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EQUILIBRIUM SELECTION IN SIGNALING GAMES
By JEFFrREY S. BANKS AND JoeL Sospr!

This paper studies the sequential equilibria of signaling games. It introduces 2 new
solution concept, divine equilibrium, that refines the set of sequential equilibria by requiring
that ofi-the-equilibrium-path beliefs satisfy an additional restrictian. This restriction rules
out implausible sequential equilibria in many examples. We show that divine equilibria
exist by demonstrating that a sequential equilibrium that fails to be divine cannat be in a

2+ stahle companent. However, the stable component of signzaling games is typically smaller
** than the set of divine equilibria. We demonstrate this fact thraugh examples. We also
present a characterization of the stable equilibria in generic signaling games.

KEYwoRDS: Strategic stability, equilibrium selection, signaling, game theory.

1. INTRODUCTION

THIS PAPER INVESTIGATES the relationship between Kreps and Wilson's (1982)
concept of sequential equilibria and Kohlberg and Mertens’s (1986) concept of
stability. It intraduces a restriction on off-the-equilibrium-path beliefs that refines
the set of sequential equilibria in signaling games. We call all sequential equilibria
that satisfy our restriction on beliefs divine. For generic signaling games, every
equilibrium contained in a stable component is divine. Moreover, the solution
concept is restrictive enough to rule out all of the equilibria that Kreps (1985)”
and others dismiss on intuitive grounds. Thus, divinity provides an independent
theoretical foundation for discarding nonintuitive equilibria in signaling games.

We provide a generic example to show that divine equilibria may not be
contained in any stable component. However, the paper presents an explicit
characterization of stability in terms of off-the-equilibrium-path beliefs. That is,
an equilibrium of a generic signaling game is in a stable component if and only
if it can be supported as a sequential equilibrium with restricted off-the-equili-
brium-path beliefs. Just as Kreps and Wilson (1982) characterize perfect equilibria
for generic extensive-form games in terms of sequential equilibrium strategies
and beliefs, our result characterizes stable outcomes for generic signaling games
in terms of sequential equilibrium strategies and restriction on beliefs. The
characterization may be a useful way to compute stable equilibrium outcomes
and ta evaluate the consequences of using stability to select equilibria in extensive-
form games. ,

Independent of our work, Cho and Kreps (1987) analyze the power of stability
to select equilibria in signaling games. Their results closely parallel our own.
They identify restrictions on equilibria similar to those embodied by divinity. In

' The original version of this paper was written while Banks was a graduate student and Sabel
was 2 visitor at Caltech. We thank participants of Caltech, UCSD, and Rand Corporation Theory
Warkshops, Drew Fudenberg, David Kreps, and two referees for valuable comments. Sobel thanks
Joe Farrell and Chris Harris for many conversatians on related topics and the National Science
Faundation for partial support under Grant SES 84-08655.

*Kreps (1985) stimulated our interest in this arez. Cha apd Kreps (1987) contzins some of the
resulis of this paper.
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648 JEFFREY S. BANKS AND JOEL SOBEL

addition, they also state our characterization result {Theorem 3). Cho (1987)
extends a restriction identified in Cho and Kreps to obtain a solution concept
that refines the set of sequential equilibria in general extensive-form pames.
Our debt to the existing literature on solution concepts for noncooperative
games is obvious. Recent work on this topic includes papers by Selten {1975),
Kreps and Wilson (1982}, and McLennan (1985), who present refinement concepts
for extensive-form games; and Myerson (1978}, Kalai and Samet (1984}, and

Kohlberg and Mertens (1986}, who present refinement concepts for narmal-form
games.

2. THE MODEL

In this paper we analyze the equilibria of signaling pames with finite action
sets. There are two players, a Sender {(§) and a Receiver {R). The Sender has
private information, summarized by his type, ¢, an element of a finite set T. There
is a strictly positive probability distribution p(f) on T; p{t), which is comman
knowledge, is the ex ante probability that §'s type is £ After S learns his type
he sends a message, m, to R, m is an element of a finite set M. In response to
m, R selects an action, a4, from a finite set A{m}; k(m) is the cardinality of A{m).
S and R have von Neumann-Morgenstern utility functions u(¢, m, a) and
u(t, m, a}, respectively.

For fixed T, M, and A(m) for me M, the utility functions u(¢, m, a} and
u(t, m, a) completely determine the game. Therefore, if L=[TxY¥, k(D)%
where T is the cardinality of T and M is the cardinality of M, then every element
of R" determines a signaling game. We call a property of a signaling game generic
if there exists DcR" such that the property holds for all signaling games
determined by d € D and a closed set of Lebesgue measure zero contains R™\ D,
If a property of a signaling game is generic, then we say it holds for generic
signaling games.

