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Econometrica, Vol. 49, No. 3 (May, 1981) 

DISTORTION OF UTILITIES AND THE BARGAINING 
PROBLEM 

BY JOEL SOBEL' 

Given two agents with von Neumann-Morgenstern utilities who wish to divide n 
commodities, consider the two-person noncooperative game with strategies consisting of 
concave, increasing von Neumann-Morgenstern utility functions as well as rules to break 
ties and whose outcomes are some solution to the bargaining game determined by the 
strategies used. It is shown that, for a class of bargaining solutions which includes those of 
Nash and Raiffa, Kalai and Smorodinsky, any constrained equal-income competitive 
equilibrium allocation for the true utilities is a Nash equilibrium outcome for the noncoop- 
erative game. 

1. INTRODUCTION 

IT IS OFTEN THE CASE in economic or game theoretical models that predictions are 
based on information that is not observable. For example, Nash's [15] theory of 
bargaining determines an outcome that depends on the bargainers' von Neu- 
mann-Morgenstern utility functions. Kurz [11, 12] has recently introduced a 
technique for analyzing such models that yields predictions about the outcome of 
a game without relying on unobserved information. The technique of Kurz has 
been adopted by Crawford and Varian [3] to analyze the outcomes of the Nash 
bargaining solution over the division of a single commodity. The purpose of this 
paper is to extend the results of Crawford and Varian to bargaining over several 
commodities. 

The approach used by Kurz [11, 12] and Crawford-Varian [3] is to embed the 
original game into a noncooperative distortion game in which the players' 
strategies consist of utility functions that may be distorted from their true utilities 
for strategic purposes. The outcomes are given by the solution to the underlying 
game determined by the reported utilities. If the Nash equilibria of the distortion 
game share common properties, then a description of the original game situation 
has been made without relying on information about the unobserved utility 
functions. 

Kurz's [11, 12] papers are related to the work of Aumann and Kurz [1,2] on 
the determination of taxes in an exchange economy. Aumann and Kurz postu- 
late a particular solution concept and then characterize the income tax schedules 
and allocations that result from it. In [11, 12] Kurz observes that the Aumann 
and Kurz solution depends on the agents' von Neumann-Morgenstern utility 
functions. Since these functions are not directly observable, agents cannot be 
prevented from misrepresenting them if it is to their advantage to do so. Kurz 
therefore studies the game that results if each agent can report any utility 
function in an admissible class 1t. 1t is intended to include all functions that are 

1 I am very grateful to Vincent Crawford, who suggested the problem considered in this paper and 
made several crucial suggestions that helped to make its solution possible. A conversation with 
Theodore Groves was also of value. 
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credible utilities for an agent. Kurz takes 1Q to be the set of all von Neumann- 
Morgenstern utility functions that are increasing, concave, and continuously 
differentiable. In [11] he shows that for the one-commodity Aumann-Kurz model 
[1], reporting any linear function in QI is a dominant strategy for each agent. The 
marginal tax rate implied by the use of linear strategies is 50 per cent. Kurz 
generalizes this result to the n-commodity case in [121. Once again, players have 
dominant strategies that lead to a marginal tax rate of 50 per cent. In this case, 
however, the dominant strategy reported utility functions need not be linear. The 
significance of Kurz's results is that, regardless of the true preferences of the 
agents, the distortion game has a dominant strategy equilibrium that yields a 
Pareto-efficient outcome. 

Crawford and Varian [31 use the methods of Kurz to analyze the effect that 
distortion of utilities has on the solutions to bargaining games. Assuming that 
agents may report any concave, increasing utility function, they find that in Nash 
[15] or Raiffa [17]-Kalai-Smorodinsky [8] bargaining over the division of a single 
good reporting linear utility functions constitutes a dominant strategy equilib- 
rium. The allocation implied by the equilibrium reports is equal division. The 
purpose of this paper is to generalize this result to include bargaining over more 
than one commodity. 

The main link between the one-commodity bargaining game and its multi- 
commodity generalization has to do with the effect a player's attitude towards 
risk has on the utility he receives at the solution. A utility function U is said to be 
more risk averse than V if there is an increasing concave function k with 
U = k(V); an agent is more risk averse than another agent if his utility function 
is more risk averse than the other agent's. Kihlstrom, Roth, and Schmeidler [1012 
show that for a class of bargaining solutions that include the Nash [151 and the 
Raiffa [17]-Kalai-Smorodinsky [8] solution, a player's utility increases as his 
opponent becomes more risk averse. This result, which is related to a theorem of 
Kannai [9], makes it possible to deduce that players will report linear utilities in 
the one-commodity distortion game. This follows because all monotonic prefer- 
ences defined over one commodity are (ordinally) equivalent. The Kihlstrom- 
Roth-Schmeidler results thus imply that the players will select the least risk 
averse representation of these preferences. In the one-commodity case this will be 
a linear function. As long as the solution for the bargaining problem satisfies the 
axioms of Pareto optimality, symmetry, and invariance with respect to affine 
transformations of utility, the linear strategies give rise to equal division. 

The situation is made more complicated in the n-commodity case because 
there are many possible ordinal rankings of the outcomes. While the Kihlstrom, 
Roth, and Schmeidler result restricts the possible strategies that the players will 
find advantageous to report, a broad class of possible distortions (including any 
increasing linear function) cannot be excluded on the basis of their theorem. 
Consequently, it is not surprising that the characterization of equilibria for the 
distortion game is less satisfactory for multi-commodity bargaining than for 

2This result is presented in Roth [18, pp. 38-48, 104-105]. 
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one-commodity bargaining. Furthermore, although the solution to the bargaining 
problem specifies unique utility levels for both players with respect to their 
reported utilities, in general, there will be more than one outcome that gives rise 
to these utility levels. Since there is no reason to expect that these outcomes are 
utility equivalent for the true utilities, the strategy space must be augmented by 
tie-breaking rules that provide for a selection from the solution correspondence. 

