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Econometrica, Vol. 59, No. 5 (September, 1991), 1455-1485 

DURABLE GOODS MONOPOLY WITH ENTRY 
OF NEW CONSUMERS 

BY JOEL SOBEL 

This paper analyzes a model of a dynamic monopolist who produces at constant unit 
cost. Each period a new cohort of consumers enters the market. Each entering cohort is 
identical. Consumers within a cohort have different tastes for the good. My main results 
are: If players are sufficiently patient, any positive average profit less than the maximum 
feasible level can be attained in a subgame-perfect equilibrium; in the subset of 
subgame-perfect equilibria in which players use stationary strategies, the seller cannot 
make sales at prices significantly greater than the lowest willingness to pay when period 
length goes to zero; and the seller attains the maximum profit when commitment is 
feasible by charging the same (static monopoly) price in every period. 

KEYWORDS: Dynamic monopoly, repeated games, folk theorems, durable goods, Coase 
conjecture. 

1. INTRODUCTION 

THIS PAPER ANALYZES a model of a dynamic monopolist who operates in a 
market in which there is a regular flow of new consumers. The seller produces a 
durable good at constant unit cost. Each period a new cohort of consumers 
enters the market. Consumers wish to buy exactly one unit of the item, but are 
willing to wait. Resales are not allowed. Each entering cohort is identical. 
Consumers within a cohort have different tastes for the good. 

Allowing entry of new consumers changes the character of equilibria in the 
dynamic monopoly model. For interesting parameter values, the equilibrium 
specifies that the seller charge a relatively high price in most periods, selling 
only to buyers with high valuations. Periodically she cuts her price to sell to a 
large accumulation of buyers with lower valuations. After such a market-clear- 
ing sale, the pricing cycle begins again. My main result is that, if players are 
sufficiently patient, any positive average profit less than the maximum feasible 
level can be attained in a subgame-perfect equilibrium. I also show that the 
subset of subgame-perfect equilibria in which players use stationary strategies 
have the property that when the length of the time period goes to zero, the 
monopolist seller cannot make sales at prices significantly greater than the 
lowest willingness to pay. This result agrees with the arguments of Coase (1972) 

11 am happy to thank people who have helped me with this paper. Gene Grossman and Michael 
Katz were the first to point out that the equilibrium of Conlisk, Gerstner, and Sobel (1984) need not 
be subgame perfect. Dilip Abreu, Bob Anderson, Andreas Blume, John Conlisk, Vincent Crawford, 
Ray Deneckere, Darrell Duffie, Ian Gale, Oliver Hart, Mark Machina, Garey Ramey, Valerie 
Ramey, Hugo Sonnenschein, Max Stinchcombe, Kit Woolard, and seminar audiences at Northwest- 
ern, Pittsburgh, Toronto, UC Berkeley, UC San Diego, Wisconsin, and York made useful sugges- 
tions. I am especially grateful to two referees and a co-editor who carefully read the manuscript and 
provided detailed comments that greatly improved the form and content of the paper. MSRI, NSF, 
and the Sloan Foundation provided financial support. I finished the first draft of this paper while 
visiting the University of Wisconsin. I thank my colleagues there for helping to make my visit 
enjoyable and productive. 
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and the analyses of Stokey (1981), Bulow (1982), and Gul, Sonnenschein, and 
Wilson (1986) who analyze durable-goods monopoly models without entry of 
new customers. 

Ausubel and Deneckere (1989a) prove a folk theorem for the dynamic 
monopoly problem without entry of consumers. They show that any positive 
level of average profit less than the static monopoly profit can be achieved in a 
subgame-perfect equilibrium if players are sufficiently patient, the market 
demand function satisfies a mild regularity condition, and the lowest buyer 
valuation is not greater than the seller's (constant marginal) cost or production.2 
My result is similar. The assumption that there is a stationary inflow of new 
consumers replaces the assumption that the marginal cost curve intersects the 
demand curve. Like Ausubel and Deneckere, I prove the folk theorem by 
supporting an equilibrium path with a punishment that leads to lower profits. In 
my treatment in order to approximate the static monopoly average profit the 
punishment must be more severe than reverting to the stationary equilibrium. 
The stationary equilibrium profit is not a lower bound for the seller's equilib- 
rium profit. If players are sufficiently patient, then there exist equilibrium 
outcomes where the seller charges strictly less than the lowest valuation in every 
period. 

Bond and Samuelson (1984 and 1987) analyze another variation of the 
dynamic monopoly problem. They assume that the durable good depreciates; 
they permit resales. The monopolist producer must make replacement sales in 
order to maintain the stock of the good. Therefore equilibria necessarily involve 
transactions over infinitely many time periods. Bond and Samuelson (1984) show 
that the stationary equilibria of their model satisfy a version of the Coase 
conjecture: As the period length shrinks to zero, the time it takes the seller to 
supply the competitive quantity approaches zero. Their 1987 paper constructs 
nonstationary equilibria in which the seller is able to restrict supply to the 
monopoly profit maximizing level. 

Ausubel and Deneckere, Bond and Samuelson, and I identify different 
models in which the monopolist makes sales over infinitely many time periods. 
Under these circumstances, nonstationary equilibria exist because behavior at 
the tail end of the game is not determined. While stationary equilibria of these 
models exhibit the Coase property, the nonstationary equilibria generally do 
not. The essential difference between these papers and mine is that by assuming 
a steady inflow of new consumers and the absence of resales, equilibria in my 
model involve cyclic variations in price. 

Prohibiting resales plays a critical role in my model. If an efficient resale 
market existed, then the entire stock of the good is on the market at each point. 
Since consumers with the highest valuations keep the item, the seller need only 

2 In other work, Ausubel and Deneckere (1985) analyze a model in which a monopolist produces 
a sequence of goods and faces a growing market demand. They assume that consumers are 
uncertain about the seller's constant marginal cost of production, and construct an equilibrium in 
which the low cost type of seller earns high profits by imitating the strategy of the highest cost type 
of seller. 
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keep track of total sales to determine the residual demand. Without resales, the 
seller must know the number of consumers with each willingness to pay that 
remain in the market. Since buyers have different tastes, the state of the market 
in this model is at least two dimensional. Increasing the dimensionality of the 
state space adds a complication to the analysis not found in the Ausubel- 
Deneckere and Bond-Samuelson papers. 

I describe the model in Section 2. Section 3 discusses stationary equilibria. 
Stationary equilibria exist in the model. I discuss the effect of shrinking the 
period length, and show that the number of periods between market-clearing 
sales is bounded above by a number that does not depend on the period length 
or the discount factor. Consequently, as the period length shrinks to zero, the 
length of time between sales also shrinks to zero. This observation proves 
that the Coase conjecture holds for stationary equilibria in my model. I prove 
the folk theorem for seller's payoffs in Section 4. In Section 5 I describe the 
maximum feasible level of average profits. The seller's maximum average profit 
if she can commit to a selling mechanism is her monopoly profit in the static 
model. She attains the maximum profit by charging the same price in every 
period. Section 6 discusses related papers. Conlisk, Gerstner, and Sobel (1984), 
henceforth CGS, were the first to study this model. They use a different solution 
concept, and obtain different results. I explain the differences in Section 7. 

2. THE MODEL 

The monopolist faces a uniform group of nonatomic consumers indexed by 
t > 0 and by j = 1 or 2. Time periods are discrete and indexed by the nonnega- 
tive integers. In period n new consumers with indices (t, j) for n < t < n + 1 and 
j = 1 and 2 enter the market. The measure of an interval (t1, t2) of consumers 
with j = 1 is a(t2 - t1) and of consumers with j = 2 is (1 - a)(t2 - t1), where a 
is strictly between zero and one. Each consumer wishes to buy just one unit of 
the product. Once a consumer buys the product, he leaves the market forever. 
Resales are forbidden3 and the good does not depreciate. Consumers cannot 
buy before they enter the market. The utility of a consumer indexed by t and j 
who buys in period n at the price p is j(Jj -p) provided that n > [t], where 
[t] is the greatest integer less than or equal to t. The discount factor : is 
assumed to be strictly between zero and one. A consumer who never makes a 
purchase receives utility zero. Vj as the maximum willingness to pay of a 
consumer indexed by j. I assume that V1 > V2> 0. When a consumer of type 
(t, j) first enters the market, consumers of type (s, i) for s < t and i = 1 or 2 who 
have yet to make a purchase are still in the market.4 Consumers differ in at 

3 I can justify the no-resales assumption in several ways. First, there is nothing in the model that 
requires the good to supply a flow of services. Buyers may consume the good completely in the 
period that they buy it. Second, it may be too costly for an individual to market a single item. Third, 
buyers may doubt the quality of the good unless it is supported by the monopolist's reputation. 

4 When [t] = [s], consumers of type (t, j) and (s, j) may first buy in the same period, n = [t]. 
However, if s < t, then the type (t, j) buyer enters the market after the type (s, j) buyer. The 
distinction simplifies the definition of stationary strategies. 
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most two ways: when they enter the market, and how much they are willing to 
pay for the item. Two consumers with the same j index have cardinally 
equivalent preferences once they are both in the market. The monopolist can 
produce at constant unit cost, assumed without further loss of generality to be 
zero. The monopolist maximizes the expected present value of revenue; she 
shares the consumers' discount factor f. 

In every period, following the entry of new consumers, the monopolist sets a 
price. Consumers in the market then decide whether to accept or reject this 
price. A history at date n is a complete description of what has happened in the 
past. It includes all past prices and purchase decisions of consumers. The 
monopolist's strategy specifies a price to charge in each period as a function of 
the history of the game. A strategy for a consumer specifies whether or not the 
consumer will accept the monopolist's current price given a history and the 
current price. I am interested in characterizing the subgame-perfect Nash 
equilibria (henceforth simply equilibria) of this game. 

As in Gul, Sonnenschein, and Wilson (1986), I make a technical assumption 
that restricts the set of equilibria and makes it easier to describe the equilibria 
that remain. I assume that the equilibrium actions of each agent are constant on 
histories in which prices offered are the same and the sets of consumers who 
accept in each time period differ by at most sets of measure zero. This 
assumption guarantees that a unilateral deviation by a consumer cannot change 
the actions of other agents; only the monopolist's unilateral deviations can 
influence the course of the game. Gul, Sonnenschein, and Wilson (1986) present 
an example to show that this assumption does restrict the set of equilibria. 
Similar examples exist for the model of this paper. 

3. STATIONARY EQUILIBRIA 

This section describes the equilibria of the model when each consumer uses a 
strategy that depends only upon his valuation, the measures of high- and 
low-valuation consumers in the market when he entered, the measures of high- 
and low-valuation consumers in the market currently (the current state), and the 
current price of the monopolist. I call these strategies stationary. The stationar- 
ity assumption guarantees that consumers do not condition their behavior on 
prices charged before they entered the market. Stationary equilibria are impor- 
tant for two reasons. First, Theorem 2 shows that equilibria in stationary 
strategies satisfy the Coase conjecture, which has been the focus of much 
attention in the literature on dynamic monopoly problems. More importantly, I 
use properties of stationary equilibria to construct nonstationary equilibria in 
Section 4. 