For any positive integer k, let 4, ={8=(8(1},...,8(k)): 8(i)=0¥i and
Yo 8(iY=1} be the {k—1)-dimensional simplex. We refer to the (T—1)-
dimensional simplex most often; to simplify notation, we write 4 instead of 4 7.
A signaling rule for S is a function g: T - A &; q(m|t) is the probability that §
sends the message m, given that his type is ¢. An action rule for R is an element
Of [mens Arimy; r(a|m} is the probability that R uses the pure strategy a when
he receives the message m.

We extend the utility functions « and v to the strategy spaces 4,,,,, by taking
expected values; for all ¢t€ T, let

u(t,m,r)= Y u(t,m a)r(a|m),
ag A{m)

u(t,mr)= Y v(t,ma)r(a|m).

ae A{m|)

Also, for each A€ 4 and me M let
BR(x, m)=argmax ¥ o(t, m, r(m)A(t)

P AL e T



EQUILIBRIUM SELECTION 649

be the best-response correspondence for R and for A < A,,.,), let BR(A, m}j=
U,\eA BR()'"} m)'

DEerINITION: A sequential equilibrium for a signaling game consists of signal-
ing rules g(t) for S, action rules »(m) for R, and beliefs w(|m)e 4 for R, such
that (i) Vee T, g{m*[ £} >0 only if

u(t, m*, f(m*)) =max u(s, m, r(m));

(ii) Yme M, r(a*|m)>0 only if

T o, m, a*)ultm)= max T ot m, a)ult|m;
=T aeA{m) T

(i) if $,e7 g(m| )p(1) >0, then

w . __9(m| *)p(e*)
Wl m) = Gl p(e)’

In words, {i) states that ¢(-) maximizes $’s expected utility, given R’s strategy,
(ii) states that r(-) maximizes R’s expected utility, given beliefs p{-); and (iii)
states that R’s beliefs given S's strategy are rational in the sense that Bayes' Rule
determines (1| m) whenever the probability that § sends m in equilibrium is
positive. If g(m|£) =0, for all t & T, then sequential rationality does not determine
w(t|m). Hawever, the refinement concept introduced in Section 3 restricts the
values that these beliefs may take.

Next, we describe stable equilibria. Our introduction follows Cho and Kreps
{1987). Fix a signaling game; let g = (g, §s) satisfy 0<g, <1, i=R, &, and let
g and F be strategies for § and R respectively that satisfy g(m|t)>0, ¥me M,
Vie Tand #{a|m)>0,Yac A(m),¥me M. A (g, §, F)-perturbation of the original
game is the signaling game in which, if the players choose strategies g and
from the original game, then the outcome is the outcome of the original game if
the strategy chosen by § is (1—pgglg+ 054 and the strategy chosen by R is
(1—pg)r+ per. We refer to (g, §, 7} as trembles. Let (g, r) be Nash equilibrium
strategies for a perturbed game. If g{m|z)>0, we say that a type ¢ Sender
voluntarily sends m and we say that R voluntarily uses the mixed strategy r{m).

For a given signaling game, we call a subset C of the set of Nash equilibria
stable if, for every £ > 0, there exists § > 0 such that every {3, 4, r)-perturbation
of the ariginal game with 0 < g, < 8, i = R, § has an equilibrium no more than «
from the set C.

DEFINITION: A stable component is a minimal (by set inclusion) stable set of
equilibria.

Our analysis depends an several facts about extensive-form games and stable
sets. Ta state these facts, we need one more definition. Given an extensive-form

* Kreps and Wilson (1982) prove Proposition 1. Kohlberg and Mertens (1986) prove Propasitions
1-3.
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game, the strategy choices for the players induce a prabability distribution aver
the endpoints of the game. We call this probability distribution the outcome of
the game (associated with particular strategies).

ProrosiTion 1: For generic extensive-form games, the set of Nash equilibrium
outcomes is finite and all Nash equilibria within a given connected component induce
the same otitcome.

ProposITioN 2: Every game has at least one stable component.

PROPOSITION 3: A stable set of equilibria for a given game remains a stable set
for the game obtained by deleting a strategy that is not a weak best response against
any equilibrium in the set.

Therefore, in generic signaling games, there exists a stable set of equilibria
with the praperty that every equilibrium in the set agrees along the equilibrium
path; the equilibria may vary off the equilibrium path. A variety of off-the-
equilibrium-path responses may be needed to guarantee that any perturbation
of the game has an equilibrium path close to a particular equilibrium path.
Therefore, a single equilibrium need not be a stable set. However, we use
Proposition 1 to justify an abuse of terminology. We call an equilibrium stable
if it agrees with an element of a stable component alang the equilibrium path.
In particular, in generic signaling games, if an equilibrium is stable, then every
perturbation has an equilibrium with payoffs close to the original equilibrium
payoffs.