In spite of the greater complexity, the Nash equilibria for the n-commodity 
distortion game have some attractive properties. For a class of bargaining 
solutions that include those of Nash and Raiffa-Kalai-Smorodinsky, I show that 
any constrained equal-income competitive equilibrium (EICE) allocation (a 
constrained equilibrium allocation reached when agents have equal initial endow- 
ments) for the true utilities is a Nash equilibrium allocation for the distortion 
game. The equilibrium strategy for both players is to report linear utilities with 
indifference surfaces parallel to the hyperplane that supports the EICE. These 
strategies will result in a set of allocations that solve the bargaining problem but 
the players will be able to agree on a most preferred outcome. Since agents are 
assumed to have concave utility functions, this guarantees the existence of 
Pareto-efficient Nash equilibria. Moreover, the EICE allocations are the only 
Nash outcomes provided both players are required to report linear utilities. On 
the other hand, there is no reason to expect the competitive allocations to be 
unique. Thus, dominant strategy equilibria are impossible. Also, in general, the 
distortion game has inefficient Nash equilibria. However, all of the equilibria are 
"good" in a certain sense. Specifically, at any Nash equilibrium outcome, each 
agent prefers his allocation to that of the other agent.3 

The class of bargaining game solutions for which these results are valid is 
described in Section 3. In addition to the axioms of Pareto optimality, symmetry, 
and independence of positive affine transformations of utility, axioms common 
to the Raiffa-Kalai-Smorodinsky and Nash theories, the solution is required to 
satisfy another property. In a bargaining game in which the players' utility 
functions are normalized so that each player receives utility 0 at the disagreement 
point and utility 1 at his most preferred outcome, a solution satisfies the axiom of 
symmetric monotonicity if each player receives utility of at least I at the solution. 
In Section 3, it is shown that both the Nash and the Raiffa-Kalai-Smorodinsky 
solutions have this property. Furthermore, it is shown that symmetric monotonic- 
ity is guaranteed if the solution is symmetric, Pareto optimal, and risk sensitive as 
defined by Kihlstrom, Roth, and Schmeidler [10]. A solution is risk sensitive if a 
player prefers to bargain against the more risk averse of two players. 

The problem considered in this paper may be viewed as an arbitration 
problem under ignorance. An arbitrator is assigned the task of determining a 
"good" outcome to the bargaining game. A possible technique for the arbitrator 
would be to ask the players to report their utility functions and then determine 
an outcome to the resulting bargaining game according to a fixed solution 

3That no agent prefers another agent's allocation to his own is the definition of equity first used by 
Foley [4]. 
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concept. If the arbitrator has no knowledge about the players' true utilities except 
that they are in the set 1Q, then the agents will be playing the distortion game 
described here. Notice that if the arbitrator can restrict the reported preferences 
to be linear, EICE allocations are assured. This restriction may be attractive to 
the arbitrator because it reduces the information which needs to be reported to 
an n - 1 dimensional vector (the constant marginal rates of substitution of each 
player, rather than entire utility functions) and the strategies used to resolve ties. 
The restriction may be acceptable to the agents because it guarantees EICE 
allocations. 

Another model of arbitration under ignorance is discussed by Kalai and 
Rosenthal [7]. A cooperative two-player bimatrix game is transformed into a 
noncooperative game by an arbitrator. Players are asked to report a mixed 
strategy (threat) and two payoff matrices. The arbitrator then determines an 
outcome using a procedure that generalizes Nash's [16] extended bargaining 
solution if the players report the same payoff matrices. If the players report 
different payoff matrices then they receive the threat outcome. Assuming that the 
players know the underlying cooperative game and that the arbitrator knows 
only the dimensions of its payoff matrices, Kalai and Rosenthal show that 
reporting the true payoff matrices and appropriate mixed strategies forms a Nash 
equilibrium for the arbitration game. Moreover, the equilibrium outcome is 
Pareto efficient and individually rational. 

Both Kalai and Rosenthal [7] and I assume that agents have perfect informa- 
tion about the game situation they are facing. The results would be more 
compelling if they remained valid under uncertainty. Suppose that the distortion 
game is being played with only linear strategies admissible, and the true utility 
functions of the agents are such that the EICE is unique. If player 1 is only 
slightly uncertain about his opponent's utility function (meaning that he knows 
with certainty that his opponent's utility function is "close" to a specific func- 
tion), then player 1 knows-under certain regularity assumptions-that the true 
distortion game has a unique Nash equilibrium outcome, and he knows approxi- 
mately where it is. Thus, there is a possibility that an adjustment process could 
be designed that converges to the EICE. In the Kalai-Rosenthal model, there 
appears to be no restriction that can be made that would make the Nash 
equilibrium unique or even locally unique. Therefore, while under certainty the 
players in the Kalai-Rosenthal game are likely to report truthfully and reach a 
"good" outcome, the introduction of a slight amount of uncertainty makes the 
argument for truthful reports lose much of its force: if the players' beliefs about 
the true game situation differ, then it is quite possible that reporting what are 
believed to be the true payoff matrices will lead to an equilibrium outcome 
inferior to the "good" outcome. Thus, in the Kalai-Rosenthal model, unless the 
players know the underlying game with certainty, the existence of multiple 
equilibria makes it unlikely that an adjustment process converging to the "good" 
Nash equilibria could be designed. 

The requirement that players know each other's characteristics with certainty 
is a strong one. However, it appears that Pareto-efficient outcomes cannot be 
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guaranteed in models in which the players are uncertain about their opponent's 
characteristics. In a model of arbitration under uncertainty, Myerson [14] ob- 
serves that the set of allocations that arise from incentive-compatible mecha- 
nisms (allocations Myerson calls incentive feasible) is strictly contained in the set 
of all feasible allocations. Myerson argues that the arbitrator should be satisfied 
with selecting a "good" outcome which is undominated by any other incentive 
feasible allocation (but which may be Pareto inefficient), and proves that this can 
be done. 

Closely related to my results are those of Thomson [19, 20]. Thomson studies 
the Nash equilibria for the distortion game derived from a class of performance 
correspondences that yield individually rational and Pareto-efficient outcomes. 
Thomson [19] finds that if the reported utility functions are restricted to be twice 
continuously differentiable, concave, and have the transferable utility (t.u.) 
property, then the Nash equilibria for the distortion game derived from the 
Shapley value with fixed initial endowments are exactly the constrained competi- 
tive allocations with respect to those endowments. This result is generalized to a 
broader class of performance correspondences in [20]. As the Nash bargaining 
solution and the Shapley value, with appropriate disagreement outcomes, coin- 
cide under transferable utility, these results are quite similar to mine. The main 
differences fall into two classes: the nature of allowable utilities and the range of 
generality. 

When strategy spaces consisting of utility functions with transferable utility are 
used, the class of admissible utility functions is then broad enough to eliminate 
the need for explicit tie-breaking rules. If a tie occurs, a player typically has 
another admissible strategy that will allow him to break the tie so as to receive 
his most preferred outcome. In equilibrium, ties will occur unless the original 
endowments are Pareto-efficient for the true preferences. However, these ties can 
be broken because both players are able to agree on a most preferred outcome. 
On the other hand, when reports must be t.u. utility functions, Nash equilibrium 
outcomes other than the constrained competitive equilibria for the economy do 
not occur.4 Inefficient Nash equilibria for the distortion game derived from the 
Nash bargaining solution may occur if any smooth report is allowed; an example 
is given in Section 5. 