Denote by (C, c) the state when the measure of high-valuation buyers in the 
market is aC and the measure of low-valuation buyers in the market is (1 - a)c. 
When the state of the market is (C, c), I say that the mass of high- (low-) 
valuation consumers is C (c). The characterization of the stational-y equilibria 
requires three preliminary results. 
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LEMMA 1: In any stationary equilibrium and after any history, if the state of the 
market is (C, c), then the present value of the seller's expected profit is at least 
[CA + c(l - )]V2 + 13V2/(1 - 1), and the seller's price specified by the equilib- 
rium is at least V2. 

Lemma 1 states that the price of the monopolist never falls below V2, the 
willingness to pay of the low-valuation consumers. This result is standard in 
durable-good monopoly models without entry of consumers (for example, Gul, 
Sonnenschein, and Wilson (1986)) and in the formally related bargaining models 
with one-sided incomplete information (for example, Fudenberg, Levine, and 
Tirole (1985)). I do not provide a proof of the result; it is essentially identical to 
the arguments of Fudenberg, Levine, and Tirole (1985) and Gui, Sonnenschein, 
and Wilson (1986). The stationarity assumption is necessary for Lemma 1. There 
exist nonstationary equilibria, described in Section 4, in which the seller charges 
less than V2 on the equilibrium path. 

When the monopolist drops her price to V2 and clears the market, she is said 
to hold a sale. Lemma 2, stated below, shows that eventually enough low-val- 
uation consumers enter the market to induce the seller to drop the price to V2, 
at which time all consumers currently in the market purchase the good. In 
particular, it shows that in every stationary equilibrium there is a sale. It follows 
that every buyer eventually purchases in a stationary equilibrium. 

Stationary equilibria can be characterized by first analyzing equilibria of a 
game that ends as soon as the seller holds a sale. In these auxiliary games the 
strategies and preferences of the buyers and the seller are the same as in the 
original game except that when the seller first holds a sale there is no further 
entry and the seller receives a value W (discounted from the period after the 
sale) instead. Since no one will buy at a price greater than V1, equilibrium profit 
is bounded above by V1/(l -13). It follows from Lemma 1 that the equilibrium 
profit is an element of [V2/(l - 1), V1/(l - 1)]. I assume that continuation 
values to auxiliary games are also in this interval. Lemma 2 states also that these 
games last a finite number of periods in the sense that in any equilibria of these 
games there is a bound on the length of time before the seller has a game- 
ending sale. 

LEMMA 2: Given P e (0,1), there exists a M* such that, in any stationary 
equilibrium, after any history, there are never more than M* periods until the next 
sale. M * also bounds the number of periods until the seller holds a sale in any 
equilibrium, after any history, of any auxiliary game with continuation value 
W E [V2/(1 -1 ),Vl/(l -13)]. 

There is a proof of Lemma 2 in the Appendix. 
It follows from Lemma 2 that any stationary equilibrium gives rise to an 

equilibrium to an auxiliary game where the continuation value is equal to the 
seller's equilibrium discounted profit. Conversely, if W is the discounted profit 
in an equilibrium to an auxiliary game with continuation value W, then I obtain 
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a stationary equilibrium by repeating the pre-sale portion of the auxiliary game. 
To characterize stationary equilibria it suffices to do two things: prove the 
existence of equilibria to auxiliary games with continuation values W> 
VJ2(l - 1), and prove that there exists a W* such that the profit of the 
equilibrium with the continuation value W* is equal to W*. Benabou (1989) 
uses similar arguments to construct equilibria in his model. 

Lemma 3 characterizes equilibria of the auxiliary games. 

LEMMA 3: For each WE [VJ2(1 - /), V1/(1 - 1)], the auxiliary game deter- 
mined by W has an equilibrium. In all equilibria of the auxiliary game the seller 
earns the same profit, which is a continuous function of W. The equilibrium path 
of prices is uniquely determined by the first price; following the first period, prices 
on the equilibrium path are deterministic and, when the sale is to occur i periods in 
the future, the seller charges (1 - 1i)Vl + 1 V2. A positive mass of buyers makes 
purchases in each period. 

I prove Lemma 3 by constructing equilibria to auxiliary games in which the 
seller must hold a sale in the next i periods (and after the sale she earns W). 
Lemma 2 implies that requiring the seller to hold a sale in the next i periods is 
not a binding constraint if i is greater than M*. Therefore, by starting with 
i = 1, and inductively increasing the maximum time until the next sale from i to 
i + 1 periods, an equilibrium to the auxiliary game is determined in a finite 
number of steps. The argument that I use is close to that of Fudenberg, Levine, 
and Tirole (1985), although some modifications must be made because there is 
entry of consumers. The Appendix contains a sketch of the proof. Next I 
describe equilibrium strategies. 

In the Appendix I construct several functions associated with the equilibrium 
to the auxiliary game. When (C, c) is the state of the market, rI*(C, c; W) is the 
profit of the monopolist; S*(C, c; W) is the set of profit maximizing prices; 
P*(C, c, p; W) is the expected value of the seller's next price if she charged p in 
the previous period (on the equilibrium path the distribution of seller's next 
price is degenerate); and D*(c, i; W) is the smallest value of C such that the 
seller wishes to hold a sale in i or more periods. For each i = 1, 2, 3,. .., define 
Pi by 

( 1) Pi = (1 - gi 1)V1 + Vi 2 *V 

Since V! -pi =,8i -(Vl - V2), a high-valuation consumer obtains the same 
utility from buying immediately at pi or waiting i -j periods and buying at pj. 
Given the profit functions, I construct the strategies of the consumers. I need to 
explain how consumers respond to prices as a function of the state of the 
market. Low-valuation consumers purchase if and only if the price is less than 
or equal to V2. The fraction of high-valuation buyers accepting the price 
p E (Pi, Pi+ 1] is as large as possible consistent with the constraint that it would 
be optimal for the seller to charge at least pi in the next period. That is, if there 
are currently accumulated masses of C high-valuation buyers and c low-val- 
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uation buyers, then C + 1 - D*(c + 1, i; W) is the mass of high valuers who buy 
at p E (Pi, Pi+ 14. No one buys if C + 1 - D*(c + 1, i; W) is less than zero. The 
construction does not explicitly determine strategies of the buyers; it simply 
describes aggregate behavior. I could assume that purchases are made on a 
first-in, first-out basis. Specifically, when there have been c periods since the 
last sale, and N is the date of the last sale, then a consumer of type 
(t, j) = (s + N + 1, 1) buys at the price p e (pa, pn+?] if and only if 

(2) s < c + 1-D*(c + 1, n; W). 

If buyers play the strategy defined in (2), then their aggregate behavior coincides 
with that described above. The strategy (2) depends only on the mass of 
low-valuation buyers in the market when the buyer arrived (s), the number of 
low-valuation buyers that have accumulated since the last sale (c), and the 
current price (which determines n). 

S*(C, c; W) gives the optimal responses to the buyers' strategies. If it is 
single-valued, then the seller charges that price. If it contains more than one 
element, then the seller chooses a randomization that is determined by the last 
price charged. A randomization exists that is consistent with the expectation 
described by P*(.). The behavior of the seller on the equilibrium path is 
uniquely determined following her choice of initial price. The initial price may 
be any element of S*(1, 1; W). In subsequent periods (on the equilibrium path) 
the seller must charge the largest price in S*(.). The monopolist will need to 
randomize following certain defections (past prices that were not equal to pi for 
some i). 

Existence of stationary equilibria is a consequence of Lemma 3. 

THEOREM 1: There exists a stationary equilibrium. In all stationary equilibria, 
the interval between sales is no greater than M*; following the first period after a 
sale, prices on the equilibrium path until the next sale are deterministic and, when 
the sale is to occur i periods in the future, the seller charges (1 - f3)Vl + f3V2. A 
positive mass of buyers makes purchases in each period. Furthermore, if adV1 < V2, 
then the stationary equilibrium outcome is unique. In it, the seller charges V2 in 
each period. If aV1 > V2, then the seller charges prices greater than V2 on the 
equilibrium path of any stationary equilibrium. 

PROOF: Lemma 3 constructs an equilibrium given the continuation profit 
available to the seller. Existence of equilibrium reduces to finding a value, W*, 
such that wr*(1, 1; W*) = W*. The existence of W* follows from the continuity 
of nr*(1, 1; * ), and from 

(3) V2/(1-3) -< *(1, 1; V2/(1-)) and 

(4) VI/(i -i ) >() f r*(a, 1; Vs/(l -a ))C 

Inequality (3) follows because the seller can always hold a sale when (C, c)= 
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(1, 1); hence rI*(l, 1; W)> V2+,l/W for all W. Since no one buys if the seller 
charges more than V1, V1/(1 - f) > I*(1, 1; W) for all W. Therefore, (4) holds. 

In any stationary equilibrium the seller can sell to all high valuers currently in 
the market if she charges P2. By doing so she earns at least 

(5) P2a +1p1[a + 2(1 - a)] +?f2W, 

when the state of the market is (1, 1). If the seller charges V2 in every period on 
the equilibrium path, then W= V21(1 -,l/). Direct computation reveals that (5) 
is strictly greater than V27(1 -13) if aV1 > V2. This proves that if aV1 > V2, 
then the seller must sell only to high-valuation buyers in some periods. Now 
assume aV1 < V2. Another computation shows that if C < c and W > V21(1 -13), 
then 

(6) pi[Ca + c(1 - a)] +13W>p2Ca +13p4a + (c + 1)(1 - a)] +132W. 

(6) guarantees that the seller strictly prefers to hold a sale immediately rather 
than to charge P2. Furthermore, no high buyer will purchase at a price greater 
than P2, since he expects the price in the following period to drop to V2. 
Consequently the seller must charge V2 in every period. 

Several features of stationary equilibria are of interest. Following the first 
period after a sale, the equilibrium path generates a determinate sequence of 
prices. These prices are of the form (1). Low-valuation customers buy at the first 
sale date after they arrive in the market. They receive no surplus. High-val- 
uation buyers need not buy as soon as they enter the market. Instead, in 
equilibrium, a fraction of the high-valuation buyers may wait to make a 
purchase. Although there is no need for buyers to randomize in equilibrium, it 
is essential to allow different high valuers in the market at the same time to 
behave differently. These buyers receive the same utility if they buy on any day 
until the next sale. The seller needs to keep a significant number of high-val- 
uation customers in the market to make the policy of delaying a sale credible. 
The fewer high-valuation buyers in the market, the more attractive it is to hold 
a sale. That consumers with the same preferences behave differently is not a 
novel feature of this model. It appears in the model of Gul, Sonnenschein, and 
Wilson (1986) when the market demand curve is a step function; and it appears 
in the qualitatively similar bargaining model of Fudenberg and Tirole (1983) in 
the form of randomization by the high-valuation type of buyer. 