3. DIVINE EQUILIBRIA

Previous refinements of the Nash equilibrium concept place rationality restric-
tions on zero-probability events. In particular, sequential rationality requires that
players respond optimally to some consistent assessment of how the game has
been played. These equilibrium concepts do not require a player to draw any
conclusion when a zero-probability event takes place. That is, although the
refinements concepts embodied in sequential rationality and perfectness require
that equilibria of games induce equilibria on any continuation of the game, these
concepts do not require that a player systematically draw an inference from an
opponent’s unexpected move. Nevertheless, in order to decide how to respond
to an unexpected signal, R should evaluate the willingness of S-types to deviate
from equilibrium, and then incorporate into his beliefs the information that
deviations from equilibrium might reveal.

This section presents an equilibrium concept that refines the set of sequential
equilibria in signaling games by placing restrictions on off-the-equilibrium-path
heliefs. We begin by describing two restrictions on beliefs along with the intuition
behind them, and then proceed to define an equilibrium cancept that incorporates
these restrictions.
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The first intuitive restriction on beliefs that we discuss requires R’s off-the-
equilibrium-path beliefs to place zero probability on those Sender types who
certainly lose from a defection. Formally, this condition requires that if a type ¢
Sender receives utility u*(¢) in equilibrium and J ={t: w*{() > u{t, m, r{m)) for
all r(m)e BR(4, m)}, then r*(m)e BR(A1;, m)* Cho and Kreps (1987} also
identify this condition and show that if an equilibrium is stable, then the condition
must hold.® Our refinement notion includes this type of restriction on beliefs.

Figure 1° describes a special case of a sequential settlement game (see Salant
(1984) or Sabel (1986)). There are two types of S (the “defendant™): type ¢,
defendants are negligent; type 1, defendants are not negligent. § offers a low
settlement, m,, or a high settlement, m,. R (the “plaintifi”’) either accepts (a,)
or rejects (a,} the offer. If R accepts §7s offer, § pays R an amount that depends
only on the offer. If R rejects the offer, § must pay court casts and a transfer
depending only on his type {e.g. the court finds out with certainty whether or
not § was negligent). If p(t,) = p(t,) =3, then the game depicted in Figure 1 has
two types of equilibria. In one type of equilibrium, both types of § offer m,, and
R accepts any offer; g(m,|t)=1,i=1,2, r(a;|m;) =1, j =1, 2. In the other type
of equilibrium, both types of § offer m, and R accepts m, and rejects my;
g{m[£}=0,i=1,2,r{a,[m)=0, r(a,| m,) = 1. In order ta support this behavior,
we need w{t|m,)=<% We claim that the second equilibrium is not plausible
because, in arder to support it, R must believe that ¢, is more likely than ¢ to
offer m,. However, ¢, prefers to defect whenever £, does (and not conversely:
consider an equal mixture of a, and @, given m,). Thus, a reasonable restriction
on beliefs would require that the relative probability of # should increase if R
observes m,. Qur refinement notion captures this argument as well.

Fix an equilibrium in which a Sender of type { abtains utility «*(¢}, and, for
all te T, the probability that ¢ sends m is zero. We intend to restrict the beliefs
that R can have given the message m. Since we deal with only one unsent message
at a time, for notational convenience we drop the argument m from R's response
function.

Recall that A,,., consists of all actions, r, available to R given m. Let

Ag=1re Ay ult, m, ry=u*(¢), forsome te T}

my | a; a; iy I 3 iy

N -3,3 -6,0 f -55 —4,0

t -3,3 ~-11,% t -5,5 ~11,5
FiGure 1.

*If J =T, then no action R ¢an take in response to the signal m induces 8 to send m. In this case,
any beliefs are permissible.

I Kreps {1985) suggests a less restrictive version of this condition. Kreps discards an equilibrium
in which there exists a Sender type who would like to defect for every action in BR(dr, ,, m).

9 We represent examples with a bi-matrix B{m) for each m e M. There is one calumn in B(m) for
each strategy in A{m)} and one row for each type. The entry in the tth row and the ath column is
(u(e, m, ), v{¢, m, a)). In each of these examples, the qualitative properties that we discuss in the
text remain valid if we perturb the entries in B(m).
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be the set of actions that some S-type weakly prefers to equilibrium actians,
conditional on sending m. Our initial restriction is that R should believe that
any type who sends m instead of the equilibrium signal does not expect to lose
by doing so.” Thus, if R receives the signal m {as a defection from equilibrium),
he should believe that § expects him to take an action in Ag.

For all re A, let

1 ifule, m, r) > u®e),
26 r)=400,1] if u(y, m, r)=u*(t),
0 if u{e, m, r) <u®*(t),

be the frequency that re T would send m if he believes that m would induce the
action ¢ and ¢ had a choice between sending m or abtaining u*(r}. Next, let

F{ry={vyed:Au{t) e i{y, r} and ¢> 0 such that
y(th=cu(t)p(t), Vee T

Notice that I'(r} is nonempty if and only if r€ As. If it is common knawledge
that m induces r, then the posterior probability distribution over T must be an
element of I'(r). Thus, I'(r) is the set of beliefs consistent with R taking the
action r in response ta m {and ¢ earning u*(¢) otherwise).