It seems unreasonable to require transferable utility reports, a priori. However, 
for a certain class of games this restriction may be justified. When tie-breaking 
rules are used, I can show that a player always has a linear best response for the 
Nash and Raiffa-Kalai-Smorodinsky distortion games. Thus, nonlinear strategies 
are dominated by linear strategies. It is reasonable to assume that only linear 
strategies will be used in this situation. A similar analysis may make it possible to 
delete all nontransferable utility preferences in Thomson's model. 

Thomson's results apply to a different range of solutions than do mine. They 
are more general in one direction: his results are valid for any number of players. 

4These results require that the reported preferences be twice continuously differentiable. If reports 
are not smooth, there may be other equilibria. 
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The fact that the Nash equilibrium outcomes include the competitive allocations 
remains valid in my model for any number of bargainers; however, other Nash 
equilibria will exist in general. This difference is probably the result of the 
different strategy spaces. Also, Thomson's results apply to any initial endow- 
ments. However, the constrained competitive equilibria with respect to any initial 
endowments can be obtained in my framework by varying the disagreement 
outcomes. 

Besides requiring Pareto efficiency with respect to the reported preferences and 
individual rationality with respect to the given initial endowments, the class of 
solutions for which Thomson's results are valid have the property that equilib- 
rium strategies have a "flatness" quality. Specifically, it is necessary that initial 
endowments be Pareto efficient with respect to equilibrium strategies. This will 
be true, for example, if all players report linear utilities with indifference surfaces 
parallel to the hyperplane that supports the competitive allocation. The underly- 
ing solutions that I deal with yield Pareto-efficient outcomes. The flatness 
property is satisfied when only linear reports are allowed, but not in general. 
Symmetric monotonicity can be viewed as an individual rationality requirement: 
provided that reports are linear, this assumption guarantees that outcomes are at 
least as good as equal division with respect to the reported utilities. The solutions 
I consider need not guarantee outcomes that are at least as preferred as equal 
division when nonlinear strategies are allowed. 

It should be emphasized that my results depend on strategy spaces that are 
different from the set of admissible utility functions. The results of Hurwicz [5] 
guarantee that individually rational and Pareto-efficient allocations cannot coin- 
cide with the Nash equilibrium outcomes of a mechanism that has only prefer- 
ences as strategies. Thus, my results depend in an essential way on the fact that a 
player's strategy includes tie-breaking rules as well as a utility function. 

The distortion game is defined formally in Section 2. In Section 3, the class of 
bargaining solutions to be used is described. The main results are presented in 
Section 4. Finally, Section 5 further characterizes the equilibria of the Nash and 
the Raiffa-Kalai-Smorodinsky distortion game. 

2. DEFINITIONS AND NOTATION 

Consider two agents with von Neumann-Morgenstern utility functions who are 
to divide a bundle of n commodities. Units are chosen so that there is exactly one 
unit of each commodity. Letting a (a, . . . , a), an outcome will be an element 
of the set 

T= {x ED~ :0? S X <?1> 

where agent 1 receives x and agent 2 receives 1 - x. The true utility function of 
player 1 is denoted by u; of player 2, v. These functions are assumed to 
be concave and strictly increasing in T. Thus if x, x' E T and x > x', then 
u(x) > u(x') and v(l - x') > v(l - x). The players report utilities that are 



DISTORTION OF UTILITIES 603 

restricted to lie in the class U, where U consists of those functions: U: T -* [0, 1] 
such that (i) U is continuous, strictly increasing, and concave in T; (ii) U is 
normalized so that U(O) = 0 and U(1) = 1. The class of admissible utilities 
should include those functions that are credible representations of their true 
preferences. Thus, condition (i) is a regularity assumption on the range of 
potential players. The concavity assumption means that the agents cannot 
pretend to be risk lovers. Since the solutions to the bargaining problem to be 
discussed are independent of afftne transformations, condition (ii) is inessential. 

The distortion game for the bargaining problem is played by each agent 
revealing a utility function in Qt and an element in a set 9? that will be used to 
resolve ties. Typically, U will denote the function revealed by player 1; V that of 
player 2. Given these reports, a set of outcomes B(U, V) is selected. B(U, V) is 
the set of allocations that give rise to a bargaining solution determined by U and 
V. The properties of solution concepts used to define B will be discussed in 
Section 3. However, in order to define the distortion game, it is only necessary 
that B(U, V) be a non-empty subset of T for all U and V in Q. 

In order to completely characterize the strategies for the distortion game, the 
way in which a single element of B is selected must be described. In addition to a 
utility function, each player will report an element from a set 916. An outcome 
will then be selected by a function B. Thus, B: t x 61 x 9? xD16X - T with 
B(U, f; V, g) E B(U, V) for all U and V E t and f and g ED 6. (6D?f,B) will be 
called the tie-breaking pair associated with B. 

DEFINITION: The strategies (U*, f*; V*, g*) constitute a Nash equilibrium for 
the distortion game determined by B with tie-breaking pair (61X, B) if and only if 
(i) (U*, Jf; V*, g*) E Qt x c1 x t x 61; (ii) B(U*, f*; V*, g*) solves: maxu(x) 
subject to x E {B(U, f; V*, g*): (U, f? E eQb X6t}; (iii) 1-B(U*, f*; V*, g*) 
solves: maxv(y) subject to 1 -y E { B(U*, f*; V, g): (V, g) E 1Q x 9t ). 

An appropriate choice of tie-breaking pair can allow the Nash equilibria for 
the distortion game to be characterized in terms of the reported utility functions 
and the correspondence B. 

DEFINITION: A tie-breaking pair (61X, B) for the solution B is unrestricted if 
and only if, for all U and V e Qt and f and g E 9, 

B(U, V) = {B(U, f; V,h): h e 91Z} = {B(U,h; V, g): h E 91}. 

Suppose player two reports a utility function V E 1Q and a tie-breaking 
strategy g E 916?. If (61X, B) is unrestricted then, for any U E 9?, player one has a 
tie-breaking strategy that can cause any outcome in B(U, V) to be selected. This 
makes the following description of Nash equilibria possible. 