Theorem 1 also provides conditions when stationary sales cycles are nontriv- 
ial. If aV1 > V2, then the seller would prefer to charge a high price rather than 
a low price if the game lasted for only one period. To see this, observe that in 
the one-period game the seller has two sensible strategies: she can sell to buyers 
with high and low valuations, or she can sell only to the high valuers. In the first 
case, the highest price she can charge is V2, and she earns V2. In the second 
case, the highest price she can charge is Vl, and she earns aV1. CGS identify 
this condition. It is also well known that for the durable-goods monopolist 
problem with no entry and two valuations the monopolist charges more than V2 
in equilibrium only if aV1 > V2. 
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The recent theoretical models of the durable-good monopolist discuss the 
observation made by Coase (1972) that a monopolist loses her monopoly power 
if the time between offers shrinks to zero. Gul, Sonnenschein, and Wilson 
(1986) establish the result for markets with arbitrary demand curves (satisfying 
mild regularity conditions) and no entry of new consumers, provided that the 
minimum consumer valuation is strictly greater than the constant marginal cost 
of production. Earlier papers by Stokey (1981) and Bulow (1982) establish the 
result in special cases. A rough intuition for the theorem is that buyers know 
that the price will fall to the lowest valuation in the market eventually and if the 
interval between offers is short, then it will not take long for the prices to drop. 

When there is no entry of new consumers, any incentive to charge a high 
price disappears as soon as high valuation buyers leave the market. When new 
consumers with high valuations enter the market in each period, the seller 
always has some incentive to charge high prices. This observation suggests that 
the seller retains some power to extract the surplus of high valuers as the time 
between offers shrinks to zero. In Section 4, I show that this intuition is correct: 
There exist equilibria in which the seller extracts monopoly profits from the 
buyers. Nonstationary strategies are necessary for the result. Theorem 2 below 
states that the number of periods until the next sale in any stationary equilib- 
rium has an upper bound that does not depend upon the discount factor or the 
interval between periods. It follows that as the time between periods shrinks to 
zero, no buyer will need to wait long before the next sale. Therefore, no buyer 
will be willing to pay much more than V2, the lowest valuation. If the time 
between periods is tiny, then the amount of new entry in any single period is 
tiny. The following provides some intuition for the result. When there is any 
real time delay between sales, the number of new entrants is negligible relative 
to the number of low-valuation customers who have been waiting. In a station- 
ary equilibrium, the temptation to hold a sale becomes irresistible unless there 
is a large backlog of high-valuation buyers waiting as well. But if there is a large 
backlog of high-valuation buyers, then the arguments of Gul, Sonnenschein, and 
Wilson (1986) suggest that the seller would do better by cutting prices more 
rapidly. The Appendix contains a direct proof of Theorem 2. The bound derived 
in the proof is equal to (M + 1)a/[M2(1 - a)] + 1, where M = V2/(V1 - V2). 

THEOREM 2: There exists a finite value K that does not depend on the interval 
between periods or the discount factor such that, after any history leading to a 
market state (C, c) with C < c,5 the number of periods until the next sale in any 
stationary equilibrium is bounded above by K. 

Unlike the bound M* of Lemma 2, which depends on ,3, K depends only on 
V1, V2, and a. 

5 If a low-valuation consumer prefers to buy in the current period, then high-valuation consumers 
will strictly prefer to buy. Consequently, market states in which C > c occur only when there has 
been a simultaneous deviation by a positive mass of buyers. Behavior that follows simultaneous 
deviations does not influence the equilibrium path. 
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Hart (1989) shows that there is a finite upper bound to the number of periods 
before which bargainers will reach agreement with probability one in a two-type 
model of sequential bargaining. His result applies directly to the durable-good 
monopoly problem when the market demand function is a step function. 
Theorem 2 extends the result to a model where new consumers enter the 
market. 

In order to analyze the effect of period length on the stationary equilibrium, I 
let A be the length of a period. A is also the flow of new entrants into the 
market per period. The relevant discount factor is p A. If there are no more than 
K periods between sales in a stationary equilibrium, then (1) implies that the 
seller charges prices no greater than 

() V2 + (1 -,l3AK)( V1 - V 

Since the second term in (7) goes to zero as A approaches zero, Theorem 2 
implies a version of the Coase conjecture valid for my model. 

COROLLARY: Given any E > 0, there exists 8 > 0 such that if the period length 
A is less than 8, then the seller charges prices no higher than V2 + E and earns 
profit no greater than (V2+ )/(1 -/3) in a stationary equilibrium. 

4. THE FOLK THEOREM 

My main result is that the model of this paper admits multiple, qualitatively 
different, equilibrium outcomes. Theorem 3 demonstrates that if the players are 
sufficiently patient, then any positive average profit level less than max {aV1, V2} 
is attainable in an equilibrium (average profit is 1 - ,3 times the present 
discounted value of profit). In Section 5, I show that this upper bound is the 
best possible: Using the optimal selling mechanism the seller earns average 
profit equal to max{aV1, V2}. 

THEOREM 3: Given E > 0, there exists /8* E (0, 1) such that if l3 E (/3*, 1) and 
V E [E, max{aV1 - e, V2}], then there exists an equilibrium where the seller's 
discounted profit is V/(1 - /3). 

I describe strategies that support equilibria yielding average profit between E 
and max{aV1 - e, V2} assuming, without loss of generality, that E is "small" 
(2e < aV2 is sufficient). I close the section with a comparison of the result to 
related work and a discussion of how one might select an equilibrium outcome 
in the model. 

Equilibria have a simple path. More complicated strategies are specified off 
the equilibrium path. I describe first the strategies used on the equilibrium path. 
Then I describe the punishment equilibria. Throughout this section, I assume 
aV1 > V2. The strategies below apply only for this case. A slight modification, 
given in the Appendix, is needed when aV1 < V2. 
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The equilibrium path behavior depends on whether the seller's equilibrium 
profit exceeds V21(1 - ,3). On the path of an equilibrium in which the seller 
earns V7(1 -,3) for Ve (0, V2], the seller charges V in every period. Buyers 
purchase as soon as they enter the market. 

To attain equilibrium average profit equal to V E (V2, aV1), the seller holds a 
sale every n periods and charges Pn-,+1 = (1 - nC)V1 + /3'-C2 when there 
are c periods of low-valuation buyers in the market. These prices are of the 
form (1) used in the stationary equilibrium. On the equilibrium path high-val- 
uation buyers purchase as soon as they enter the market; low-valuation buyers 
purchase the first time after they enter the market that the price falls to V2. The 
time between sales, n, depends on the desired equilibrium average profit, V. To 
compute the precise relationship, I use a result found in CGS. CGS compute 
the profit of the seller if c periods of low-valuation buyers are in the market, 
sales occur every N periods, prices are given by (1), and buyers purchase the 
first time the price is no higher than their valuation. They find that this value, 
call it 4(N, c), is equal to aV1/(1 -,3) - [(aVj - 72)N/3c]/(1 -_,3N) + 
a(Vl - V2)3N-c(c - 1). O(N, 1) is what the seller earns on the path of the 
equilibrium when sales occur every N periods. When aV1 > V2, 4(Q, 1) is strictly 
increasing, (1, 1) = V27(1 - /), and limN,o 4(N, 1) = aV1/(1 - /). I define n 
to be the solution to 4(n, 1) = V1(1 - ,B); n is defined implicitly by 

(8) (a!7i - V),/[(aV1 - V2)(1 -/3)] = n/ n-/(1 / 3f). 

The parameter n depends on /3 and on the profit level of the equilibrium; 
provided that V e (V2, aV1), it is uniquely determined by (8) and is an increasing 
function of V. Since n is the number of periods between sales, it should be an 
integer. I describe the equilibrium assuming that n can take on any positive real 
value. There are several ways to avoid the integer problem. For example, one 
could specify that equilibrium cycles alternate in length between the integer 
values closest to the solution of (8). Properly chosen, these cycles would lead to 
profit that is arbitrarily close to V/(1 - ,3).6 

If the seller is to attain average profit greater than V2, then there should be a 
long interval between sales. If the length of time between sales is n, and f3n 
converges to one, then the prices given by (1) are not significantly greater 
than V2. Cycles are not long enough to generate average profit greater than V2. 
Since lim 3.1 /3fn = limo 1 e- ( -? n the asymptotic properties of (1 - ,B)n 
determine those of /3n. It is straightforward to show that if (8) defines n, then 
limo 1(1 - f)n exists and 

(9) lim (1 -,3) n = L where (eL - 1)/L = (aV1 - V2)/(aV1 - V), 

so n increases at a rate proportional to 1/(1 - 1). (9) implies that /3n converges 

6Alternatively, one could allow public correlation, which would make it possible to attain any 
equilibrium value in the convex hull of the values attainable through cycles of integer length. Or one 
could pick the least integer greater than the value of n that solves (8) and lower the prices on the 
equilibrium path to make the seller's profit equal to V/(1 - ,3). 
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to something strictly less than one; the greater is V, the smaller is the limit. The 
result is intuitive because in order to approximate average profit of aV1, 
high-valuation buyers must be induced to pay V1; they will do so only if the 
discounted surplus available to a high valuer who waits for a sale, which is at 
least 8f3(Vl - V2), converges to zero. 

If the seller deviates from the equilibrium path, then a punishment begins. 
The nature of the punishment depends on how many buyers are in the market 
at the time of a deviation; punishment strategies are independent of V, the 
average profit generated on the equilibrium path. Let G(C, c) = Ca + c(l - a) 
be the measure of consumers when (C, c) is the state of the market. A deviation 
triggers a qualitatively different punishment depending on whether G(C, c) is 
greater than or less than m, where m is a number determined by ,3 (but 
independent of V). I define m precisely below. For now it is enough to know 
that m is so large (relative to /3) that limo 1 fl3 = 0 or, equivalently, 

(10) lim(1-/3)m=oo. 
,13- 

Equations (9) and (10) imply that m > n. If G(C, c) > m in the current period or 
in the event of simultaneous deviations, then players follow strategies from a 
fixed stationary equilibrium. Since m > n, this punishment occurs only after 
histories in which there have been many deviations from the equilibrium. If 
G(C, c) A m, then a deviation triggers a (state-dependent) two-stage punish- 
ment equilibrium, which is necessary because the stationary equilibrium is not a 
harsh enough punishment to encourage the seller to follow an equilibrium path 
that leads to average profit approaching aV1 when G(C, c) < m. 