Finally, let

F{A) = canvex hull [U F(r}].
reA

Thus, if A is closed, then F{A) is a closed, canvex subset of the simplex A, and
is empty if and only if Agn A is empty. Since I'(Aim) is empty only if
u*()>u(t, m, r), Vie T, ¥re Ay, R truly would be surprised by a defection
from equilibrium, and there seems to be no reason to select one inference over
another in response to m. Indeed, in this case, any conjecture supports the
equilibrium. When Ag # J, and hence I_“(Ak,:m,}aé &, we think that it is not
plausible for R to hold beliefs outside of I_"(Ak(mj) given the signal m. If R
observes a defection from the equilibrium path, then he must form a conjecture
over T based on that defection.

Notice that any equilibrium in which beliefs lie in I_“(dk(m}) satisfies the intuitive
restrictions that we described earlier. All conjectures in f'(Ak(m,) assign zero
probability to any r& T with u(t, m, ) <u*(¢), Vre Ay.,. Furthermare, if there
exists £, t'€ T such that (1, r)=1 implies @(z', r)=1, ¥re Ay, then for all
beliefs in [( Ay}, the ratio of the probability of t' given m to the probability
of t given m is at least as great as p(¢'}/p(¢). That is, R believes that ¢’ is at least
as likely to defect as 1.

Beliefs must lie in {4} provided two conditions hold. First, R believes
that no type t would use m if ¢t expected R to take an action that resulted in

71t does not change aur results to require that & believes that any type who sends m instead of
the equilibrium signal expects ta benefit strictly by doing so. Thus, we can use a strong inequality
in the definition of A,;.
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utility less than «*{f). This means that § expects R to take actions in Ag given
the signal m. Second, S-types have a common conjecture aver the distribution
of actions that R would take as a response to a defection. This second condition
may seem odd, since there is only one Sender. However, a “type™ is a specification
of the information § has concerning decision parameters that are not common
knowledge. Thus, it is possible for two S-types to have different canjectures over
R's actions in equilibrium. If it is common knowledge that R holds beliefs in
F(Auim), then S should expect m to induce an action in BR(I'(Ay(m;), m). This
observation suggests the following iterative procedure. Let

Fy=4, Ag=4y.;, andforn>0,

e {F(A.,_L) if F(A, 1) # @,

S 4 if I'(A,_\}= O,

A,=BR(I',, m)}, r*=Mr, A*=(A,.

Others use iterative procedures in the definition of equilibrium conceps.
Specifically, given the assumptions that S expects R to take actions in A, given
an unexpected signal m and that S-types have a common conjecture over the
actions that R would take in response to m, our iterative procedure coincides
with that used by Bernheim {1984} and Pearce (1984} to define the set of
rationalizable equilibria.

THeoreM 1: In generic signaling games, if an equilibrium in which g(m|t} =
0¥t T is stable, then there exists r* € A* such that u(t, m, r*}<u®(s}, ¥te T

Theorem 1 is a direct consequence of Proposition 3. It states that if an
equilibrium is stable, then there exist beliefs in ™ that support it. We discuss
the proof later in this section.

DEFINITION: A sequential equilibrium in a signaling game is divine if it is
supported by beliefs in 1%,

Thus, by Theorem 1, every stable component contains a divine equilibrium.
Therefare, Proposition 2 implies our next result.”

THEOREM 2: Every signaling game has a divine equilibrium.

We believe that divinity captures a minimal restriction on off-the-equilibrium
path beliefs. Stability implies much more, but we are not convinced that these
restrictions are plausible.

The set of beliefs in ['* depend on the prior distribution of Sender types. To
check this property, one need only note that in the game that Figure 1 describes,

F*={xecd: x{t)=ply)}
for the equilibrium in which both ¢, and t, send m, with probability ane. Let

% Strictly speaking, Theorem 1 and Prapaosition 3 imply the existence of divine equilibria in generic
signaling games. A limiting argument, based on the upper hemi-continuity of divine equilibrium
paths, establishes Theorem 2. Cho (1987} gives the details of a related argument.



654 JEFFREY S. BANKS AND JOEL SOBEL

I'** be the intersection of the I'* taken aver all nandegenerate priors on Sender
types. We can show that in generic signaling games, if an equilibrium is stable,
then it can be supported by beliefs in I'**. Call an equilibrium supported by
beliefs in I'** universally divine. To see that universal divinity is more restrictive
than divinity alone, note that in Figure I, the sequential equilibrium in which §
sends m, with probability one is divine provided that p(t,) <3, but it is never
universally divine since, regardless of the prior probability that § is ¢, R must
believe that the unexpected signal m, comes from ¢,.°

Cho and Kreps use Proposition 3 to further refine the equilibrium set. Fix an
equilibrium outcome and an unsent signal m. Proposition 3 guarantees that a
stable outcome passes the never a weak best respanse criterion. That is, any stable
outcome can be supported by beliefs that give no weight to any type ¢ who for
every sequential equilibrium giving rise to this outcome strictly prefers the
equilibrium outcome to sending m'® (if m is never a weak best response for all
types, then the equilibrium payofis strictly dominate any payoft S can obtain
from a best response to m). This condition is more restrictive than universal
divinity because for generic signaling games if m is ever weak best response for
t, then e(1), the element of A with fth component equal to one, is an element of
r** ' Thus, Proposition 3 also implies that in generic signaling games, if an
equilibrium is stable, then there exist beliefs in I"** that support it. Since I'** = I'™*,
Theorem 1 follows from Proposition 3.