PROPOSITION 1: If (9t, B) is an unrestricted pair for a solution B then, for any 
U* and V* E= Qll, there exist f* and g* E 61? such that (U*, f*; V*, g*) is a Nash 
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equilibrium for the distortion game determined by B with tie-breaking pair (6, B) 
if and only if there exists x* E B( U*, V*) such that x* solves: 

max u(x) subject to x E { B ( U, V*): U E 91) 

and 1 - x* solves: 

maxv(y) subject to t-y E {B(U*, V): V E 91). 

PROOF: If (U*, f*; V*, g*) is a Nash equilibrium then the conditions are 
satisfied when x* = B(U*, f*; V*, g*). This follows since (6,B) is unrestricted 
and so 

{B(U, f; V* g*): (U, f) CE G9 X 6} = {B(U, V*): U ECQ I) and 

{B(U*,_f*; V, g) (V, g) E 1x9t } = {B(U*,V): VEQt). 

Conversely, if an x* exists as described in the proposition then (U*, f*; V*, 
g*) is a Nash equilibrium provided that J* and g* are selected so that x* 
= B(U*, f*; V*, g*). This is possible because (916,B) is unrestricted. Q.E.D. 

Thus, if an unrestricted pair can be found to break ties, Nash equilibria can be 
characterized in terms of reported utility functions and the solution correspon- 
dence. 

The next result constructs unrestricted tie-breaking rules. 

PROPOSITION 2: Given any solution correspondence B, there exists an unrestricted 
pair (61, B) associated with B. 

PROOF: Let 61? = REn and define B by 

B(Uf 
,y) = |2((x+Y) if 2(x +y) C B(U, V), 
y any element of B(U, V) if I (x +y) : B(U, V). 

Clearly player one can obtain any z E B(U, V) given that player two is using 
strategy ( V, y) by using a tie-breaking strategy x with x = 2z - y and reporting 
the utility function U. Similarly, if player one reports the function U, player two 
can obtain any element of B(U, V) by responding with the appropriate tie- 
breaking rule. Q.E.D. 

In this paper all ties will be resolved using unrestricted tie-breaking rules. 
Proposition 2 says that this can be done, while Proposition 1 provides a 
characterization of Nash equilibria when unrestricted tie-breaking rules are used. 
Notice that it is not necessary for the players to actually report complicated 
tie-breaking strategies, provided that they know that some unrestricted procedure 
to break ties exists. Proposition 1 guarantees that if B(U*, V*) consists of more 
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than one point for equilibrium strategies U* and V*, then both players can agree 
on a most preferred outcome. Thus there will be no difficulty in making a 
selection from B(U*, V*). The existence of unrestricted pairs rules out the 
possibility that, at an equilibrium, players cannot agree on a selection from the 
solution correspondence. 

The characterization of Nash equilibria given by Proposition 1 will be used 
throughout this paper. Thus, a Nash equilibrium will be described by a triple 
(U*, V*, x*) satisfying the cond. tions of Proposition 1. The vector x* will be 
called the Nash equilibrium outcome or allocation. 

In what follows, Nash equilibrium allocations will be related to certain 
competitive outcomes. 

DEFINITION: A constrained equal-income competitive equilibrium (EICE) is a 
pair, (p*; x*) where (i)p* El Rf, p* > 0, p* 0 ; (ii) x* E T; (iii) x * solves: 

maxu(x) subject top* - x < I p* - 1 and x E T; 

(iv) 1 - x* solves: 

maxv(y) subject top* *y <?p P 1 and y E T. 

In an equal-income competitive equilibrium, both agents make demands 
subject to a budget constraint only. A constrained equal-income competitive 
equilibrium requires that these demands do not exceed the total resources 
available.5 It is well known that any equal-income competitive equilibrium is a 
constrained equal-income competitive equilibrium and that, provided preferences 
are convex, any interior constrained equal-income competitive equilibrium is an 
equal-income competitive equilibrium. 

The vector x* will be referred to as the competitive allocation. 
On occasion, a vector p =(p1, . . . ,pn) will be used to refer to the linear 

function from T to RF, where 

p(x) =p* X-Ex Axi 

No confusion should arise. 

3. SOLUTIONS TO BARGAINING GAMES 

The underlying bargaining problem can be formulated as follows. A bargaining 
game is characterized by a pair (S, d), where: (i) d = (dl, d2) E Rt2; (ii) S C 2 iS 

compact, convex, and contains d as well as some point x > d. 
The set S is interpreted as the set of feasible utility payoffs to the players. A 

point x = (xI , x2) can be achieved if both players agree to it. In that case, player 

5The concept of constrained competitive equilibria was introduced by Hurwicz, Maskin, and 
Postlewaite [6]. It is the smallest extension of the competitive correspondence that can be imple- 
mented in Nash strategies. 
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1 receives xl and player 2 receives x2. If the players are unable to agree, then the 
outcome d, called the disagreement outcome, is the result. 

In what follows, the set S will depend on the reported utilities U and V, and 
will be defined as the set of feasible utility payoffs. That is, 

S = S(U, V) ={(x ,x2) :0 < xI 6 U(t),0 < x2 < V(1-t) 

for some t E T }.6 

The disagreement outcome will always be taken to be (0, 0) = (U(O), V(O)). 
Notice that when the functions U and V are in 91, the set S is compact, 

convex, and contains a point x > (0,0). In fact, (1,0) E S, (0, 1) E S, and 
S C {xl,x2):0 < xl,x2 6 1}. Such a game will be called 0-1 normalized.7 

Nash [15] introduced the concept of a solution to a bargaining game. A 
solution is a function f, defined on the class of all bargaining games with 
f(S, d) = (fi(S, d), f2(S, d)) E S for all pairs (S, d). Nash characterized a particu- 
lar solution in terms of the following axioms. 

AXIOM 1 (Pareto Efficiency): If f(S, d) = x and y > x, then either y = x or 
y 4 S. 

AXIOM 2 (Symmetry): If (S, d) is a symmetric game (that is, (x1,x2) e S if and 
only if (x2, xX) E S, and d1 = d2) then f1(S, d) = f2(S, d). 

AXIOM 3 (Independence of Equivalent Utility Representations): If (S, d) and 
(S', d') are bargaining games such that 

S'= {(alxl + b,,a2x2 + b2): (xI,x2) E S and 

d' = (a1d, + bl,a2d2 + b2) where al and a2 > 0, then 

f(S', d') = (a, fi(S, d) + b,, a2f2(S,d) + b2). 

AXIOM 4 (Independence of Irrelevant Alternatives): If (S,d) and (S',d) are 
bargaining games such that S c S' and f(S',d) E S, then f(S,d) = f(S',d). 