To get an idea of why the stationary equilibrium is not a severe enough 
punishment, argue as follows. The attraction of cutting prices in the middle of a 
cycle is that the seller can move forward the revenue she obtains from the 
accumulated low-valuation consumers; if, as in the stationary equilibrium, 
everyone in the market buys when the seller charges V2, then the gain from 
selling in the middle of a cycle (when there are, say, (1 - a)n accumu- 
lated periods of low-valuation buyers from a E (0, 1)) is approximately 
(1 - a)(1 - ,l3an)(1 - a)nV2 because the seller earns V2 from the accumulated 
(1 - a)(1 - a)n measure of low valuers in the current period rather than earning 
V2 in periods in the future. On the other hand, after the market clears the seller 
earns an average profit of approximately V2 in the stationary equilibrium, 
while the average profit on the equilibrium path can be no larger than aV1. 
Consequently, a deviation is attractive if (1 - a)(1 - /3an)(1 - a)nV2 > 

(aV1 - V2)7(1 - ,3), which, by (9), will hold if V is close to aV1. 
Since reverting to the stationary equilibrium in the event of a deviation 

cannot support a high-profit outcome, a harsher punishment is needed when 
G(C, c) < m at the time of a deviation. The punishments are qualitatively 
similar to the two-stage punishments used by Abreu (1986) (see also Abreu 
(1989) and Fudenberg and Maskin (1986) for related approaches) to study 
equilibria in repeated games with discounting. The first stage of the punishment 
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is severe. The second stage is a reward for participating in the first stage. The 
first phase of the punishment in the equilibria that I construct takes place in the 
period that the deviation occurs. The equilibrium specifies that the seller charge 
a low price, denoted by g(C, c); everyone in the market buys at this price. This 
phase of the punishment lasts for only one period. The second phase of the 
punishment is a reward that involves following a path, selected from the class of 
candidate equilibria described above, for the remainder of the game. The 
second-phase equilibrium yields profit V(C, C).7 The equilibrium specifies a 
different punishment depending on the state of the market when a deviation 
took place. There is only one punishment equilibrium in Abreu's work. The 
reason for the difference is that the game studied here is not a simple repeated 
game. Only the seller is an active player in every period. The game repeats after 
a market clearing sale, but sales occur at endogenously determined intervals. 
Most important, there is a qualitatively different subgame for each market state 
(C, c), and there are an infinite number of potential states. 

I give explicit formulas for g(*) and v(*) below. First, I give an explanation of 
why the punishments depend nontrivially on the state of the market. Imagine 
strategies which specify that in the event of a deviation, the seller punishes 
herself by charging a low price p < V2, independent of the market state at the 
time of the deviation. Buyers would then never expect the price to fall below p, 
and the seller could induce everyone in the market to buy at any price less than 
,8p + (1 -, )V2. As a result, the seller prefers to charge prices slightly higher 
than p rather than to follow the equilibrium. The same reasoning suggests that 
g( ) must increase to encourage the seller to participate in her own punishment. 
The function that I use actually increases without bound. No buyer will 
purchase at a price greater than his valuation, so the seller will not be able to 
clear the market when the market state (C, c) is large. That is why I use the 
stationary equilibrium as a punishment when G(C, c) > m. g( ) can, however, 
be made arbitrarily small for all states (C, c) such that G(C, c) < n. Formally, 
there exists /3* E (0, 1) such that for all , E (,3*, 1) and the n corresponding to 
,l given by (8), 

(11) if G(C,c) An, then g(C,c) <E. 

Since on the path of the equilibrium the state of the market is of the form (1, c) 
for c < n, (11) limits the seller's profits when she deviates from the equilibrium 
path and clears the market before the prescribed date. 

If the seller participates in her punishment and charges the price g(C, c), 
then everyone in the market buys. The second phase of the punishment begins 
with the state of the market (1, 1); for the rest of the game the players use 
strategies that lead to the payoff of v(C, c) for the seller. The construction 
requires that v(*) satisfy several properties. If ,v(1, 1) > s/(1 - ,3) it would not 

7(C, c) refers to the state of the market at the time of the deviation; v(C, c) is the continuation 
value to the seller when there is only a single period's accumulation of high and low consumers in 
the market immediately following a period in which the seller participates in her punishment by 
charging g(C, c). 
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be possible to support an equilibrium in which the seller earned average profit 
e; instead, the seller would prefer to deviate in the very first period and receive 
a punishment that is better than the equilibrium itself. In fact, I require that 
there exists /3* E (0, 1) such that for all l3 E (,3*, 1), 

(12) if G(C,c) <n, then v(C,c)=e/(1-/3). 

Recall that on the equilibrium path, G(C, c) < n. Provided that (11) holds, so 
that g(C, c) is less than E on the equilibrium path, (12) guarantees that the 
seller has no incentive to deviate from the equilibrium path. In view of (12), one 
might hope that it is sufficient to set v(C, c) = s/(1 - /) for all (C, c). Unfortu- 
nately, I cannot take v(C, c) to be a constant. Unless v(C, c) is as large as the 
stationary equilibrium payoff when G(C, c) = m, the seller would not participate 
in her punishment; instead she could defer sales entirely for a period in order to 
earn the high profits of the stationary equilibrium that follows. For this reason, I 
define U = (aV1 + V2)/2 > V2 and require that 

(13) if G(C, c) = m + 1, then v(C, c) = U/(1 -/3). 

I next describe the strategies of the buyers in the punishment portion of the 
equilibri-um. If G(C, c) > m + 1, then players follow strategies from the fixed 
stationary equilibrium in the continuation game. When G(C, c) E (m, m + 1], 
the equilibrium specifies that the seller charge p = g(C, c). If she does, then 
everyone in the market buys; if she does not, then players follow strategies from 
the fixed stationary equilibrium in the continuation. If the seller charges 
p # g(C, c) when G(C, c) < m, then the new market state is 

(C+ 1,c + 1) if p> (1 -/3) V +/3g(C+ 1,c + 1), 
(F, c + 1) if p =(1- 13)V1 + 13g(F, C + 1) 

for 1 F-- C+ 1, 

(14) (D, d) (1,C + 1) if p((1 - 3) VI ++ gl, C + ') ) 
(1 - /3)17 + /3g(1, c + 1)), 

(1,f) if p =(1 -f)V2+fg(1,f) 

for 1 <f c + 1, 
(1,1) if p < (1 -f3)V2+fg(1,1). 

I can use the description of how the state changes to specify the behavior of 
individual buyers. In the top line of (14), no one buys; in the second line a 
fraction of the high valuers buy; in the third line all of the highs and none of the 
lows buy; and so on. For prices in the ranges given in the second and fourth 
lines of (14) there are many ways to specify behavior of individuals that give rise 
to the same change in the state of the market. 

To interpret (14), notice that if the seller does not participate in the first 
phase of the punishment, then the punishment begins again in the next period. 
The price in the next period is of the form g(D, d) for some (D, d). If all buyers 
in the market buy either in the current period or the next one, then the state 
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must change according to (14). Specifically, no high valuers buy at p if the 
surplus from waiting is greater (that is, when V1 -p </3[V1 - g(C + 1, c + 1)] or 
p > (1 - f3)V1 + fg(C + 1, c + 1)); some high valuers buy if they obtain the same 
surplus whether they buy right away at p or in the next period at g(D, d); all 
the high valuers buy if they are better off accepting p today than g(l, c + 1) 
tomorrow. Similar arguments apply to the low-valuation buyers. 

To complete the description of the equilibrium, I give explicit formulas for 
v(&) and g( ). Let g(C, c) = [(1 - )V1G(C, c)7]/(r), and let -q take on any 
value in the interval (1/2, 1). Since -q < 1, (9) implies (11). Define the parame- 
ters m and m' by 

(15) [(1 -,3)V1(m') 7J /(,387) = E and [(1 -83)V1(m + 1)'] ( 7R) = V2; 

m > m' and g(C, c) is less than, equal to, or greater than 8(V2) depending on 
whether G(C, c) is less than, equal to, or greater than m' (m + 1). m' and m 
depend on the discount factor, but, unlike n, do not depend on the profit of the 
equilibrium path. Since -q < 1, (10) holds. I use the particular function form of 
g(.) to define v(&) and to show that it is in the interest of the seller to charge 
p = g(C, c) in the first phase of the punishment portion of the equilibrium. 
Lemmas 5 and 6 contain the details of the argument. I give a sketch following 
the definition of v( ). 

Let v(C, c) = (1 - ,3)- max{e, g(C, c) + (U- V2)(G(C, c) - m')/(m + 1 - 

m')}, which, since g(C, c) < E if and only if G(C, c) < m', implies that 

87(1 -/3) if G(C, c) < m', 

16) v(C c)i {g(C,c) + (U- V2)(G(C,c) -m')/(m + 1 -m')) 
(16) v(C,c)- (~~0 -1-f) 

I if G(C,c) km'. 
v(&) is nondecreasing and, since m' > n for ,3 sufficiently close to one, satisfies 
(12). (13) follows directly from (15) and (16). The proof of Theorem 3 uses two 
additional properties of v(&) that must hold for ,3 sufficiently close to one: 

(17) g(C,c)<(1-,3)v(C,c) and 

(18) v(C, c) -,3v(C + 1, c + 1) > 8/2. 

(17) follows immediately from the definitions of v(*), g(*), and m'. The 
inequality is used to show that when the seller charges g(*), the market clears 
because buyers do not expect to have an opportunity to buy at a lower price. 

(18) is an immediate consequence of the definition of v(&) when G(C, c) < 
m' - 1. Lemma 4 (in the Appendix) proves it in general. I use (18) to show that 
the seller responds optimally when she participates in her punishment. If the 
seller participates in her punishment, then she receives the reward v(C, c) 
starting in the next period. If she delays the punishment for only period, then 
her largest possible reward is v(C + 1, c + 1), but it must be discounted since it 
begins one period later. (18) states that the loss associated with postponing the 
reward for a period is bounded away from zero. 
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Now I give an informal explanation of why it is in the interest of the seller to 
charge p = g(C, c) in the first phase of the punishment portion of the equilib- 
rium. There are three possible situations to consider. First, if players are 
following a stationary equilibrium, then there is nothing to prove. 

Second, if G(C, c) E (m, m + 1], then the equilibrium specifies that the seller 
clear the market by charging g(C, c), which is approximately V2. By the 
definition of v(*) and (13), when /3 is close to one she earns an average profit of 
nearly U in the reward phase of the equilibrium, which begins in the next 
period. The attraction of a deviation to the seller is that she can sell to high 
valuers at prices greater than V2. Since, by Theorem 2, there are at most K 
periods until the next sale in a stationary equilibrium, the seller can charge no 
more than (1 - 3K)1 + K12 < V2 + K(1 - )(V1 - V2). Even if the seller could 
earn the extra K(1 - )(V1 - V2) on each of the high valuers in the market, her 
gain would be on the order of m(1 - /); her continuation profit would be the 
stationary equilibrium profit of roughly V21(1 - /). The punishment for a 
deviation is therefore approximately (U - V2)/(1 - /). Since -q > 1/2, (15) 
implies that m(1 - /) is small relative to 1/(1 - /); the potential profits that the 
seller could make on the accumulated highs is not large enough to compensate 
for a reduction in future average profits. Lemma 5, presented in the Appendix, 
gives a precise version of this argument. 