4. A CHARACTERIZATION OF STABLE EQUILIBRIA

This section gives necessary and sufficient conditions for a sequential equiki-
brium in a generic signaling game to be stable. First, we present an example of

? Harris and Raviv {1985} study a game in which there is a divine equilibrium that is not universally
divine, hence not stable. Their camparative-statics analysis concentrates an the stable path.

9 MeLennan {1983) defines a refinement concept that is similar in spirit to this requirement.
Specifically, call an action usefess 1f it has a suboptimal payoff in every sequential equilibrium of a
game {not just thase equilibria in a stable companent). McLennan shows that there exist sequential
equilibria with beliefs restricted so that, at each information set, they assign positive probability only
te nodes reached by the fewest useless actions. From this, McLennan recursively defines higher-order
uselessness and arrives at a set of justifiable equilibria. To generic signaling games, only strongly
dominated actions are useless; thus any divine equilibrium is justifiable.

' This condition is strictly more restrictive than universal divinity. In the game described in Figure
2, there is a sequential equilibrium in which both S types send m, with probability ene and R takes
a, given m,. [t is straightforward to check that [** = 4. However, the never a weak best response
criterion demands that R believe only ¢, wauld send m,. Hence R must respond to m, with a;. As
uft,, m,, a,] =120, the outcome is not stable. Cho and Kreps observe that in this example, the never
a weak best response criterion demands that R believe that 1 sends the unexpected signal my, but
the outcome in which both S types send m, fails to be stable because 1, wishes to defect given

plefmy) =1

m, | a "y | a; 4 a, a4
£ 0,0 [ -1,3 1,2 -1,0 1,-2
t 4,10 f; 1, -2 1,0 -3,2 -1,3

FIGURE 1.
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e a # | a, a, , a,

[ o)

9 —1,-2
2

9 3 ~1,3 ~1,2 1
0 1,0 ) -2,3

t; -1,-2

Ficure 3.

a signaling game that has an unstable, divine equilibrium. The example motivates
the notion of stable beliefs that we need to prove our equivalence theorem.

Consider the signaling game in Figure 3. Let p(t,) = .4. There exists a sequential
equilibrium to this game in which g{(m,|£)=1, i=1,2, r{a,| my) =1 supported
by beliefs (1| m,) =3 This equilibrium is universally divine since

r*=r*=4

and a, e BR(I*, m,). However, this equilibrium is not stable.

The stable equilibrium for this example involves both ¢, and ¢, sending m,
with. probability one and R responding to m, with action a;.

In this game R’s best responses to m, consist of all four pure strategies and
mixtures between &, and a;., for i =1, 2, 3. Figure 4 plots the expected utility for
both types of Sender given signal m,. The horizontal axis represents R's response;
points between two pure strategies represent mixed-strategy responses. (Figure
4 shows that if S voluntarily sends m, in an equilibrium to the perturbed game
in which § expects to receive 0, then R must respond to m, with an equal mixture
of a, and a, or an equal mixture of a, and a,.)

If the equilibrium in which § sends m, with probability one were part of a
stable component, then any perturbed game would have an equilibrium that
yields both S types utility zero. Therefore, there must exist an equilibrium to the

FiGURE 4.
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perturbed game in which R believes that the probability that ¢, sent m, is either
less than or equal to one-third (so that R weakly prefers a,) or greater than or
equal to two-thirds {so that R weakly prefers a,). Moreover, ¢, voluntarily sends
m, only if R responds with a2 mixture of a, and a, that provides utility 0 to 1,.
Thus, ¢, voluntarily sends m, only if w(f,|m,)=1 in equilibrium. Similarly, ¢,
voluntarily sends m, only if w(t,|m,)=3% in equilibrium. Consequently, if we
select a perturbation that induces R to select a, given m, if § does not voluntarily
send m,, then this game cannot have equilibrivm that yields both § types 0
payoffs. With no voluntary use of m,, R believes that the probability of i, given
m, is between + and 5. Thus, R would take a, given m, and destroy the equilibrium.
R changes his belief only if § voluntarify sends m,. However, if r, voluntarily
sends m,, then u(t,|m,) would exceed 3. Since w(f,|m,) =1 in any sequential
equilibritm in which § receives 0 and ¢ voluntarily sends m,, ¢, does not
voluntarily send m,. Similarly, f, does not voluntarily send m,. This argument
establishes that the sequential equilibrium in which 8 sends m, with probability
ane is not stable.

