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Existing equilibrium refinements rule out Nash equilibria susceptible to devia-
tions. We propose a framework for considering not only equilibria impervious to
deviations, but also equilibria likely to recur in the long run because they are
repeatedly deviated to. We explore which equilibria are recurrent with respect to
the deviations underlying some existing signaling refinements. We show that the set
of recurrent equilibria based on Cho and Kreps's (1987) intuitive criterion is equiv-
alent to their solution concept, but that applying our framework to existing cheap-
talk refinements make those solution concepts more realistic and guarantee exist-
ence where their current formulations do not. Journal of Economic Literature
Classification Numbers: B49, C72, C73. � 1996 Academic Press, Inc.

1. Introduction

It is a basic tenet of non-cooperative game theory that if players settle
upon predictable play, this play will be a Nash equilibrium. Yet many
standard solution concepts propose that some Nash equilibria are them-
selves susceptible to deviations. Such deviation-based refinements have
been developed in the signaling literature (see [2, 7]), most prominently in
the cheap-talk literature (see [10, 17]). While these refinements identify
equilibria that are susceptible to deviations, they leave an important ques-
tion unanswered: If players are likely to deviate from some equilibrium,
what will they deviate to? We feel this question is important because
some equilibria that are subject to deviations may still persist in
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Figure 1

the long run because they may be repeatedly deviated to. It seems inap-
propriate to omit such recurrent equilibria from the solution concepts with
which we make predictions in economic models.

In this paper, we develop a framework to address this question and use
this framework to critique existing solution concepts. Our framework
involves two steps. First, based on intuitions from existing refinements for
when and how deviations occur, we develop an algorithm for specifying
explicitly the outcomes that might arise following a deviation from an equi-
librium. Second, we then develop solution concepts based on which equi-
libria recur infinitely often given a theory of deviations. We show that our
framework gives a more complete dynamic justification for a prominent
existing solution concept, but also that it alters and (we feel) improves
upon the solution concepts resulting from other theories of deviations.

Our first step, specifying which equilibria might follow deviations,
addresses a concern commonly expressed regarding signaling refinements.
Signaling refinements have been criticized because proposed deviations
from equilibria often rely on an apparent inconsistency: Some players
defect from an equilibrium while others continue to believe in that equi-
librium. Our approach to deviations takes this general criticism, often
called the Stiglitz critique, into account.1 The standard Sender�Receiver
signaling game in Fig. 1 illustrates this critique. (The first of each pair of
payoffs is that of the informed Sender; the second is that of the uninformed
Receiver.)

2 RABIN AND SOBEL

1 As we discuss in the next section, we do not, however, concur with the more specific
arguments of the example in [7] in which the critique is most often formulated.
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There is a sequential equilibrium of this game in which both types of the
Sender choose m2 and the Receiver chooses a2 given m1 and r1 given m2 .
This outcome fails the Cho and Kreps's intuitive criterion. They argue that,
given the equilibrium response to the message m2 , only type t1 could con-
ceivably wish to deviate by sending the message m1 , because type t2 would
get worse than her equilibrium payoff by doing so no matter how she
thought the Receiver would respond. The Receiver should therefore inter-
pret the deviation m1 as being sent by t1 and should respond with action
a1 . If the Receiver acts in this way, then t1 would prefer to send m1 rather
than the equilibrium message, m2 . Cho and Kreps conclude that this equi-
librium is not stable.