Finally, assume G(C, c) < m. If the seller does not charge g(C, c) when the 
equilibrium specifies that she should, buyers expect her to charge a price of the 
form g(D, d) and clear the market in the next period. As a result, there are two 
effects of a one-shot deviation. First, the seller clears the market in two periods 
rather than one. Second, the seller postpones the ultimate reward phase. (18) 
guarantees that the second effect encourages the seller to follow the equilib- 
rium. The first effect may allow the seller to earn more from the sellers 
currently in the market than the equilibrium, but it is always dominated by the 
second effect. Lemma 6, which is stated and proved in the Appendix, gives a 
formal proof. Here is an intuition. If the seller is expected to charge g(D, d) in 
the next period, then no one will buy at prices greater than (1 - /)Vl + /3g(D, d) 
in the current period. These prices cannot be much greater than g(C, c), 
particularly when the market is crowded (due to the concavity of g( )), so the 
deviation is not profitable enough to compensate for the decrease in payoff 
caused by delaying the reward. 

PROOF OF THEOREM 3: I have already argued that the profit generated by the 
equilibrium path is what I claim it to be. Lemmas 5 and 6 establish that the 
seller's strategy responds optimally to the buyers' strategies specified for 
the punishment portion of the equilibrium. I show below that it is never 
advantageous for the seller to deviate from the equilibrium path and that the 
buyers respond optimally to the seller's strategy. 

I first show that the seller responds optimally to the buyers' equilibrium 
strategies if she follows the equilibrium path. There are two cases, depending on 
whether or not the average profit on the equilibrium path is greater than V2. In 
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order for the seller to prefer to follow the equilibrium path rather than defect 
when average profit exceeds V2, it must be the case that, for c < n, k(n, c) is 
greater than or equal to the profit that the seller would receive from a 
defection. If the seller chooses to deviate from the equilibrium path, then the 
best she can do is charge g(1, c) because as soon as the seller deviates from the 
equilibrium path, the punishment portion begins, and the optimal behavior for 
the seller when G(C, c) < m (which it must be following the first deviation since 
on the equilibrium path G(C, c) < G(1, n) < n and n < m) is to charge g(C, c) 
as specified by the punishment equilibrium. Her profit is bounded above by 

(19) g(l, c)G(l, C) + pv(1, C) < [(1 - B)Vlnl+"7] (-q) + pv(1, c). 

On the other hand, since on the path of the equilibrium that yields average 
profit greater than V2 the seller charges at least V2 in every period, and high 
valuation buyers purchase as soon as they enter, 

(20) (1-/3)4(n,c) > aV2. 

Since, by (9), lim 8 1(1 - f)2n 1 q = 0, and by (12), (1 - .3)v(1, c) = e, (19) and 
(20) imply that if /3 is sufficiently close to one and E is small, then 

(21) 0(n,c)>g(1,c)G(1,c)+/3v(1,c) for c <n. 

(21) implies that the seller prefers to follow the equilibrium path than to defect. 
When V A V2, the state of the market on the equilibrium path is always 

(C, c) = (1, 1). The most the seller can earn if she deviates from the equilibrium 
path is 

(22) g(1, 1) +,13v(1, 1), 

which she earns if she charges g(1, 1). Since g(1, 1) < E when /3 is close enough 
to one, (12) implies that (22) is bounded above by E + /(1 - 3) = s/(1 - /), 
which is less than or equal to the V/(1 -E/) that the seller earns when she 
follows the equilibrium. 

I need to check that the buyers behave optimally when they follow the 
specified strategies on the equilibrium path. High valuers obtain the same 
surplus from buying any day until the next time the seller cuts her price to V2. 
They respond optimally when they buy in the period that they enter the market. 
Low valuers also respond optimally when they buy at the first sale after entering 
the market. 

It is optimal for a buyer to purchase whenever the seller charges p = g(C, c) 
and the state of the market (C, c) satisfies G(C, c) < m + 1. To see this, note 
that after the seller charges g(C, c), the equilibrium specifies that she charge 
(1 - /)v(C, c) in all of the remaining periods (if (1 - /)v(C, c) < V2) or prices at 
least as large as V2 in all of the remaining periods (if (1 - /)v(C, c) > V2). It 
follows from (17) in the first case and g(C, c) < V2 in the second that she always 
charges prices greater than or equal to g(C, c) in the future. Since all buyers 
obtain nonnegative surplus from a purchase at g(C, c) and they do not expect 
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the seller to charge a lower price thereafter, it is optimal for every buyer in the 
market to purchase when the seller charges g(C, c). 

If the seller charges p 0 g(C, c) and G(C, c) > m, then the equilibrium 
specifies that all players follow stationary equilibrium strategies, so buyers are 
responding optimally. If the seller charges p # g(C, c) and G(C, c) < m, then 
given the strategies of the other players, the equilibrium specifies that the seller 
charge g(D, d) < V2 in the next period, where (D, d) is the next state of the 
market, and thereafter never charge a price below g(D, d). Consequently all 
buyers in the market plan to buy either in the current period or the next one. 
The reaction specified in (14) guarantees that all buyers purchase in a period 
that maximizes their surplus. 

I conclude this section with some comments on related literature and remarks 
on the properties of equilibria. Ausubel and Deneckere (1989a) prove that if the 
demand curve of the buyer intersects the cost curve of the seller, then any level 
of profit strictly between zero and the static monopoly profit may be attained in 
equilibrium if the interval between time periods is small enough (or, equiva- 
lently, the discount factor approaches one). If the lowest buyer valuation is 
strictly greater than the cost of production, then Gul, Sonnenschein, and Wilson 
(1986) show that there is only one equilibrium and in it the seller is unable to 
charge prices much higher than the lowest valuation when the time between 
periods shrinks. It may be more useful to describe these results differently. Gul, 
Sonnenschein, and Wilson (1986) show that stationary equilibria have the Coase 
property.8 If the cost of production is strictly less than the lowest valuation, then 
the unique equilibrium is stationary. If the demand curve intersects the cost 
curve, then there are multiple equilibria. The stationary equilibria have the 
Coase property; the nonstationary equilibria need not. The relationship be- 
tween stationarity and the Coase property is what carries over to my model.9 All 
stationary equilibria have the Coase property but, because there is an inflow of 
new consumers, the market does not end in finite time so there are nonstation- 
ary equilibria even when every buyer's valuation exceeds the seller's cost. 

Bond and Samuelson's (1984 and 1987) models of replacement sales have 
similar properties. As the period length shrinks to zero, the stationary equilib- 
rium outcome converges to the competitive one. Because the monopolist is 
always producing to meet the demand for replacement goods, there also exist 
nonstationary equilibria in which the seller makes monopoly profits. 

There are also equilibria that are worse for the seller than the stationary 
equilibrium: If the discount factor is close to one, then there exist equilibria in 

8 Gul and Sonnenschein (1988), in the related context of alternating offer bargaining with 
one-sided uncertainty and common knowledge of gains from trade, show that the length of time 
needed to reach an agreement in stationary equilibria shrinks to zero as the period length shrinks to 
zero. 

9 The connection between stationary equilibria and the Coase property should not be taken too 
far. Ausubel and Deneckere (1988a and 1988b) analyze the set of stationary equilibria in infinite- 
horizon bargaining games with two-sided incomplete information. They show that the set of 
stationary equilibrium outcomes is large. It includes efficient outcomes. They also show that when 
there is two-sided incomplete information stationary equilibria need not satisfy the Coase property. 
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which the seller earns an arbitrarily small amount in every period. It is therefore 
misleading to say that the seller loses all monopoly power in stationary equilib- 
ria. The seller makes even less in other equilibria. 

The equilibrium paths I construct are stationary. If the seller's average profit 
is less than V2, then each period she charges the same price. If the seller's 
average profit is greater than V2, then she follows the cyclic pricing pattern (1). 
In both cases, the behavior of the players on the equilibrium path depends only 
on the market state. Also, in contrast to the stationary equilibrium, there is 
never a cumulation of high valuers on the equilibrium path nor does the seller 
randomize. 

The seller charges strictly positive prices in the equilibria I consider. There 
exist equilibria in which the seller periodically pays customers to buy her 
product in order to earn a reward for doing so in the future. Allowing the seller 
to charge negative prices does not expand her set of equilibrium payoffs. 

The existence of multiple equilibria that have different payoffs for the 
monopolist may be counterintuitive. One might expect that if the seller really 
has market power, then she would be able to influence the market enough to 
select the most profitable equilibrium. In practice the seller may have this 
power. Several arguments could be used to select an equilibrium in my model. I 
mention some possibilities below. The discussion is only suggestive; I have no 
results that select a unique equilibrium. 

If the buyers learn about the behavior of the seller by studying prices she has 
charged in the past, then it may be in the seller's interest to follow the path that 
leads to high profits in order to convince future entrants that sales occur 
infrequently. In a different context, Laffont and Maskin (1987) show that a 
monopolist can induce naive buyers, who use the monopolist's past behavior to 
forecast her future behavior, to have beliefs consistent with her most profitable 
equilibrium. 

A different approach to equilibrium selection is the reputation model of 
Fudenberg and Levine (1989) in which a long-lived player is able to approximate 
the payoff of a player able to commit to an action in each stage game if her 
short-lived opponents are uncertain about her preferences.10 For the equilibria 
that I have discussed, the monopolist is the only player that remains active for 
more than a finite number of periods. It would be natural to assume that buyers 
are uncertain about the state of the market, the seller's cost of production, or 
the ability of the seller to commit to a policy of never holding a sale. 

Still another approach to equilibrium selection is the idea of "money burning" 
introduced by Ben-Porath and Dekel (1988) and van Damme (1989). These 
papers provide conditions under which one player's most preferred outcome is 
the unique equilibrium of an auxiliary game where that player can publicly burn 
money prior to the play of the original game. Noninformative advertising may 
play the role of money burning in the dynamic monopoly problem. It seems 

10 Fudenberg, Kreps, and Maskin (1990) prove folk theorems for games with both long- and 
short-lived players. 
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natural to assume that the monopolist is the only player in the game who has 
access to a money-burning technology. 

5. THE PROFIT-MAXIMIZING MECHANISM 

In this section I determine the seller's maximal earnings if she were able to 
commit to an arbitrary selling strategy. A simple way to think about commit- 
ment power is to imagine that the seller is a Stackelberg leader in the game. She 
chooses a strategy that maximizes her discounted profits assuming that the 
buyers respond optimally. The announced policy need not be an optimal 
response to the buyers' behavior. For example, the seller could announce that 
she will charge a price slightly less than V1 in every period; high valuers can do 
no better than purchase in the period they enter, so the seller earns aVI/(1 - ,/). 
When aV1 > V2, this policy is more profitable than the stationary equilibrium."1 
In this section I show that there is no selling strategy available to the seller that 
allows her to earn more than she would if she was committed to charging a 
constant price in every period. When aV1 > V2, the profit maximizing constant 
price is V1; when V2 > a V1, the profit maximizing price is V2. This result shows 
that the upper bound to the seller's profit in noncooperative equilibrium given 
in Theorem 3 is the best possible. 