We next present a characterization of stable outcomes in generic signaling
games. Fix an equilibrium that leads to utility levels u™(t) for all 1€ T and in
which g{m|t})=0 for all te T. We identify the set of actions that R could take
given m in an equilibrium to a perturbed game in which §'s payoffs are u*(z).
In the previous example, this set consists of a,, a,, mixtures of a, and «, that
place more weight on @, than on a,, and mixtures of 2, and a, that place more
weight on a, than on a,. It is useful to divide these actions into different sets,
N, JcT

I ={red . u*(t)=u(y, mr)Vie T, and
u*(ty=ult,m, r)if te J}.

I(J) contains those actions in which § types in J are indifferent between sending
m or following the equilibrium path.

Fix a perturbation that leads to a belief w given m provided that § does not
voluntarily send m. We wish to find conditions under which there exists an
equilibrium to the perturbed game close to the original equilibrium. Doing this
is easy if BR{u, m)n I{J}# (& for some J; in this case § need not voluntarily
send m. Otherwise some non-empty set of § types J must voluntarily send m
and therefore R must respond to m with an action re I(J). If S types in J
voluntarily send m1, then R’s equilibrium belief given m will be a convex combina-
tion of u and {e(t}},., where e{t) € 4 is the vector with tth component equal to
one and all other components equal to zero. Thus,

A, r)E{.’L cint 4: Ax*e A with re BR(A*, m) such that

A*=5 a(e(t)+8Ar foralt)=0,1-F a(I)EB>O},

1ed teS

is the set of beliefs A that cannot be *“stabilized” through voluntary action by
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types in J if R takes the action r. Finally, if
M AW, r i I @,
A (]) = reftd)

A if I(H=9,

and A*={ Y7 A(S), then A* consists of all of the perturbations that can be
stabilized. This discussion motivates our characterization theorem.

TuroREM 3: In generic signaling games, an equilibrium is stable if and only if,
Jor all unused signals m, A*={J,

Cho and Kreps (1987) obtain the same resuft. The Appendix contains a proof
of Theorem 3.

5. EXTENSIONS

While we confine our discussion in this paper to signaling games, Propositions
1-3 hold for generic extensive-form games. Since these resufts combine to imply
Theorems I and 2, we can use our techniques to rule out implausible sequential
equilibria in more general extensive-form games. We suspect that divinity is easier
ta verify than stability and may be simpler to generalize to games with infinite
strategy spaces. On the other hand, Theorem 3 and possible generalizations appear
to be valuable only as a characterization of stable equilibria.

We conclude by noting that our techniques do not refine the set of sequential
equilibria in signaling games in which signals are costless. Specifically, let A{m),
u(t, m, a}, and o(t, m, a) be independent of m. These games are not generic, so
we cannot apply our results directly. However, it is easy to verify that I'* =4
for any unused signal. This is because if ¢ induces the action a € A with signal
m’, then there exist beliefs for which a is a best response to the (unused} signal
m. When signaling is costless, 7 is indifferent between sending m and m' and no
other agent strictly prefers m to his equilibrium payofi. In addition, straightfor-
ward arguments show that stability does not restrict the set of equilibria, although
this kind of game always has an equilibrium in which all types of S send the
same signal and typically has other, more appealing, equilibria. Farrell'? (1984)
and Myerson (1983) present ideas that apply to costless signaling games. Myerson
presents an axiomatic solution that limits the outcomes in a mechanism-design
problem that usually has a large number of sequential equilibria, but it is not
clear that his ideas extend in a sensible way to a noncooperative framework.
Farrell argues that an equilibrium outcome is not plausible if there exists an
unused signal m, a nonempty set J, and an action re BR(A, m) such that

J={ru*(t)<ult, m r)}, where

12 Grossman and Perry's (1986) concept of perfect sequential equilibria is similar to Farrell's
concept. However, the perfect sequential equilibrium concept does not refine the equilibrium set in
games with costless signaling.
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A =1 P !%p(t’) if re J,
0 ifte J,

is the conditional probability of ¢ given tc J'' That is, Farrell argues that R
should interpret a defection that benefits exactly the set J as evidence that exactly
thaose ¢ in J use m. Farrell calls an equifibrium in which this type of defection
does not exist neologism proof. Neologism-proof equilibria do not exist in general,
and, in games with costly signaling, need not be divine.
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APPENDIX

We analyze an equilibrium in which a Sender of type ¢ receives expected utility #*(r) and in which
na Sender uses signal m with positive probability.

First we discuss our genericity assumptions. We deal only with signaling games for which Proposi-
tions 1 and 2 apply.

PrRoOPERTY 1: [0 genericsignaling games, an equilibrium in which all signals are sent with pasitive
probability, taken by itself, is a stable companent.

We have not seen a proof of Property 1. Nevertheless, Property 1 follows from standard dimensiaon-
counting arguments similar to thase found in Kreps and Wilson (1982). Property 1 allows us to
concentrate on unused signals when we characterize stable equilibria.