We feel this analysis stops too soon. If the Receiver realizes that t1 might
deviate by sending message m1 , then he might respond to m2 with r2 ,
which is the optimal response given that only t2 is sending m2 . Given such
a response to m2 , now t2 may be better off sending m1 . If the Receiver
believes that t2 may therefore play m1 , he may react to m1 by playing a2 ,
his original equilibrium response to m1 . This in turn may lead both types
of Sender to adhere to her equilibrium strategy. Thus, if the players with
common knowledge anticipate a deviation from this equilibrium, they may
reasonably choose not to deviate after all. While we accept Cho and
Kreps's argument that this equilibrium is unstable in some sense, we feel
that the Stiglitz critique does indeed have force��rational players might
respond to the hypothesized deviation from this equilibrium by continuing
to play the equilibrium.2

In Section 2, we formalize the arguments above by defining an expansion
process: Starting with a proposed deviation, we iteratively add best respon-
ses by each player until no more strategies need be added. This expansion
process formally parallels the reasoning outlined above and guarantees that
the set of possible reactions to a posited deviation is consistent with com-
mon knowledge of rationality. We label the resulting set of strategies the
deviation correspondence. For a given equilibrium and theory of deviations,
a deviation correspondence specifies a set of strategies that players may use
following a deviation from the equilibrium.

We complete our framework in Section 3 by describing some broad
properties of dynamics that allow us to characterize a set of equilibria that
may persist in the long run. The environment we are considering is that of
``non-strategic'' repeated play��two players repeatedly play a game, observ-
ing the outcome each period; we implicitly assume that the players discount
the future heavily, so that in every round players each try to maximize

3DEVIATIONS, DYNAMICS, AND REFINEMENTS

2 But we also show that the Stiglitz critique does not always recover unstable equilibria. For
earlier arguments and examples of when the Stiglitz critique does and does not have force, see
[16].



F
ile

:6
42

J
20

90
04

.B
y:

B
V

.D
at

e:
22

:0
1:

96
.T

im
e:

16
:0

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

40
50

Si
gn

s:
32

20
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

their one-shot payoff.3 We assume that there is a tendency for play to settle
down on equilibrium behavior, but that deviations may upset certain equi-
libria. In the periods following an equilibrium, players may play strategies
in the deviation correspondence, and play re-equilibrates to an equilibrium
in the deviation correspondence. We define as recurrent those equilibria
that are likely to be played repeatedly in the long run in such an environ-
ment.4

Figure 1 illustrates our approach. Let X be the pooling equilibrium that
Cho and Kreps argue is susceptible to a deviation. The deviation corres-
pondence from this equilibrium X will include the other equilibrium in this
game, in which t1 sends the message m1 , t2 sends the message m1 with
probability 3�4 and m2 with probability 1�4, and the Receiver responds to
m1 with an equal mixture of a1 and a2 and to m2 with r2 . We call this par-
tially separating equilibrium Y. Then our deviation correspondence for X
contains both X and Y. By contrast, because Cho and Kreps argue that Y
is stable, its deviation correspondence is itself.

Which of these two equilibria might occur in the long run? While we
argued above that X won't necessarily be deviated away from in any given
period, we assume that there is a small probability that there will be a
deviation to Y, and thus posit that eventually this deviation will occur.
Once such a deviation occurs, because Y is stable, it will be played forever.
Despite the Stiglitz critique, therefore, the equilibrium Y seems the
appropriate long-run prediction in Fig. 1. Indeed, we show in Section 3
that the deviation correspondence based on Cho and Kreps's [7] intuitive
criterion always contains an equilibrium that is stable.5 We therefore
assume that play will eventually deviate to a stable equilibrium, at which
point no unstable equilibrium will again be played. Despite basing our
solution concept on recurrent equilibria, our proposed solution concept
turns out to be equivalent to Cho and Kreps's solution concept, which
includes only equilibria that are not susceptible to deviations.6

4 RABIN AND SOBEL

3 Our model can also be interpreted as a situation in which each person plays the game
only once, where the players each period are a new generation of people who observe previous
play of the game.

4 Our exclusive focus on equilibrium rather than non-equilibrium outcomes makes sense in
environments in which deviations are relatively rare and equilibration is relatively quick. We
feel that some such story underlies the equilibrium-refinement literature. [14] and [29]
develop explicitly dynamic models which guarantee that play will generally be in equilibrium,
but that equilibrium behavior will periodically be interrupted by mutations.