In order to find the maximum profit available to the seller, I need to describe 
feasible selling mechanisms. In a direct selling mechanism the seller chooses 
functions r(t, j) and q(t, j) for t > 0 and j = 1 or 2. Each buyer reports a type 
(s, k) to the seller. He is able to report any valuation, k = 1 or 2, and any date 
of entry later than his actual arrival time, s > [t]. A buyer who reports (s, k) 
pays r(s, k) (in period zero dollars) and obtains the item with discounted 
probability q(s, k) (that is, if the buyer receives the item with probability Qn in 
period n, then q(s, k) = E:013BQ,). The mechanism must satisfy, for j, k = 1 
and 2, and t > 0: 

(23) Vjq(t, j) -r(t, j) = max {Vjq(s, k) -r(s, k)), 
s >[t] 

(24) Vjq(t,j)-r(t,j)>O, and 

(25) 0 < q( t, j) <13t1. 

(23) is an incentive compatibility condition which guarantees that each buyer 
would prefer to report his own type (t, j) than any other type of the form (s, k) 
for s > [t]: No one can gain by imitating someone who enters the market after 
he does. Condition (24) is the individual rationality restriction; a buyer could 
earn zero surplus if he does not buy. The third condition, (25), places an upper 
bound on the discounted probability of a buyer who enters in period [t]; at best 
a buyer obtains the item with probability one in the period that he enters. 

11 CGS show that if aV1 > V2 and high valuers buy in the period that they enter the market, then 
the profits of the seller are increasing in the length of sales cycles. Consequently profits from the 
stationary equilibrium are always strictly less than aVI/(1 - ,B). 
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The seller's optimal selling mechanism maximizes 

(26) f[ar(t, 1) + (1 - a)r(t,2)] dt, 

subject to (23), (24), and (25). Although there are selling mechanisms in which 
buyers report an element from an arbitrary set of messages rather than choosing 
an element directly from the set of indices, the revelation principle implies that 
the seller does not gain from using them.12 

The formulation does depend on the assumption that all buyers and the seller 
share a common discount factor. This assumption guarantees that the dis- 
counted value of payments, r(*), is the same for all players. Specifically, assume 
that the buyers all have the discount factor /3, but the seller uses the discount 
factor y #3,8. If a buyer who reported (s, k) could purchase the item by paying 
p(t; s, k) in period t for t = 0, 1,2,..., then the buyer's discounted price is 

E',o/3tp(t; s, k), which is not necessarily equal to the seller's valuation of the 
stream of payments, E"0=o0ytp(t; s, k). The seller can take advantage of the 
difference in time preferences and earn profit by borrowing and lending even if 
she did not sell anything. 

Theorem 4 describes what the monopolist could earn using a selling mecha- 
nism. 

THEOREM 4: Using the optimal selling mechanism the seller earns 
(1 _0- 1 max {aV1, V2}. 

PROOF: Consider the problem of finding r(-) and q(-) to maximize (26) 
subject to (25), 

(27) V1q(t,1)-r(t,1) > V1q(t,2)-r(t,2), and 

(28) V2q(t,2) -r(t,2) > 0. 

(27) and (28) are implied by (23) and (24). I first show that the maximum value 
of (26) subject to the constraints (25), (27), and (28) is equal to 
(1 - A)- 1 max {aVl, V2}. Then I show that there is a selling mechanism satisfying 
(23)-(25) that attains this value. 

(26) is increasing in r(t, 1) and r(t, 2). Since (27) is weakened when r(t, 2) is 
increased, (28) must bind at the optimum. Similarly, (27) must bind or the value 
of the objective function can be increased by increasing r(t, 1). Using these 

12 The standard revelation principle must be modified because in any feasible mechanism a buyer 
cannot receive an item with discounted probability greater than p', where t is the period that he 
enters the market. Therefore the set of feasible reports depends on the type of the buyer. It is 
simple to verify that the revelation principle still applies. 
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constraints (taken as equations) to solve for r(-) in terms of q(-), (26) becomes 

(29) f[aViq(t, 1) + (V2- aV1)q(t,2)] dt. 

Maximizing (29) subject to (25) is easy since the objective function is linear: The 
upper bound on q(t, 1) must bind almost everywhere, and q(t, 2) should equal 
its upper or lower bound depending on whether V2- a V1 is positive or 
negative. The value at the solution is (1 - )3-Y1 max{(aVl, V2}. 

I constructed the upper bound on profit by ignoring some of the incentive 
constraints faced by the seller. However, there are mechanisms that solve (26) 
subject to (25), (27), and (28) that also satisfy (23) and (24). When V2 > a V1 the 
solution requires that buyers purchase the item at the price V2 in the period 
that they enter (r(t, k) = 3[t]V2 and q(t, k) = 3[t]). The seller can implement 
this outcome by charging V2 in every period. When V2< aV1 the solution 
requires that high buyers purchase at the price V1 in the period that they enter 
the market (r(t, 1) = 3[t]V_, r(t, 2) = 0, q(t, 1) = [t], and q(t, 2) = 0). The seller 
can implement this outcome by charging V1 in every period. It follows that the 
seller can obtain the upper bound to profit, so the proof is complete. 

If there was no entry of new consumers and the seller could set a single 
take-it-or-leave-it price, then she would charge either V2 and sell to everyone, 
or V1 and sell only to the high valuers. The theorem states the seller can do no 
better than repeat her best one-shot strategy even when there is entry of new 
consumers and more elaborate selling strategies are feasible. The seller imple- 
ments the optimal selling strategy by promising to charge the same price (either 
V1 or V2) in every period. 

Theorem 4 is reminiscent of Stokey's (1979) result that a monopolist in a 
multiperiod market without entry of new consumers can do no better than 
commit to the single static monopoly price if she discounts at the same rate as 
the buyers. In a bargaining model formally analogous to the monopoly problem, 
Riley and Zeckhauser (1983) show that a take-it-or-leave-it offer is the optimal 
bargaining mechanism. 

CGS show that if the seller charges prices of the form (1) and high valuers 
buy in the period that they enter the market, then profits are monotonically 
increasing (decreasing) in the interval between sales if aV1 > V2 (aV1 < V2). 
Coles (1989) obtains a similar result. 

If the seller commits to the strategy of charging V1 in every period, then 
eventually she must resist the temptation to sell to an enormous backlog of low 
valuers. The rationality of high valuers makes it profitable ex ante for the seller 
to try to keep the price high; if the buyers expect the price to fall in the future, 
then they will not pay V1 when they enter the market. Theorem 4 demonstrates 
that (if a V1 > V2) the profit the seller makes from cutting her price to sell to low 
valuers does not compensate for her reduced ability to discriminate against 
high valuers. The result demonstrates the power of subgame perfection. After 
high valuers have left the market, the seller no longer has an incentive to keep 
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her price high; in a subgame that begins with a large enough accumulation of 
low valuers in the market the seller must hold a sale. 

6. RELATED LITERATURE 

An interesting feature of the model is that equilibrium behavior involves 
cyclic fluctuation of prices and purchases in a stationary environment. CGS and 
Sobel (1984) discuss how the model captures several common features of sales. 
There are other models with similar qualitative properties. 

Coles (1989) studies a durable-good monopolist whose products break down 
at a constant rate. No new consumers arrive, but old consumers reenter the 
market when their product fails.'3 Coles works with a continuous time model. 
He shows that (stationary) equilibria have the Coase property and proves that if 
commitment were possible a revenue-maximizing seller would charge the same 
price in every period. Theorem 4 of this paper is an analogous result. 

In Fershtman and Fishman's (1989) model a constant flow of identical 
consumers enter a market. There are many suppliers. Consumers must obtain a 
price quotation before they make a purchase. The information is costly to 
obtain. Fershtman and Fishman show that there exist equilibria in which no 
buyers search in certain periods. Instead they accumulate and buy in "boom" 
periods, which may occur at fixed intervals. 

The monopolist in Benabou's (1989) paper faces a cost of adjusting its 
nominal price in an inflationary economy. The good produced lasts for two 
periods. In the Markov-perfect equilibrium the seller typically uses a mixed 
strategy to determine when to increase her nominal price. Some consumers 
speculate on the timing of price adjustments; they buy in large quantities for 
future resale when they expect the price to increase. While Benabou concen- 
trates on different issues, the price dynamics of his model have several features 
in common with mine. In particular, real prices decline in most periods, but 
periodically they rise sharply. On average demand is higher just before the price 
rises. Benabou's price dynamics are typically stochastic; mine are deterministic. 

7. COMPARISON WITH CGS 

CGS analyze the model of this paper but they obtain different results. In this 
section I briefly review how CGS characterize their equilibrium and explain how 
it differs from the subgame-perfect equilibria that I discuss. 

CGS do not specify complete strategies for the players of the game. They 
reduce the problem to one where the seller selects the length of a sale cycle. 
The seller picks a sale date, and charges prices of the form (1). High-valuation 
buyers purchase as soon as they enter the market, and low-valuation buyers 

13 Kyle Bagwell and Garey Ramey and Gene Grossman and Michael Katz also have suggested 
this model. 
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purchase at the first sale date after they enter the market. A dynamic choice 
problem determines the length of the equilibrium sale cycle. Each period the 
seller may either have a sale or wait. If she has a sale, then all future sales cycles 
occur at the same interval. If she waits, then in the next period she must again 
decide whether or not to have a sale. CGS show that if the seller goes long 
enough without having a sale, then she cannot resist holding one. From that 
date they use backward induction to determine the equilibrium cycle length. 

CGS assume that high-valuation buyers purchase immediately if they do not 
lose surplus by doing so. Therefore there will never be a backlog of high valuers 
in equilibrium. They also assume that the timing of the first sale influences 
expectations about the timing of future sales. Hence the seller maintains an 
incentive to keep her price high even when the interval between periods is 
short. By delaying a sale the seller convinces future entrants that future cycles 
will be long. This effect does not enter into computations when new consumers 
do not come into the market or, as in the stationary equilibria of this paper, 
pricing behavior prior to a sale does not influence equilibrium behavior after the 
market clears. It is precisely this kind of consideration that allows me to 
construct nonstationary equilibria where the seller charges prices significantly 
greater than V2 even when the interval between offers is arbitrarily small. 