In our proofs we use several other properties. To state these properties precisely, we must state
explicitly a regularity condition. Let U, r; £(t])=ufs, m, r] —{u®{t])—£(¢)) be the gain aver u™*{¢) ~
£{1) ta a Sender of type r if he sends m and R takes the action r in response to m. Think of £(-)
as a perturbation in payaffs due to smali trembies. For fixed ¢ and £(- ), viewed as a function of its
secand argument, £f(-) is a linear function defined on 4,,,,, the simplex of {mixed] strategies
available ta R given m. Let J be a nonempty subset of T with cardinality f; let F be an arbitrary
J-dimensional face of 4,,,,; and, for £(-) fixed, let U} : F= R' be the restriction of U(-) to F far
te J. Thus,

OF(r; ) = (Ul r &(0)), ted
Ljff(‘J is linear in 7€ F. The regularity condition that we need is:
(RC) the derivative of l:ff(r; 0] is nonsingular.

(RC) is true generically for fixed «*{¢). Even though the signaling game itself determines u®(t), (RC)
holds for almest every signaling game as well. This result fallows because the set of equilibrium
payoffs to 5 when no one uses m is generically finite and does not depend on s, m, ).

We need (RC) in order to establish the next property. Property 2 states that small perturbations do
not change A* at a stable equilibrium in generic signaling games. To state this result, we need to
intraduce some notation.

Fix a (5, g, f)-perturbation and let #(z, m, r) be the utility ¢ receives if he sends the signal m and
R voluntarily takes the action #; let #%(¢] be an equilibrium utility ta a -Sender; and let & be derived
from the perturbed game as ¢ is derived from the original game. @ depends on (g, 4, F) and &*(r).

1* We have modified Farrell's definition to accommaodate situations in which AR{A, m) is not single
valued.
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PropERTY 2: In generic signaling games, if an equilibrium is stable, then for any £ 0 there
exists a 4> 0 such that there exists an equilibrium to any (7, 4, f)-perturbation with 0= f <3 for
=R and § in which A*= A% and |u*()—d*(r)| <=

We omit the straightforward proof of this fact.

For g=(q(1}, ..., (T}, 40, define u(-) by n(g)=(p(1)q(t}/E ., p(Nq(£))), 12 T. When
g{t} is the probability that ¢ sends m, then u{q) is R's posterior belief on t given m.

Lenmma 1: In a generic signaling game, if there exisis an eguilibrium in which A* # @1, then the
equilibrivum is nat stable.

PROGF: Assume that the equilibrium is stable. We argue to a contradiction. Fix A™* e A*. [f the
ariginal equilibrium is stable, then one can find £ > 0 and 8 > 0 such that if any (g, §, ) -perturbation
with 0 < g, < § for 1= R and $ has an equilibrium such that

() A% = A
and for every re BR{A™, m), there exists t{r)& T such that
(2) d{t(r}, m,r) = 4%(4(r).

Property 2 implies (1) directly; since A*€ A* implies that for each re BR{A® m) there exists r(r)
such that u{e(r), m, )= u®(¢(r}) we obtain (2} fram Property 2 by taking £ and § small enough. In
the perturbatian, pick § such that u{g)=A*. We can find g because A*e.i*cint 4. Caonsider an
equilibrium to the ( 5, §, F)-perturbation for which (1) and (2) hold. [f 7 is R’s voluntary action given
m, then it follows from (2) that F & BR(A*, m). Therefore, § must voluntarily send m in the equilibrium
to the perturbed game. [n order for S ta be optimizing, there must be a nonempty subset J of T such
that

a*tl=al,m F) ifeet and

)= alemr) ifegd
In the equilibrium to the perturbed game, a Sender of type ¢ voluntarily sends m only if re /
Therefore, if At} is R's posterior probability of ¢ given m, then

()= e(fsp(1)4(t| m) + (1 - 55)p(0)g (1))
where 0=g(1)=1, g(r) =0 for t& J, and the condition L& A determines the value of the positive

constant ¢ [f we let

8 =cpg EJP(I)@U) and  a(e)=e(l-fAg)p(t)g(s) fortel,

then @(6)=0, B=1-T,.,a(1)>0, and i=pA*+T,  a(re(r). Hence, A*2 A{J, 7). This is a
contradiction since by {1}, A*e A* = A*e= zf(J’, ). Therefore, if the equilibrium is stable, then A* = (7.
Q.ED.

Now we show that if A* = J for all unused signals, then the equilibrium is stable. We establish,
this in two steps. First, we show that if A* = {Z, then with an arbitrarily small amount of valuntary
action, we can fix the off-the-equilibrium-path strategies so that they da not distupt an equilibrium
with payoffs close to u*(z). The second step of the argument shaws that a tremble does not disrupt
the equilibrium path.