5 Throughout the paper, we refer to equilibria as ``stable'' if they are not subject to devia-
tions and as ``unstable'' if they are subject to deviations.

6 In [26], we show also, that by slightly modifying our framework, Kohlberg and Mertens'
[15] never-a-weak-best-response criterion has the same property�equilibria are recurrent with
respect to the never-a-weak-best-response criterion if and only if they are stable with respect
to the never-a-weak-best-response criterion.
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The equivalence between recurrent and stable equilibria is not a general
feature of our framework, however, and need not hold for other theories of
deviations. Suppose, for instance, that a game has three equilibria, A, B,
and C. Suppose that (according to some theory) A is not subject to devia-
tions, and B and C tend to deviate to each other, but not to A. The
standard refinement literature would have us limit attention to equilibrium
A, because it is the only stable equilibrium. This seems inappropriate��if
either equilibrium B or C occur, then equilibrium A will never occur again.
Our notion of plausible long-run equilibria would therefore include B and
C; while neither is stable, each is likely to appear over and over again.

In Section 4, we provide an extended example in cheap-talk games that
illustrates such a situation and show that our framework provides an alter-
native approach to making predictions in such games. Based on the
arguments of [17], we develop a solution concept called recurrent mop,
and provide some examples where recurrent mop improves upon existing
cheap-talk solution concepts. We also show that recurrent mop guarantees
communication in a class of games where other common cheap-talk
refinements do not.

While our framework indicates that existing signaling refinements may
eliminate too many equilibria, Section 4 illustrates that our approach has
attractions for those who like their solution concepts strong. We feel that
many existing solution concepts with non-existence problems are ``too
strong'' not because they have the wrong intuition for which equilibria
are prone to deviations, but rather because these solution concepts inap-
propriately rule out all deviation-prone equilibria. Applying our frame-
work to cheap-talk solution concepts and other concepts such as Grossman
and Perry [11] therefore provides a practical approach to making strong
predictions. Because we focus on recurrent equilibria rather than stable
equilibria, we show in Section 3 that we always guarantee existence, even
in situations where current solution concepts do not.

In Section 5, we discuss two potential further applications of our
approach. First, we discuss an alternative framework to that taken by
Bernheim et al. [4] for thinking about ``coalition-proof'' equilibria. We
then conclude the paper by discussing some ideas on how to extend our
approach to allow for non-equilibrium behavior.

2. Deviation Correspondences and Expansions

In this section, we develop the first step of our framework, constructing
deviation correspondences for two-player games. Players 1 and 2 have
finite pure-strategy sets S1 and S2 , with the set of strategy profiles
S#S1_S2 , and payoff functions (u1 , u2). For any finite set Z, we denote

5DEVIATIONS, DYNAMICS, AND REFINEMENTS
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by 2(Z) the set of probability distributions on Z, so that a mixed strategy
for player i is an element in 2(Si). We extend (u1 , u2) to mixed strategies
in the obvious way. Given a set of strategies Zj�2(Sj), we denote by
BRi (Zj) the set of best responses in Si to Zj . That is, BRi (Zj)#[si* # Si |
there exists zj # Zj such that ui (si*, zj)�ui (si , zj) for all si # Si]. Similarly,
we define the notion of strong best responses as SBRi (Zj)#[si* # Si | there
exists a full-support probability distribution pj over the strategies in Zj such
that ui (si*, pj)�ui (si , pj) for all si # Si].

While our framework could be applied more generally, we limit our
attention in this paper to simple signaling games. Player 1 is an informed
Sender, who has private information drawn from a finite set of types T
according to a common-knowledge distribution ?( } ). Her set of pure
strategies consists of rules that assign to each t # T a message m, which is
a member of a finite set M. Player 2 is an uninformed Receiver, who
observes which message m is chosen, and then chooses an action a, which
belongs to a finite set A. Players have utility functions u1(t, m, a) and
u2(t, m, a). In Fig. 1, the Sender's type is either t1 or t2 , and she can
choose message m1 or m2 , after which the Receiver chooses his action.
For ease of reference, we label the actions by the Receiver differently
depending on which message they follow, so the Receiver chooses between
a1 and a2 if he observes message m1 , and between r1 and r2 if he
observes m2 .