Department of Economics, 0508 University of California at San Diego, 
La Jolla, CA 92093, U.S.A. 
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APPENDIX 

PROOF OF LEMMA 2: Fix an equilibrium and a subgame in which there have been N periods 
since the previous sale. Assume that there is no sale until a mass of at least n low valuers have 
accumulated. Denote by Ck the mass of high-valuation buyers in the market k periods after the 
sale. It follows that the mass of buyers in period k is Ck - Ck +1 + 1. Consequently, in equilibrium it 
must be that 

n-k 

(Al) E (Ck+i- Ck+l+i + l)piaV1 + fn kn(1 - a)V2 + pn-k+lV /(1-) 

i=O 

> aCkV2 + kV2(l - a) + 1V2/(l - P) 

for all N < k < n. The left-hand side of the inequality is an upper bound on the profit available if 
there have been k periods since the last sale and the seller waits until there are at least n periods of 
low-valuation consumers before clearing the market. The first term on the left is a bound on the 
profit available from the high-valuation buyers who enter prior to the sale. It assumes that all sales 
are made at the price V1, the highest price that any consumer will pay for the good. The second 
term is the discounted profit obtained from the low consumers when there is an accumulation of n 
periods of low consumers. The third term is an upper bound for the continuation profit. Since all 
consumers buy as soon as they enter the market if the seller charges V2, the right-hand side is a 
lower bound for the monopolist's profit. It follows from algebraic manipulation of inequality (Al) 
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that 

n-k-1 

(A2) a(V1 -V2)Ck-(1- -)aV1 E P Ck+l+i 
i=O 

>(O3V2 -aV /3nk+ V)/(1 -,3) + (1 -a)(k n-3n-k)V2 

for all N< k < n. 
The following general fact allows me to simplify (A2). Suppose there exist Ck > 0 and Dk for 

k=N,N+ . n, and 8 E(0,1) such that 

n-k-1 

(A3) 8Ck-(1-/3) E /3iCk+1+i>Dk for k=N,N+1,...,n. 
i=o 

Since Ck > 8Ck for all k = N, N + 1. n, an induction argument demonstrates that 

n 

(A4) 8Ck>Dk+ (1-_l3) E Di forall k=N,N+ . n 
i=k+l 

(where, by convention, En=n + 1DI = 0). 
If I let Dk = {(/3V2 - aV - 3n-k+lV1)/(1 - 3) + (1 - a)(k - l3n k)V2J/(aVi), 8 = 

(V1 - V2)/V1, and Ck be as above, then (A2) implies that (A3) holds. Plugging these values of 8 and 
Dk into (A4) yields 

a(V1 - V2)Ck > (13V2 - aV1 - /3V1)/(1 - /3) + (n - k) 

x { [/3JV2 - aV1 - (1 - a)V2] + (n + k + 1)(1 - /3)(1 - a)V2/2} 

> - (a +/3)V1/(l -f3) + (n - k)[(n + k + 1)(1 -,3)(1 - a)V22 - V1]. 

Since it must be the case that Ck < k, it follows that if there have been k periods since the last sale 
and the next sale does not occur in the next n - k periods, then 

a(VI - V2)k > - (a +,3)V1/(l -,3) + (n - k)[(n + k + 1)(1 -/3)(1 - a)V2/2 - V1]- 

When n - k is sufficiently large, this inequality cannot hold. Therefore, there is a constant M* such 
that the number of periods until the next sale is always less than M*. 

PROOF OF LEMMA 3 (Sketch): I construct a candidate equilibrium under the assumption that the 
seller must hold a sale in the next n periods (including the current one), the seller never charges less 
than V2, and that the seller's profit is W> V2/(1 - ,B) after the sale. Let PI = V2, P2 = (1 - /3)V1 + 
183V2, S1(C, c) = P1(C, c, p) = V2, r'n1(C, c) =pC1[Ca + c(1 - a)] + /3W, B2(C, c, p) = C if p <P2, and 
D1(c, 1) = 1. When n = 1, the seller must hold a sale. Pn denotes the highest price at which any 
consumer buys if there will be a sale in no more than n periods. 7i1(C, c) is equal to the profit of the 
seller if there are accumulated masses of C high-valuation buyers and c low-valuation buyers, and 
the value of the market after a sale is W. Sn(C, c) is the set of prices that an optimizing seller would 
charge in the current period if the seller must hold a sale in the next n periods. Pn(C, c, p) is the 
expected value of the seller's price if she charged p in the last period. S1(C, c) = P1(C, c, p) = V2 
since the seller must hold a sale in the current period when n = 1. Bn + (C, c, p) gives the mass of 
high valuers that buy in the (n + 1)th step of the construction when p is charged. When n = 1, a 
high valuer compares the surplus from buying at p, V1 -p, to the surplus from buying in the next 
period at V2, p(V1 - V2). Buying immediately is superior to waiting if P <P2. When p =P2, buying 
and waiting yield the same surplus. I take B2(C, c, P2) = C because otherwise the seller's second 
stage optimization problem need not have a solution. For j < n, Dn(c, j) is the highest value of C 
below which the seller wishes to charge a price that is strictly less than pj (assuming that there will 
be a sale in the next n periods). If the seller wants to charge p > p1 for all C > 1, then set 
Dn(c, j) = 1. In particular, Dn(c, 1) = 1 for all n. Although 7Tk(), Sk( ) Pk(-), Bk+l(), and Dk(-) 

depend on W, I suppress this dependence in the proof to simplify notation. 
The construction continues by induction. At stage k of the induction, no buyer will pay more 

than Pk. Assume that I have constructed Pk+I, Vk(*), Sk(), Pk(), Bk+l(), and Dk( ) for 
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k = 1, . n - 1 and that these functions satisfy: 

El. Pk+l = (1- )V1++3V2. 

E2. Sk(C, c) C {PI. * * XPk}- 

fc if p <Pi, 
E3. Bk+l(C,c,p) ( max {C+ 1 -Dk(c+ 1,j),O} If pE(p, P ] + 

E4. If C > Dk(c,j), then P1-I e Sk(C, c). 

E5. For j < j - 1, if the first price charged is less than or equal to p,, then there is a sale in 

no more than j periods. 

(Pk(C+ 1 Dkl(c + 1, k - l))a + P8k-l(Dkl(C + 1, k - 1),c + 1) 
E6. irk(C,C) = if C?>Dk(c,k), 

tVk-l(C,C) if C < Dk(c, k). 

E7. Dk(c, j) = min {Dk(C, k), Dk-l(c, I)} for j < k. 

E8. Pk(C,c,p) = V1-(V1-p)/13 if p E (pj,p+1) and Dk(C + 1,j) E (1,C+ 1). 

E9. Dk(c,j)>Dk(c+l,ij-)-l for j=2,...,k. 

E10. Vkk( ) and Dk( * ) are continuous function of W. 

I do not verify the induction hypothesis. Fudenberg, Levine, and Tirole's (1985) verification is 
similar. El defines the highest price that any buyer will pay if there will be a sale in the next k + 1 
periods. Buying at Pk+1 in the current period yields the same utility to a high buyer as waiting k 
more periods for a sale. E2 states that the optimal price for the seller must be of the form 
(1 -, p)V1 +, pV2 for i < k. E3 describes the aggregate response of the buyers to the seller's 
strategy. E4 states that the seller's optimal price does not decrease when the mass of high valuers in 
the market increases. E5 gives a condition that insures that the artificial constraint on the timing of 
sales does not bind. E6 implies that if the seller charges Pk, then she sells to as many high valuers as 
possible consistent with Pk - being optimal in the next period. E7 implies that relaxing the 
constraint on the time of the next sale does not lower the optimal prices of the seller. E8 is 
equivalent to requiring that the high valuer be indifferent between buying at p and waiting. E9 
guarantees that there are positive purchases in each period. E10 insures that the equilibrium profit 
function of the auxiliary game is continuous in W. 

Since there is a bound M* on the number of periods until the next sale in all subgames of a 
stationary equilibrium, the seller does not charge more than PM*+1 in equilibrium. Therefore, E5 
guarantees that Vk(*), Sk(*), Dk(*), Bk(*), and Pk(-) do not change when k > M* + 1; denote the 
limiting values by 7r*(-), S*(.), D*(-), B*(-), and P*( ). I describe in the text the correspondence 
between these mappings and equilibria to the auxiliary game. 

PROOF OF THEOREM 2: Assume that the equilibrium calls for the seller to hold a sale in k 
periods. Denote by si the mass of sales to high-valuation customers i periods prior to the sale date. 
Let (C, c) represent the current state of the market. The discounted profit to the monopolist n 
periods prior to the sale date, for n = 0, . k, is equal to 

n 

(A5) E an-ip 1Is, + ,8n(k + c)(1 - a)V2 + pn+l W. 
i=O 

If n > 0, then the seller is able to get profit equal to at least 

n-1 

(A6) aPn(S 1 + E apn --p1 + ls +8n - l (k + c - 1)(1 - a)V2 + fnW. 
i=O 

Expression (A6) is what the seller would earn if she charges Pi -1 instead of p1 and the mass of 
high-valuation buyers in the market when a particular price is offered remains the same. The mass 
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of high-valuation buyers needed to make it optimal for the seller to charge pi is an increasing 
function of the mass of low-valuation buyers in the market. In other words, if it is optimal to charge 
a price at least as great as pi when the market state is (C, c), then it is optimal to charge a price at 
least as great as p1 when the market state is (C, c - 1). For this reason, the seller earns at least (A6) 
if she begins by charging p,n instead of p +i. Therefore, in equilibrium, it must be the case that 
(A5) is greater than or equal to (A6). It follows from (A5) and (A6) that 

(A7) a(p +1 -pPn)sn - '(1 - )W+ ap,n + (1 - a),3BV2 
n-1 

> a(1 - )n-i-I p1+1s1 +3n- 1(1 -,f3)V2(k + c - 1)(1 - a). 
i=O 

Because there is no need for the seller to carry a backlog of high valuers into a sale period 

(A8) sO= 1. 

Consequently, algebraic manipulation of (A7), using E-1l(1 - AV) n-i- 1 = 1 _ nl-1 and (1 - f)W 
> V2, implies that 

n-1 

(A9) a (Pn +I-Pn)sn ' v (1 f3)flflll(p s -V 1) 
i=l 

+ 3n - 1(1 -13) V2(k + c - 1)(1 -a). 

It follows from (A9) and the definition of pi that 
n-1 n-1 

asn >M(k + c-1)(1-a) + (M+ 1) a6 a1(s, -1)- a si, 
i=l i=l 

where M = V2/(V1 - V2). Consequently, since f8 < 1, 

n- n- 
(A10) aXsn > M(k + c- 1)(1 - a) + M aE o-l's, -(M+ 1) E I-a.t 

Now to obtain a contradiction, suppose that 

(A1l) k> (M+ 1)a/[M2(1- a)] +1. 

(A10) when n = 1 implies that 

(A12) as1 > M(k + c- 1)(1 -a). 

(All) and (A12) imply that if i = 1, then 

(A13) as, > (M + l)a/M + M(c - 1)(1 -a). 

Moreover, if (A13) holds for i = 1, 2,..., n - 1, then (A10) and (All) combine to guarantee that 
(A13) holds for i = n as well. It follows by induction that (A13) holds for all i = 1,2,...,k. 
But = lsi = (k + C), since the seller serves all of the high valuers by the time of the sale. 
(A8) now implies that Eyk_.1 = (k + C-1). Hence, summing both sides of (A13) from i = 1 to k 
yields (k + C - l)a > (M + 1)ka/M + kM(c - 1) (1 - a), which, if C < c, implies that k < 
(M + l)a/[M2(l - a)]. It follows that the number of periods until the next sale is at most 
(M + l)a/[M2(l -a)] + 1. 

The remainder of the Appendix completes the proof of Theorem 3. 

LEMMA 4: Given any e > 0, there exists 18* E (0, 1) such that if 18 E (,8*, 1), then v(C, c) - 

,l8v(C + 1, c+ 1) > /2. 