LEMMA 2: fn a generic signaling game, if A* = (&, then there exists £ » 0 such that for any 5>,
there exists p >0 such that if |G*(t)—u™(t)| < £ for all t and 0 < g, < p for i= R and §, then for any
(4, 4, F)-perturbation there exists q{t), r, and J < T such that

(3) Wit m, )< 3 ifie d,
(4) e, m,r) = () ifre
) o) =0 ifte),

(6) =qlti=n iftel, and

(7} re BR(A, m), where Jecd and 1=plgd+(1—p5lg] forsomee >0,
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Lemma 2 states that if &*{t} represent equilibrium payoffs to a perturbed game, then we can find
voluntary strategies g(7) and r such that r is a best response for R given m in the perturbed game
{condition {7)}, q(r) is an equilibrium strategy for S in the sense that g{¢) >0 only if the Sender of
type ¢ expects a payoff of 4*(¢) if be uses m (canditions {3}, (4), and {5}), and that the probability
that § voluntarily uses m is arbitrarily small.

FROGF: Pick £220 and pg > 0 so that if j@*(¢) — u*(#)| < £ for all r and 0 < jg < pg, then for all
4 and F, A*= A*= (. This is possible by Praperty 2. Since A*= I, there exists a nonempty set J,
an action F, and X € 4 such that {3) and (4) hold, Fe BR(X, m), and

Ke)= Bp(0)g(0) + (0

for same «(r) with a(f)=0, a{t)=0for tef and 1-F,.; 2(r)=8=0. Let g(1)=0 for t& J, and,
for te J, let

qit)= [(ﬂ(f)ﬁs) ‘}:TP(!’M(I'[m)]/[ﬁ(l—ﬁs};?(r)]-

This chaice of q(f) satisfies (5) and, since =0, 9{f)=0. A simple ¢computation eonfirms that
h=pl(t; ged + (1 — gs)g). Therefore, there is 2 pg =0 such that if 0< g < ps, then (6) holds. This
establishes the lemma for g = min. ( pg, pg). QED.

To complete the proof of Theorem 3, we construct an equilibrium to a perturbed game by piecing
together strategies identified in Lemma 2, which we designed to be equilibrium behavior in the
perturbed game off the path of the original equilibrium, with strategies that suppert an equilibrium
to the perturbed game on the original equilibrium path. Therefore, we must restrict attention to only
those signals used in the original equilibrium. For sufficiently small perturbations of this game, we
can find an equilibrium ¢lose to the original equilibrium. Mareaver, we can do this even if we save
a small amount of 3's strategy to control the off-the-equilibrium path trembles. This is a cansequence
of Property 1, but we must be a bit careful because the canstruction in Lemma 2 does not guarantee
that each type of § voiuntarily sends m with the same probability. We need to intreduce another
cancept. For 0= p{¢) <1, a »-pseudo-equilibrium to 2 signaling game consists of strategies g and r
for § and R, respectively, such that

r(m)e 4, is a best response to g given m,
4 is a best response to r,
glm|t}=0and} 0 q(mjr) =1-w{c).
Thus, if #(¢) =0 for all ¢, then a v-pseudo-equilibrium is an equilibrium. If u*(r) is the payoff to a
Sender of type ¢ in a pseudo-equilibrium, then
w*t)=max Y ult,m alrfalm).
meM geAlm)

Far our purposes, we obtain an equivalent concept if we allow the tremble fg in the definition of
stability to depend on the type of Sender. The next lemma follows from Property 1.

LEMMA 3. In generic signaling games, for any equilibrivm in which every signal is senr with positive
probability and for every £, there exist p =0 and 5> 0 such that if 0§ < p for i=R and § and
if 0=w{t)=n for any t, then any (4, 4, F)-perturbation has a v-psendo-equilibrium within e of the
ariginal equilibrium. Moreaver, $'s utility in the pseuda-equilibrium does nor depend on ».

PROGF GF THEOREM 3: Lemma 1 praves ane implication. To complete the praof, we must show
that if A* = @ for all unused signals m, then the equilibrium is stable. We assume that there is only
one unused signal. This does not change the substance of the proof. We may take ¢ in the definition
of stability to be less than ¢ of Lemma 2. Pick n in Lemma 2 equal to the smaller of ¢ and n
(corresponding to the given £) in Lemma 3 and the 3 in the definition of stability equal to the
minimum of the p's from Lemma 2 and Lemma 3. For any {4, §, F)-perturbation with 0< 3, < § far
{=R and 5, first compute the payefis @*(¢) from Lemma 3. By construction, next we can apply
Lemma 2 to obtain the perturbed-equilibrium voluntary strategies ¢{m|¢). The manner in which we
selected 8 and n guarantee that 0= q(m|r) = v Consequently, we may apply Lemma 3 with #{t} =
g{m| ] in order to obtain strategies for § for signals used in the original equilibrium, that describe
equilibrium behavior for § in the perturbed game. This construction provides an equilibriam to the
perturbed game within e of the original equilibrium. Q.ED.
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