In order to describe a deviation correspondence we begin with an equi-
librium #=(#1 , #2) and a set of possible deviations from this equilibrium,
Q(#=(Q1 , Q2), where Qi is a (possibly empty) set of mixed strategies for
player i. We then construct the deviation correspondence, which is a set
D(#)�2(S1)_2(S2) containing those strategies that rational players might
consider following a deviation from #, by iteratively adding strategies that
respond optimally to the deviations. We take the sets Q(#) as input
into our framework��these sets are meant to directly incorporate intui-
tions of existing refinements. In this section, we shall illustrate our
approach using Cho and Kreps's [7] intuitive criterion; in Section 4,
we apply our approach to the theory of deviations proposed by Matthews
et al. [17].

Starting from the set of possible deviations Q we form an increasing
sequence of sets [71(n), 72(n))]. The union of these sets will be the devia-
tion correspondence. First we define 71(0) and 72(0):

7i (0)#{#i

Qi

if Qi=<
if Qi{<.

If there are no allowable deviations, 7i (0) is simply player i 's equilibrium
strategy; if there are allowable deviations, then 7i (0) consists of these

6 RABIN AND SOBEL
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deviations. This formulation allows that the equilibrium strategy #i need
not be part of 7i (0); the logic of the refinements that we study suggests to
us that when an equilibrium is subject to deviations, then the equilibrium
itself ought be eliminated from the sets (71(0), 72(0)).

To illustrate our approach, consider again the sequential equilibrium in
Fig. 1 in which both types of the Sender choose m2 and the Receiver
chooses a2 given m1 and r1 given m2 . We denote this equilibrium by
((m2 m2), (a2 r1)). Cho and Kreps [7] argue that t1 would deviate from this
equilibrium by sending message m1 rather than m2 , her message specified
by the equilibrium. Thus it is concluded that the equilibrium ((m2m2),
(a2r1)) is not stable.

Formally, we construct the sets (71(0), 72(0)) based on the intuitive
criterion as follows. Let BR2(K, m) denote the set of best responses by the
Receiver to the message m if his beliefs are concentrated on the set of types
K�T. For the equilibrium #, let u*(t) be the payoff for type t of the
Sender, and let M* be the set of signals sent with probability zero. We say
that a strategy is in Q1 if it involves all types besides some type t* sending
their equilibrium signals, and involves t* sending some message m* # M*
such that u(t*, m*, a)>u*(t*) for all a # BR2(J, m*), where J#[t| there
exists a # BR2(T, m*) such that u(t, m*, a)�u*(t)]. Type t* gains (relative
to her equilibrium payoff) by using m* if the Receiver responds to this
message with an element of BR2(J, m*). It is plausible to restrict the
Receiver's best responses to m* to be in BR2(J, m*) since every type of
Sender outside of J does better playing her equilibrium strategy than send-
ing m*, provided the Receiver responds to m* by responding optimally to
some conjecture over the Sender's types. The intuitive criterion rules out,
an equilibrium precisely when Q1 is non-empty. For the equilibrium
((m2 m2), (a2 r1)), this definition says that Q1=[(m1m2)], and thus that
71(0)=[(m1m2)].

