receives 
-up to a finite amount-as much utility from his consumption sequence 
as from that of any one else. Clearly, no other maximal allocation will have 
this property; with any other limiting consumptions there would be a T 
and an E > 0 such that, for some i and j and all t 2 T, 
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Agent j would then prefer i’s consumption to his own by an infinite amount. 

COROLLARY 4.4. Zf Bi = l/n for each i, then 

and L: 1 ui(Ct) - ui(Cti)l < 00 

for every i and j. 

Proof. Since 1 ct -i-i-d\ < I&i--+I+ I$-+zI, the fact that 
EL, 1 cj - Etj / < 00 follok from Theorem 4.2. Also, if Mi = max X 
[z.&,~), z&!/n)], then 

Unless the agents have identical utility functions, no maximal allocation 
is guaranteed to be envy-free. In fact, the following theorem implies that in 
many circumstances there exists i andj such that It > C$ for all t. 

THEOREM 4.5. Suppose {(X, ; yt)} is a maximal program and lirntem jjt = 
q/n,..., I/n). Zf, for some i and j, Ui = g 0 uj where g is continuously dQ$ren- 
tiable, increasing, and concave then 

(1) Zf x0 < I, then Eti > Eti whenever E,i > 0. 

(2) Zfx,, > X, then @’ > $ for all t. 

Proof. Suppose x, < 5. Then, by Proposition 2.8, E,i, Ch < z/n for all t. 
If, for some s, E,3 > 0 and C,j > i;,” then 

by (2.4) 

but 

and 

4W u;m 1 
u,lo= g’(u,(+z)) u~(?/n) = g’(@/n)) 

@8j) < AXE,‘> 1 
qqj\r--.= 

‘i(‘,‘) g’(qm * 

Hence g’(u&,f)) < g’(u&z) and thus csf 2 E/n, by the concavity of g. 
This contradiction establishes (1). (2) follows from a similar argument and 
the observation that if x, > X then ct > 0 for all t. 1 
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We can interpret this theorem in the following way. The more concave 
(risk averse) an agent’s utility function, the more he prefers to have consump- 
tion restricted to a small interval. Since consumption in the maximal program 
is monotone, the most concave agent will receive more than the others 
when x, < E and less when x, > X. 

It is easy to see that unless ui = auj + b for some a > 0, ui = g 0 ui 
for some increasing g, where either g or g-l is strictly concave over some inter- 
val. Therefore, provided two agents have different preferences, there is a 
production function and an initial stock x, that guarantees that some agent 
consumes more in every period than another agent in the maximal program 
with equal limiting consumptions. 
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