Nash's result in [15] was that Axioms 1-4 characterize a solution, q1. In terms of 
utilities, U, V E t1, 

N(U, V) = {x E T: x Eargmax{ U(y)V(1-y) :y E T}}, 

6The definition of S(U, V) includes a free disposal assumption. Another (equivalent) definition 
would allow outcomes that do not distribute all of the commodities. That is, 

S(U,V)={(a,b):a=U(x),b=V(y),x,yE T and x+y< 1). 

7The normalization of S(U, V) anticipates the axiom of independence of equivalent utility 
representations (Axiom 3). With that axiom, any game can be taken to be 0-1 normalized without loss 
of generality. 
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is the set of allocations that give rise to the Nash solution to the bargaining game 
with disagreement outcome (0, 0). That is, for all x E N(U, V), 

q(S( U, V), (0, O)) = (U(x), V(1 - X))-8 
Axiom 4 has been criticized for a variety of reasons (see, for example, Luce 

and Raiffa [13]). Another solution to the bargaining game has been presented by 
Raiffa [14] and axiomatized by Kalai and Smorodinsky [8]. Kalai and Smoro- 
dinsky replace Nash's Axiom 4 with an axiom of monotonicity. To state the 
axiom formally, it is necessary to define, for all bargaining games (S, d), 

bl(S) = sup{x, E R : for some x2 e -R (xIIx2) E S } 

and 

b2(S) = sup{x2 E R: for somex E R (XI,X2) ES }. 

Also, let gs be a function defined for xl < bI(S) as follows: 

gS(xl) = x2 if (xl,x2) ES and (x,,x) E S implies x2> x, 

= b2(S) if no such x2 exists. 

Then gs (x) is the maximum player 2 can get if player 1 gets at least x. Because S 
is compact, b,(S) and b2(S) are finite and attained by points in S. I can now 
state the following axiom: 

AXIOM 5 (Monotonicity): If (S, d) and (S', d) are bargaining pairs such that 

bl(S) = bl(S') and gs < gs, then f2(S,d) < f2(S',d). 

This axiom says that if the maximum feasible utility level that player 2 can 
obtain is increased for every utility level that player 1 may demand, then the 
utility level assigned to player 2 according to the solution should also be 
increased. 

Kalai and Smorodinsky [8] show that Axioms 1, 2, 3, and 5 characterize a 
solution, (, to the bargaining problem. In terms of utilities, U, V E Qt, 

K(U,V) = {x E T:x E {argmaxU(y): U(y)= V(1-y),y E T}} 

is the set of allocations that give rise to the Raiffa-Kalai-Smorodinsky (R-K-S) 
solution to the bargaining game with disagreement outcome (0, 0). That is, for all 
x E K(U, V), 

C(S( U, V), (0, 0)) = (U(x), V(1 - x)). 

Many of the results to be presented on the equilibria to distortion games are 
valid for a class of solutions that include both the Nash bargaining solution and 

8The Nash solution gives rise to a single level of utility for each player. However, unless the utility 
functions are strictly concave, there may be several allocations that give rise to these utility levels. 
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the R-K-S solution. The crucial property, in addition to Axioms 1-3, seems to be 
the following. 

AXIOM 6 (Symmetric Monotonicity): If (S, (0,0)) is a 0-1 normalized bargaining 
game, then f(S, (0, 0)) > ( I 2 ) 

Axiom 6 can be stated in a more general fashion, but the above formulation is 
sufficient for my purposes. 

Any solution that satisfies Axioms 1, 2, 3, and 6 will be called admissible. It 
turns out that the equilibria for the distortion game can be characterized 
provided that the underlying bargaining solution is admissible. 

Axiom 6 is a weaker assumption than Axiom 5. One consequence of Axiom 5 
in this context is that if d E S C S', then f(S', d) > f(S, d). For any 0-1 normal- 
ized game S', the convex hull of (0, 1), (0,0), and (1,0), S, is contained in S'. 
Thus, whenever Axioms 1, 2, 3, and 5 are satisfied by a solution f, 

f(S',(0,0)) > f(S,(0,0)) = (2 I). 

It follows that the R-K-S solution is admissible. The Nash bargaining solution is 
also admissible. To see this, it is convenient to present another axiom, which was 
introduced by Kihlstrom, Roth, and Schmeidler [10] in order to study the effect 
that a player's attitude towards risk has on solutions to the bargaining game. 

AxIOM 7 (Risk Sensitivity): Suppose the bargaining game (S, d) is transformed 
into a game (S', d') by replacing player 2, say, with a more risk averse player (that 
is, if S = S( U, V) then S' = S'( U, k( V)) where k is increasing and concave); then 
fi(S',d') > fi(S, d). 

Any solution f that satisfies Axiom 7 describes a bargaining process in which it 
is advantageous to have a highly risk averse opponent. The axioms that have 
been presented are related by the following result. 

LEMMA 1: If f is a solution that satisfies Axioms 1, 2, and 7, then f satisfies 
Axioms 3 and 6. 

PROOF: Kihlstrom, Roth, and Schmeidler [10] show that Axioms 1 and 7 
imply Axiom 3. It therefore suffices to show that Axioms 1, 2, 3, and 7 imply 
Axiom 6. Let S = {(a, b) El R2 : a, b > 0, a + b < 1); then S = S(U, V) when 
U(x) _ V(x) = I1 * x. By Axioms 1 and 2, f(S, (0, 0)) = ( I a I ). I will show that if 
S' is 0-1 normalized, then it can be obtained from S by replacing player 2 by a 
more risk averse player. Then Axiom 7 will imply fi(S', (0,0)) > I. The lemma 
will follow by symmetry. Let 4 be a parametrization of the Pareto-efficient set of 
S'. That is, suppose the northeast boundary of S' can be written as 

P'= {(a,4(a)) :0< a < 1}. 
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Clearly 0 is decreasing and concave. Further, because of the normalization, 
j(0) = 1 and 0(1) = 0. Now let k be the function defined by k(a) = (1 -a). 
Then k is increasing, concave and satisfies k(O) = 0, k(l) = 1. Moreover, 

P' = {(a, k(l -a)) : 0 6 a < 1}.- 

Thus k takes the Pareto set of S onto the Pareto set of S'. It follows that S' can 
be derived from player 1 using the strategy L(x) =1 * x and player 2 using the 
strategy k(L). As noted earlier this is sufficient to prove the lemma. 

Q.E.D. 