We shall also define ``deviations'' by the Receiver, which correspond to
the anticipated behavior by the Receiver that Cho and Kreps invoke in
arguing that the Sender should deviate. In particular, we assume that a
strategy is in Q2 if it has the Receiver playing a best response to the
message m* for some s # Q1 , and playing the original equilibrium strategy
in response to all strategies m{m* . Hence if Q1 is empty, then (71(0),
72(0)) is equal to the original equilibrium. Otherwise, Q2 does not include
the Receiver's equilibrium strategy, and does include all strategies involving
off-the-equilibrium-path best responses that motivate the Sender to deviate.
One way in which we assess the validity of the Stiglitz critique is to see if
the Receiver's equilibrium strategy is an element of 72(n) (defined below)
for some n. To summarize, if we apply our framework to the pooling equi-
librium of Fig. 1, we see that 71(0)=Q1=[(m1m2)], and 72(0)=Q2=
[(a1r1)].

7DEVIATIONS, DYNAMICS, AND REFINEMENTS
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We consider such sets (71(0), 72(0)) to be only a preliminary hypothesis
and note that these strategies might not be consistent with common
knowledge of rationality. If rational players hypothesize a set of deviations
Q(#) might occur from the equilibrium #, then each player ought rationally
to respond to such deviations. For instance, if the Receiver truly believes
that the Sender is going to play strategy (m1m2) rather than (m2m2), then
he should play the strategy (a1r2) rather than (a1r1). Consequently, we
wish to add this as a possible strategy for the Receiver.

We wish to define a deviation correspondence based on (71(0), 72(0))
as the subset of strategies in (2(S1), 2(S2)) that players believe possible
following the equilibrium #. Define 7i (n) iteratively by setting 7i (n)#

7i (n&1) _ SBRi (2(7&i (n&1))) if 7&i (n&1){#&i and by 7i (n)=#i if
7&i (n&1)=#&i . That is, if we have added strategies to player &i, we then
add all strong best responses by player i to all beliefs over the new
strategies; if we have not added strategies to player &i, then we continue
to assume that player i will play his equilibrium strategy.7 Because each Si

is finite and 7i (n)�7i (n+1), we know there exists an n* such that for all
i and all k, 7i (n*)=7i (n*+k). Then let 7i*=7i (n*).

In the expansion process based on the intuitive criterion, 71=71(0), but
72(1) adds in the strategy (a1 r2), because perceiving a deviation will mean
that the Receiver will change his response on the equilibrium path.
Depending on the Sender's beliefs about the likelihood of the Receiver's
two strategies in 72(1), therefore, the Sender might now prefer to play the
strategy (m1m1). Thus, 71(2) contains (m1 m1). In turn, this means that
72(3) contains (a2 r1), which is optimal if the Sender chooses (m1 m1), and
that 71(4) contains (m2m2), so the original equilibrium ((m2 m2), (a2r1)) is
contained in (71* , 72*).

We refer to this process more generally as an expansion:

Definition 1. For a given equilibrium ##(#1#2) and deviation sets
Q(#)#(Q1 , Q2), let the expansion of (#, Q(#)), denoted Exp(#, Q(#)), be
the sets of strategies (71* , 72*) constructed as outlined above.

Throughout the paper, we shall equate the deviation correspondence
D(#)��which summarizes whether and how deviations from the equili-
brium # will occur��with the expansion of the (#, Q(#)). By iteratively add-
ing in best responses, the expansion process guarantees that the sets of
strategies the players might play are consistent with common knowledge of

8 RABIN AND SOBEL

7 The results in this section do not change if we replace SBR by BR in the definition of
7j(n). In Section 4 we describe a deviation correspondence where it is necessary to add in only
strong best responses. For consistency we have chosen to use strong best response in this sec-
tion as well.
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rationality.8 An important feature of the expansion process is that it will
always contain at least one Nash equilibrium. This fact follows once we
note that the hypothetical game defined by permitting players to use only
mixtures of strategies in D(#) (and in which they receive the payoffs of the
real game) has a Nash equilibrium. That Nash equilibrium must also be a
Nash equilibrium of the real game; otherwise the expansion process would
not have stopped.9

Because the intuitive-criterion deviation correspondence constructed
from the pooling equilibrium X in Fig. 1 contains X itself, the Stiglitz criti-
que applies. Figure 2 demonstrates, however, that the Stiglitz critique does
not always redeem unintuitive equilibria.