PROOF: Let h(x) = (1 -,8)V1x71/(,137). It suffices to show that if x > m'- 1, then 

(A14) liminf (1 -,8) 1{h(x) -,lh(x + 1) + (U- V2)[(x - m')(1 -,3) -,1]/(m + 1 - m')} 

> ?/2. 
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If x > m'- 1, then 

(A15) [h(x) -/3h(x + 1)]/(1 -3) > [(1 -13)(1 +x)71 -,qx7 -']Vj&8,q) 

> [ (1 -,8)(M ) - 77(MI - 1)77 ]Viloo87 

= ? - V(m -1 i) 71 /,l . 

The first inequality follows from the definition of h( ) and x7 > (1 + x)q - -1, the second 
inequality follows because (1 + x)77 is increasing and x71-1 is decreasing, and the equation follows 
from (15) (the definition of m'). Since, from (15), [(m + 1)/mT1 = V21E > 1, (10) implies that 

limp 1 1/[(1 -,3)(m + 1 - m')] = 0 and limp 1 (m' - 1)7-1 = 0. Hence, (A15) implies (A14). 

LEMMA 5: There exists A3* E (0, 1) such that for all f3 Ee (13*, 1) the punishment strategy specified for 
the seller responds optimally to the buyer when G(C, c) > m. 

PROOF: Since players follow stationary equilibrium strategies if G(C, c) > m + 1 or in the event 
of simultaneous deviations, it suffices to consider the case where the market state (C, c) satisfies 
G(C,c)<m + 1. 

If the seller follows the strategy specified by the equilibrium and charges g(C, c), then, since 
everyone currently in the market buys, she earns G(C, c)g(C, c) + /3v(C, c). If G(C, c) > m, then 
G(C,c)g(C,c)> (1-f3)V1m'7+1/(/h). Since m+ 1 >(m + l)"7+1-(,1 + 1)(m + 1), it follows 
from (15) that 

(A16) G(C, c)g(C, c) +/3v(C, c) > V2(m -71) + /3v(C, c). 

If the seller instead charges p # g(C, c), then players follow the strategies of the stationary 
equilibrium. Let K be the bound, derived in Theorem 2, on the number of periods until the next 
sale (at price V2) in any stationary equilibrium. No one will buy at a price higher than (1 - ,3K)Vl + 
13KV2. Consequently the seller earns at most 

(A17) [(1 _,lK)Vl + ,1KV2]C - + (1- a)cV2 +1,w, 

if she does not charge g(C, c). The first term in (A17) is the profit from selling immediately to all 
high valuers currently in the market at the highest price they would accept, the second term is the 
profit from selling immediately to the low valuers currently in the market at the highest price that 
they would accept, and w is the profit of the seller in the stationary equilibrium after the market has 
been cleared. After clearing the market, the seller could earn no more in a stationary equilibrium 
(when alV > V2) than she would if she sold to all high valuers as soon as they enter the market at 
the price PK and sold to low valuers as soon as they enter the market at the price V2. Consequently, 

(A18) w < [(1 -a)V2 + apKI/(1 -3) < V2/(1 -13) + aKV1, 

where the last inequality follows since PK = (1 _3K 1)V1 + 13K 1V2 < (1- 13)KV1 + V2. Combining 
the upper bound in (A17) with that of (A18) leads to an upper bound for the seller's profit if she 
strays from the equilibrium: 

(A19) G(C, c)V2 + ,V2/(l -13) + [(1 - 1)Ca(Vl - V2) + aV7 ]K, 

where I use (1 - ,1K) < K(1 -,3). The seller does not wish to deviate if the lower bound in (A16) 
exceeds (A19). Since m + 1 > G(C, c), mV2 + V2/(1 -,3) > G(C, c)V2 + ,13V2/(1 -,3), and therefore 
it suffices to show that 

(A20) 1v(C, c) > [71 + 1/(1 -,1)]V2 + [(1 - 1)Ca(Vl - V2) + aVF]K. 

Since G(C, c)> m, and aV1 > V2, (13) and (18) imply that (1 -,l)[v(C, c) -, V12] > 1/2> 0. It 
follows from Ca < G(C, c) < m + 1 that (A20) holds for 13 sufficiently close to one if 

(A21) lim (1 -13){(71 + 1 +1,)V2 + [(1 -13)(m + 1)(Vl - V2) + aV' ]K} =0. 
Asm21 

(A21) follows since 7j > 1/2 implies that limp - 1 (1 - ,l3)2m = 0. 
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LEMMA 6: There exists /3* E (0, 1) such that for all , E (83*,1) the punishment strategy specified for 
the seller responds optimally to the buyer when G(C, c) < m. 

PROOF: Assume that buyers follow the strategy given in (14). If p > (1 -,8)Vl + 13g(C + 1, c + 1), 
then no one buys and the seller earns what she would have earned if she had charged (1 -,l)Vl + 
/3g(C + 1, c + 1). The seller earns strictly more by charging (1 -,l)Vl + 13g(C + 1, c + 1) instead of 
p E ((1 - f)V2 + fg(1, c + 1), (1 - f)Vl + fg(1, c + 1)); in both cases all of the high valuers and 
none of the low valuers currently in the market buy and the continuation is identical. If p < 
(1 - f)V2 + fg(1, 1), then the seller would earn strictly more by charging (1 - f)V2 + fg(1, 1); in 
both cases everyone in the market buys and the continuation is identical. Therefore, only defections 
to prices p either of the form 

(A22) (1-13)Vl +fg(D, c + 1) for D E [1, C + 1] 

or of the form 

(A23) (1 - ,1)V2 + f3g(1, d) for d E [1, c + 1] 

could be attractive. If the seller charges a price of the form (A22) and subsequently follows the 
behavior specified by the equilibrium, then her profit will be 

(A24) [(1 -13)Vl + fg(D, c + 1)](C + 1 -D)a + /3g(D, c + 1)G(D, c + 1) +132v(D, c + 1) 

=/3g(D, c + 1)G(C + 1, c + 1) + 132v(D,c + 1) + (1 -,1)V1(C + 1 -D)a, 

since the candidate strategies specify that the mass (C + 1 - D)a of high valuers purchase immedi- 
ately, the market empties in the following period when the seller charges g(D, c + 1), and then the 
equilibrium with profit v(D, c + 1) begins. The seller earns g(C, c)G(C, c) + /3v(C, c) if she follows 
the strategy specified by the equilibrium, so a defection to a price of the form (A22) will not be 
profitable if 

(A25) g(C, c)> (G(C, c))'l max w(C, c, D), 
D6C+ 1 

where 

w(C, c, D) =/3G(C + 1, c + 1)g(D, c + 1) + (1 -13)V1(C + 1 -D)a 

- 13v(C, c) + 32v(D, c + 1). 

Similarly, if the seller charges a price of the form (A23) and then follows the behavior specified by 
the equilibrium, her profit will be 

(A26) [(1 -13)V2 +f3g(1, d)]G(C + 1, c + 1 - d) +/3g(1, d)G(1, d) + 132v(1, d) 

= /3g(1, d)G(C + 1, c + 1) + 132V(1, d) + (1 - 13)V2G(C + 1, c + 1 - d), 

so a defection to a price of the form (A23) will not be profitable if 

(A27) g(C, c)> (G(C, c)) 1 max u(C, c, d), 
d 6c+1 

where 

,t(C, c, d; g) =/3G(C + 1, c + 1)g(1, d) + (1 -,l8)V2G(C, c + 1 - d) 

- 13v(C, C) + 32V(1, d). 

It suffices to show that (A25) and (A27) are satisfied. Observe that ,u(C, c, d) - f32v(1, d) is strictly 
concave in d and the partial derivative of (C, c, d) - 132v(1, d) with respect to d evaluated at 
d=c+ 1 is (1 -,3)(1 -a)[V1G(C+ 1,c+ 1)G(1,c+ 1)71 - V2]>0. Therefore, the solution to 
maxd< c+ {,ut(C, c, d) - ,l82v(1, d)} is d = c + 1. Since v(, d) is nondecreasing in d, the unique 
solution to maXd<C+l1t(C, c, d) is also d = c + 1. Similarly, the unique solution to 

maxD<C+l w(C, c,D) is D = C + 1. Also, since g( ) is increasing, V1 > V2, and v( ) is nondecreas- 
ing, (C, c, c + 1) < w(C, c, 1). Therefore, w(C, c, C + 1)=maxD<C+l w(C, c, D) > w(Cc, 1)> 
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,u(C, c, c + 1) = maxd<C+l ,(C, c, d). Hence, (A25) and (A27) hold if and only if g(C, c)> 
w(C, c, C + 1)/G(C, c) or, equivalently, 

(A28) 3G(C + 1, c + 1)g(C + 1, c + 1)-G(C, c)g(C, c) S f4 v(C, c)-f3v(C + 1, c + 1)]. 

Since G(C + 1, c + 1) = G(C, c) + 1, calculus shows that the value of G(C, c) that maximizes the 
left-hand side of (A28) satisfies G(C, c) = y/(1 - y), where y7 = ,. Substitution of this value for 
G(C, c) into the left-hand side of (A28) and use of the definition of g(*) yields 

(A29) 3G(C + 1, c + 1)g(C + 1, c + 1) - G(C, c)g(C, c) < (1 - y7)[y/(1 - y)]V1/(13'r). 

The right-hand side of (A29) goes to zero as 8 converges to one. Hence, the left-hand side of (A28) 
converges to zero as 13 converges to one. Since the right-hand side of (A28) is at least f3e/2 > 0 by 
(18), the proof is complete. 

I have assumed throughout the proof of Theorem 3 that alV > V2. It remains to show that there 
exist equilibria in which the seller earns average profit between ? and V2 when V2 > alV. 

PROOF OF THEOREM 3 WHEN V2 > aV1: aV1 > V2 is used in the construction of low-profit 
equilibria only to guarantee that the seller does not deviate if the size of the market is G(C, c) E 
(m, m + 1]. When V2 > aV1, the equilibrium strategies must be modified. Replace g(*) by 
min {g(*), V2} and let (14) describe the buyers' response to p # g(C, c) even when G(C, c) E 

(m, m + 1]. Set U = V2 in the definition of v( ) so that 

(A30) if G(C,c) =m + 1, then (1-13)v(C,c)= V2. 

Lemma 4 still holds. Moreover, when G(C, c) E (m, m + 1], the seller can do no better than to 
charge (1 -,l)Vl + ,13V2; a mass C - D + 1 of high valuers buy at this price, where G(D, c + 1) = 
m + 1. In the continuation the seller earns the stationary equilibrium profits. This strategy yields a 
payoff equal to 

(A31) [(1 -13)V1 + 1V2 ]a(C -D + 1) + V2(m + 1) + 2V2/(1 -13) 

< (1 -,1)V1 + 3V2(m + 2) +132V2/(1 -,3), 

where the upper bound in (A31) follows since G(C, c) < m + 1 and G(D, c + 1) = m + 1. If the 
seller follows the equilibrium, then her earnings are bounded below by the right-hand side of (A16). 
Therefore, it is sufficient to show that if f3 is sufficiently close to one, then 

(A32) V2(m -71) +,3v(C, c) > (1 -,1)V1 +,?V2(m + 2) +,12V2/(1 -,1), 

whenever G(C, c) > m. Inequality (A32) follows from (10) and (A30). 
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