Kihlstrom, Roth, and Schmeidler [10] show that the R-K-S and the Nash 
solutions satisfy Axiom 7. Therefore, these solutions are admissible. 

4. MAIN RESULTS 

In this section, it will be assumed that the distortion game is determined by an 
admissible solution to the bargaining game, f. Such a game will be referred to as 
an admissible distortion game. Associated with a solution f and functions U and 
V E 9t there is a set B(U, V) defined by 

B(U, V) = {x E T:f(S(U, V),(0,0)) = (U(x), V(1 -x))} 

B(U, V) is the set of outcomes giving rise to the utilities specified by the solution 

f. 
The main theorem can now be stated. 

THEOREM 1: If (p*; x*) is an EICE for the true preferences, then (p*, p*, x*) is 
a Nash equilibrium for any admissible distortion game. 

PROOF: Since B is admissible, it follows that for all U and V E t1, 

(1) x E B(U, P*) implies p* (1x)> 2 

and 

(1') xEB(p*,V) implies p 

Moreover, by symmetry, 

B(p*, p*) = {x E T: p* x =2} 

On the other hand, since (p*; x*) is an EICE, x* solves: 

(A) max u(x) subject to p* * x < I and x E T 

and 1 - x* solves: 

(A') max v(y) subject to p* y < 2 and y E T. 
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Since u and v are increasing, p* = x = p* (1 - x*). It follows that 
x* E B(p*, p*). Furthermore, since x* solves (A), (1) implies that x* solves: 

maxu(x) subject to x E B(U,p*). 

Similarly, combining (A') and (1') shows that 1 -x* solves: 

maxv(y) subject to 1-y E B(p*, V). 

This establishes the theorem. Q.E.D. 

The EICE is attained as follows: each player reports linear preferences with 
indifference surfaces parallel to the supporting prices. The set of solutions to the 
bargaining problem then consists of an entire hyperplane. However, since the 
hyperplane supports the EICE, both agents can agree on a most preferred point 
(with respect to their true preferences). This point is a competitive allocation. 

Theorem 1 has a partial converse. 

THEOREM 2: If (p, q, x*) is a Nash equilibrium for an admissible distortion game, 
and if p and q are linear, then x* is an EICE allocation. 

PROOF: Since x* E B (p, q), 

p * x* > and q * (1 - x*) >. 

Also, since B(q, q) = {x E T: q * x = 2 4 and u is increasing, it follows that x* 
solves: 

maxu(x) subject to q * x < 2 and x E T. 

Similarly, 1 - x* solves: 

maxv(y) subjectto p*y-6 2 and yE T 

and 

(2) q *x* =p * x*. 

To prove the theorem, it suffices to show that p = q. But this follows because 
x* is a Pareto-efficient allocation with respect to the utilities p and q. Hence (2) 
implies that equal division must be Pareto efficient with respect to the utilities p 
and q. Sincep and q are normalized, p = q. Q.E.D. 

Informally Theorem 2 can be explained as follows. The use of a linear strategy 
by player two restricts player one to outcomes x that satisfy q * x < I. Thus, the 
way to guarantee the most preferred outcome in this set is to use the strategy q; 
in this way B(q, q) = {x: q * x = I }. Similarly, the best response player two can 
make to player one is to use the same strategy. It follows that two linear 
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strategies p and q can comprise an equilibrium only if p = q and the players are 
able to agree on the most preferred outcome in {x: p - x = I ). 

Taken together, Theorems 1 and 2 characterize the Nash equilibria for the 
distortion game if agents are restricted to linear strategies. In general, the 
equilibrium outcome of the distortion game cannot be guaranteed to be an EICE 
allocation. The next result shows that all equilibrium outcomes are envy-free. 
That is, each agent weakly prefers his allocation to the allocation of the other 
player. 

THEOREM 3: If (U, V, x*) is a Nash equilibrium for an admissible distortion game 
and the true utilities are concave, then 

u(x*) > u()) I u(1 - x*) and 

v( -x*) > v(2) > v(x*). 

PROOF: u(x*) > u(y) where y solves: 

maxu(x) subject to x E B( V, V). 

Since I Ee B(V, V), u(x*) > u(-). The concavity of u and the fact that 
u(x*) > u(2) guarantee u(4) > u(l - x*). Identical arguments establish the 
statements about v. Q.E. D. 

By using his opponent's strategy, a player can guarantee himself the outcome 
4. Thus, any Nash equilibrium must yield each an outcome at least as preferred 
as equal division. 

Theorem 3 is true even if the underlying distortion game is not admissible. 
Since both players have the same strategy set, a player is able to use his 
opponent's strategy. Also, any solution B that is Pareto efficient and symmetric 
satisfies I Ee B(V, V) for all V. It follows that a player is able to guarantee an 
outcome that is at least as preferred as equal division by using his opponent's 
strategy. 

The following consequence of Theorem 3 is immediate. 

COROLLARY: If equal division is efficient, then all Nash equilibria to the 
distortion game give player 1 utility u(2), and player 2 utility v('). 

In particular, if the agents have identical preferences, equal division-or a 
utility equivalent allocation- will be the unique outcome of the distortion game. 

5. NASH AND RAIFFA-KALAI-SMORODINSKY DISTORTION GAMES 

The previous section proved existence of Nash equilibria for admissible 
distortion games. The characterization can be made more explicit if the nature of 
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the solution to the bargaining problem is restricted. In this section, the Nash and 
the R-K-S solutions will be considered specifically. 

For the results of this section, I shall assume that the true utilities are 
differentiable on the interior of T, and that reported utilities are twice continu- 
ously differentiable on the interior of T. I shall denote the partial derivative of a 
function U with respect to its ith argument by Ui. V U denotes the gradient 
vector (U,, . . ., U), and second partial derivatives are denoted by Ut,. 

The function, V, reported by agent 2 constrains the possible equilibria of the 
distortion game. In order for x to be a Nash equilibrium of the distortion game 
determined by the Nash bargaining solution, there must exist a U E 9t such that 
x solves: 

(B) max U(y) V(1 - y) subject to y E T. 

Since U and V are concave, the first order conditions associated with this 
maximization problem are necessary and sufficient. That is, x solves (B) if and 
only if, for all i, 

(3) Ui(x)V(1-x)-U(x)Vi(1-x) < 0 if xi < 1 

and 

(3') Ui(x)V(1 - x) - U(x)Vi(1 - x) > 0 if xi >0. 

Hence, 

xi Ui(x) V(1 - x) > U(x) Vi(1 - x)xi for all i. 