The pooling equilibrium ((m2m2), (a2r2)) fails the intuitive criterion in
this example because t1 (and only t1) could gain by deviating. Because this
is the only deviation designated by the intuitive criterion, 71(0)=Q1=
[(m1m2)] and 72(0)=Q2=[(a1r2)]. In the iteration process, (a1 r3) will
be included in 72(1), but nothing more is added into either player's

9DEVIATIONS, DYNAMICS, AND REFINEMENTS

8 Because deviation correspondences are sets of strategies consistent with common
knowledge of rationality without imposing the equilibrium assumption, our approach here is
similar to that taken in [21, 24], where an approach to combining behavioral assumptions
with rationalizability is developed. Game-theoretic applications using similar ideas include
[6], [22, 23, 25], [28], and [30].

9 The sets (71(0), 72(0)) need not contain an equilibrium (they don't in our example for
Fig. 1). It is necessary to expand the set of strategies in the deviation correspondence beyond
(71(0), 72(0)) in order to develop a theory which guarantees that it is possible for players to
play an equilibrium following a deviation. This expansion process also guarantees that our
theory of deviations is consistent with common knowledge of rationality.
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best-response set. The deviation correspondence will therefore be (71* , 72*),
where 71*=[(m1m2)] and 72*=[(a1 r2), (a1 r3]). These sets contain only
the separating equilibrium to this game, ((m1m2), (a1 r3)), and not the
original equilibrium. The unintuitive equilibrium does not therefore
become plausible even if we assume common knowledge of the posited
deviation, so the outcome here is not stable in any sense: Even when we
take the Stiglitz critique fully into account, the pooling equilibrium does
not survive a deviation.

We have not described the only possible way to formalize the Stiglitz
critique. In fact, if one applies our approach to the Beer�Quiche example
in which Cho and Kreps [7] discuss the Stiglitz critique, one finds that the
bad equilibrium is not included in its deviation correspondence. Figure 3,
which is closely related toil the Beer�Quiche example, clarifies the contrast
between our approach and the original formulation of the Stiglitz critique.

Here, as in Fig. 1, there is a pooling sequential equilibrium, (m2m2 , a2r1);
as in Fig. 1, this equilibrium is subject to a deviation in which t1 plays m1 ,
and the Receiver responds to m1 with a1 . It is easy to confirm that the
deviation correspondence based on this deviation does not add back the
equilibrium strategy for either player, because once the players realize that
t1 might deviate and play m1 , the Receiver would prefer to respond to m1

with the strategy a1 no matter what else he believed; the expansion process
does not add back the original equilibrium.

Our formulation captures what the players might rationally choose in
response if they come to believe the proposed deviation, and only the
proposed deviation, is likely. The specific argument by Joseph Stiglitz

Figure 3

10 RABIN AND SOBEL
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discussed by Cho and Kreps was somewhat different: He posited that the
Receiver should not necessarily come to believe that a deviation by only
type t1 is likely, because if type t2 came to believe that the Receiver would
react differently on the equilibrium path because of a predicted deviation
by t1 , then she too would be tempted by the deviation; if the Receiver for
some reason came to believe such a deviation by t2 was more likely than
one by t1 , then he might reasonably respond to the deviation by a2 rather
than a1 . Thus, the original equilibrium might be played.

Stiglitz's original critique seems to be to propose that there is a larger set
of deviations, which, if deemed just as likely as the one Cho and Kreps
proposed, might lead the players back to their equilibrium strategies.
Because we first imagine that the players come to believe in the proposed
deviation and only then use our expansion process to make sure to include
all possible rational responses to a posited deviation, our approach leads
us more rarely to add back equilibrium strategies than if we used the
specific arguments originally proposed by Stiglitz. We use the term Stiglitz
critique for our approach because it leads us to conclude, as do the original
arguments, that sometimes rational players might respond to a contem-
plated deviation by playing the original equilibrium.10

One could in any event modify our general approach to incorporate the
alternative theory of deviations by including additional strategies in the
deviation sets (Q1 , Q2) and applying our expansion process to these
modified deviation sets.