Summing and using the fact that, for all y E T, 

U(y) > V U(y) * y whenever U E 91, 

it follows that 

(4) V(1 - x) > V V(1 - x) * x 

for any potential Nash equilibrium allocation x. 
Thus, given the report V, the best possible Nash outcome for player 1 is the 

solution, x*, to: 

max u(x) subject to V(1 - x) > V V(1 - x) * x. 

An identical argument can be used to deduce the restrictions a reported 
strategy U has on the possible outcomes for player 2 and these results can be 
used to characterize the equilibria of the distortion game. 

LEMMA 2: Let U*, V* E QL. Then (U*, V*,x*) is a Nash equilibrium for the 
Nash distortion game if and only if 

x* E N(U*, V*), 
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x * solves: 

(C) maxu(x) subject to V*(1-x) > VV*(1-x) * x and x E T, 

and 1 - x* solves: 

(C') max v(y) subject to U*(1 -y) > V U*(1 -y) y and y E T. 

PROOF: If x* solves problem (C), then x* is the best outcome player 1 can 
obtain given that player 2 reports V*; and if 1 - x* solves (C'), then 1 -x* 
is the best that player 2 can obtain given that player 1 reports U*. Thus, 
(U*, V*,x*) is a Nash equilibrium provided x* E N(U*, V*). 

To prove that the conditions are necessary, it suffices to show that, given 
V*, player 1 can always report a utility function, U, so that the element in 
P = {z E T: V*(1 - z) > V V*(1 - z) z} that he most prefers is contained 
in N( U, V*). Since x* E P by (4), (U*, V*, x*) will be a Nash equilibrium only if 
x* solves (C). Suppose z* solves: 

maxu(z) subject to z E P. 

Then, since u is strictly increasing, 

V*(1 - z*) = V V*(1 - z*) * Z*. 

Let 

U(x) = V V*(1 - z*) * x/V V*(1 - z*) * 1. 

It is easy to check that U E Qit and z* E N(U, V*). Therefore, the earlier 
comments guarantee that u(x*) = u(z*) if (U*, V*, x*) is a Nash equilibrium. A 
similar argument shows I - x* solves (C') and proves the lemma. Q.E.D. 

Notice that a player can select a best response which is linear. In this sense, 
nonlinear strategies are dominated. It is unlikely that dominated strategies will be 
used. 

A similar result is true for the R-K-S distortion game. 

LEMMA 3: A triple (U*, V*, x*) is a Nash equilibrium for the R-K-S distortion 
game if and only if 

x* E K(U*, V*), 

x* solves 

(D) max u(x) subject to (VV*(1 - x) - (1- x))V*(1 - x) 

> (1 - V*(1 - X))V V*(1 - X) * X, 
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and 1 - x* solves: 

(D') max v(y) subject to (VU*(1 -y) (1 -y))U*( -y) 

>(I1 - U*(1 - y)) V U*(1 - y) * y. 

The proof of Lemma 3 is analogous to that of Lemma 2, and is omitted. 
In order to identify other possible Nash equilibria, implications of the neces- 

sary conditions given in the previous lemmas must be examined. 

LEMMA 4: Suppose (U, V, x) is a Nash equilibrium for the distortion game 
determined by the Nash or R-K-S bargaining solution. Then 

(5) x * V U(x) = (1-x) * V U(x) = U(x), 

(5') (1 - x) * V V(1 - x) = x * V V(1 - x) = V(1 - x), 

(6) U(Xx) = XU(x) for O < X < 1, 

(6') V(X(1-x)) = XV(1-x) for O < X 6 1, 

(7) V U(Xx) = V U(x) for 0 X < 1, 

(7') V V(Q(1-x)) = V V(1-x) for 0 < X < 1, 

(8) U1j(x)xi= O for allj, and 

(8') V %(1 - x)(I - xi) = 0 for allj. 

The proof of Lemma 4 is given in the Appendix. Properties (5) and (5') are 
derived directly from Lemma 2 or 3, the remaining properties follow for any 
elements of 9t satisfying (5) or (5'). The restrictions placed on the reported 
strategies at a Nash equilibrium can be interpreted in the context of the Nash 
bargaining solution. The Nash solution to the bargaining problem depends on 
the local properties of the reported preferences and of their derivatives. Proper- 
ties (6), (6'), (7), and (7') say that utility, as measured by the reported preferences, 
increases linearly along the segment connecting 0 to the outcome, the direction 
and magnitude of increase along the ray being constant. 

The characterization of equilibrium strategies given in Lemma 4 is suggested 
by the results of Kihlstrom, Roth, and Schmeidler [10] and Kannai [9]. Their 
results show that a player's utility at the Nash and R-K-S bargaining solutions 
increases as his opponent becomes more risk averse. Thus, one would expect 
equilibrium strategies to be "least concave"9 representations of some ordinal 

9A least concave utility function is a minimal element in the set of continuous, concave functions 
on T ordered by ~, where U? V if U is more risk averse than V. 
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preferences. The fact that equilibrium strategies must be linearly homogeneous 
along a segment is consistent with this expectation. 

Notice that, at least when there are only two commodities, (7) and (7') imply 
Thomson's [19] results. U is required to be of the form U(x I, x2) = xI + W(x2) 
with W concave, and (7) implies W is linear. Similarly (7') requires that V must 
be linear. Therefore, the results of Section 3 imply that the equilibria of the Nash 
and R-K-S distortion games coincide with the EICE's when reported strategies 
are smooth and there is transferable utility. 

The next results are true for the distortion games determined by both the 
R-K-S and the Nash bargaining solutions. Proofs are given only in the Nash 
case. 

THEOREM 4: If (U, V, x*) is a Nash equilibrium for the distortion game, then 
(V U(x*); x*) is an EICE for the reported utilities. 

PROOF: Lemma 4(6) guarantees that 

V U(x*) * X* = V U(X*) * I = V U(x*) * (1 - X*) 

and clearly x* solves: 

max U(x) subject to V U(x*) * x < V U(x*) * 2 and x E T. 

To show that 1 - x * solves: 

max V(y) subject to V U(x*) * y < V U(x*) * 2 and y E T, 

it must be verified that 1 - x* satisfies the first order conditions 

Vi(1-x*)-XUi(x*) > O if x* < 1 and 

Vi(1-x*)-xUi(x*) < O if xi* >O. 

Since x* E N(U, V), these conditions follow from (3) and (3') with X = 
V(1 - x*)/ U(x*). Q.E.D. 

The next result is used to characterize the efficient Nash equilibria. 

LEMMA 5: If (U, V, x*) is a Nash equilibrium then 

Vu(x*) * X* > Vu(x*) * 2 and 

VV(1 - X*) * (1 - X*) > Vv(1 - x*)* 2 

PROOF: By Lemma 2, x* must satisfy the first order conditions for the 
maximization problem (C). Thus, there is a ,u > 0, such that for all i, 

ui(x*) - tu[2V(1 - x*) - VJ(1 - x*)x*] > 0 if x12" > O, 
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and 

u,(x*) - I42Vj(1 - x*) - EV(l - x*)xj*] < 0 if xi* < 1. 

By (8') and the concavity of V it follows that 

Vu(x*) x* > 2,fV V(1 - x*) * x* 

and 

Vu(x*) (1 - x*) < 2,uV V(1 - x*) - (1 - x*). 

Thus, 

Vu(x*) x* > Vu(x*) * 2, 

since 

V V(1 - x*) =* =-V V(1 - x*) (1 - x*) 

by (5'). Similar arguments establish the inequality involving v. Q.E.D. 

If x* were a competitive allocation, Vu(x*) could be taken to be the support- 
ing prices. Lemma 5 then guarantees that the value of the allocation x* at these 
competitive prices is at least as great as the value of the equal division allocation, 
2. The next consequence is therefore evident. 

THEOREM 5: If x* is an efficient Nash equilibrium, then x$ is an EICE. 

PROOF: I assume, for convenience, that x* is in the interior of T. In this case, 

Vu(x*) = AVv(1 - x*) for some X > 0. 

Thus, Lemma 5 implies 

(9) Vu(X*) * x*> Vu(x*) * 2 

and 

(9') VU(X*) * (1 - X*) > VU(X*) *2 

It follows that (9) and (9') must hold as equalities. Hence, (Vu(x*); x*) is an 
EICE. When x* E Boundary (T) there may be several equilibrium prices asso- 
ciated with it. The argument given above can be modified to show that one of 
these supporting prices makes the allocation x* an EICE. Q.E.D. 

Inefficient Nash equilibria exist in nonpathological settings, if nonlinear strate- 
gies are allowed. The following example shows that an EICE allocation may not 
be Pareto superior to other Nash equilibria of the distortion game. 



DISTORTION OF UTILITIES 617 

EXAMPLE: Let u(x, y) = x5/6Y1/6, V(X y) = x12y 1/2, U(x, y) = (5x + 3y)/8, 
and V(x, y) = x l/2Y 1/2 Then u, v, U, and V E Qt, and routine verification, using 
Lemma 2, shows that (U, V, x*) is a Nash equilibrium for the distortion game 
when x* = (3/5,1/3). In this example, there is a unique EICE for the true 
preferences. It is (p*; y*) = ((2/3, 1/3); (5/8, 1/4)). A computation shows that 
v(1 - y*) > v(1 - x*) and that u(x*) > u(y*). Thus, the first player prefers the 
inefficient outcome x * to the EICE outcome y *. Also, the second player is worse 
off at the Nash equilibrium (u, v, x*) even though he is reporting his true utility 
function. 

The example also shows that the set of equilibria to the Nash distortion game 
is not equal to the set of equilibria of the R-K-S distortion game. It is easy to 
check x * X K(U, V) so (U, V, x*) is not a Nash equilibrium for the R-K-S 
distortion game. 

University of California-San Diego. 

Manuscript received September, 1979; revision received January, 1980. 

APPENDIX 

This appendix will prove Lemma 4 for the Nash distortion game. The proof for R-K-S bargaining 
is similar. A preliminary result must be established first. 

FACT: Let A = (a.), I < i, j < n by a (symmetric) negative semi-definite matrix, and suppose 

Zj,aUxjx,x = 0 for some x = (xl, . . ., x"). Then, for all i, Eja,qxj = 0. 

PROOF: Let P be an orthogonal matrix that diagonalizes A, and let D = P'AP be a diagonal 
matrix with diagonal entries A,. (P' denotes the transpose of P). By assumption, Xi < 0 for all i. 
Finally, lety = P'x. It follows that 0 = x'Ax = y'Dy = '1 Ay7 . Since Xi < 0 for all i, Xiyi = 0 for all i. 
Therefore, 

Ax= Dy =0. 

This proves the Fact. Q. E. D. 

LEMMA: 4: Suppose (U, V, x) is a Nash equilibrium for the distortion game. Then 

(5) x * V U(x) =(1 - x) V U(x) = U(x), 

(5) (1 - X) V V(1 - X) = x * V V(1 - X) = V(1 - X), 

(6) U(Xx) = XU(x) for 0 < X < 1, 

(6') V(A(1- x)) =XV(1- x) for 0 < X< 1, 

(7) V U(Xx) = V U(x) for 0 < X < 1, 

(7') V V(X(1 - x)) = V V(1 - x) for 0 < A < 1, 

(8) EULy(x)xi= 0 for all j, and 

(8') V,(l - x)(I - xi) = 0 for allj. 
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PROOF: It follows from Lemma 2 and the fact that the true utilities are strictly increasing, that 

(Al) (1-x) * VU(x) = U(x) and 

(Al') x * V V(1-x) = V(1-x). 

Also, since x E N(U, V), (3) and (3') hold. Therefore, for all i, 

(1 - x)Ui(x)V(l - x) - U(x)V,(1 - x)(l - x,) S 0 

and 

XI (x) V(1 - x) - U(x) Vi(- x)xi > 0. 

Summing, applying (Al), (Al'), and the concavity of U and V show that 

U(x) = x * V U(x) and V(1-x) = (1-x) V V(1-x). 

This establishes (5) and (5'). 
To show (6) observe that because of concavity and the fact that U(x) = x V U(x), 

U(x) - U(Ax) > V U(x) (x - Ax) 

= U(x) - XV U(x) x 

> U(x)- XV U(\x) x 

> U(x) - U(Xx) 

whenever 0 < X < 1. It follows that all of the inequalities above hold as equalities. Hence, for 
0?< X I, 

U(Ax) = XV U(x) x = XV U(Xx) x = XU(x). 

Thus, for 0 < X ? 1, 

(A2) V U(Xx) * x = U(x). 

Identity (A2) can be differentiated with respect to X. This yields 

U9 (Ax)xixj=0 for 0 < X < 1. 

The preliminary Fact now implies that for all j and 0 < X < 1, 

V U(Xx)xi= 0. 

This establishes (8). Equation (7) follows since 

Siia a rx))uE Uel (6x)xi= (. 

Similar arguments establish (6'), (7T), and (8'). Q.E.D. 
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