Whether one applies Stiglitz's Stiglitz critique or Rabin and Sobel's
Stiglitz critique, our framework could be used to define a ``Stiglitz-proof''
version of the intuitive criterion or any other signaling refinement. Trans-
lating into our framework, the modified approach could be to eliminate an
equilibrium # only if # � D(#). Of course, whenever D(#){[#], one might
still say that an equilibrium # is unstable in that players might deviate. In
a sense, some of the debate over the merits of signaling refinements and the
Stiglitz critique may be about which of these two notions of ``stability'' is
appropriate��should we, as is currently done, build our solution concepts
around equilibria from which surely there will be no deviation (i.e., where

11DEVIATIONS, DYNAMICS, AND REFINEMENTS

10 We note that even Stiglitz's original formulation does not argue against throwing out the
unituitive equilibrium in Fig. 2. In that example, changes in the Receiver's behavior on the
equilibrium path make the equilibrium path even more attractive for the non-deviating type,
so that she will not contaminate the proposed deviation by the other type.

It is straightforward to show that in signaling games with two types of Sender, two signals,
and two responses, if only pure strategies are used on the equilibrium path of every equi-
librium, as in the Beer�Quiche example, then no equilibrium that fails the intuitive criterion
will be an element of its deviation correspondence. This fact does not apply to Fig. 1, because
the equilibrium Y involves some mixing. It is also straightforward to demonstrate that the
result does not extend beyond two-type, two-signal, two-action games.
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D(#)=[#]), or should be build our solution concepts based on equilibria
from which there might not be deviations (i.e., where # # D(#))? In the next
section, we argue that neither view takes a sufficiently dynamic view of
deviations.

3. Dynamics (Sort of)

We now consider the dynamic implications for equilibrium selection of
our framework. Of course, since deviations might not lead immediately to
alternative equilibria, we would expect to observe non-equilibrium play
frequently. We will discuss a possible non-equilibrium version of our
framework in Section 5; here we focus exclusively on equilibrium outcomes.
Partly we justify this by supposing that the rate of re-equilibration follow-
ing a deviation is fast relative to the frequency of deviations. But we are
also simply carrying over the equilibrium assumption from the solution
concepts we are critiquing and modifying.

We define the set of Nash-equilibrium outcomes contained in a deviation
correspondence D( } ) as ND( } ). We assume that each set ND( } ) is finite.11

While often there can be an infinite number of equilibria supporting any
one equilibrium outcome, we shall sometimes abuse terminology and use
``equilibrium'' to mean an equilibrium outcome.

We suppose that after a deviation from an equilibrium # play eventually
equilibrates on some outcome #$ # ND(#). A trivial class of equilibria that
might persist are those that are stable in the sense that they are not suscep-
tible at all to deviations. It is of course stable equilibria that have been
emphasized in the refinement literature. Unless one wants to make
arguments that such equilibria will not occur to begin with, a solution con-
cept should clearly contain all equilibria that are not susceptible to devia-
tions. Formally, an equilibrium is stable when Qi=< for each i. Because
deviation correspondences are constructed using expansions, this is equiv-
alent to the following definition:

Definition 2. An equilibrium # is stable if D(#)=[#].

Our framework does not not always rule out other equilibria. The
simplest type of equilibrium ignored by the refinement literature that can
persist in the long run is a quasi-stable equilibrium:

Definition 3. An equilibrium is quasi-stable if ND(#)=[#].

12 RABIN AND SOBEL

11 This assumption will be valid for generic signaling games (see [7, page 190, Fact 2]).
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If a deviation from a quasi-stable equilibrium occurs, play must return
to the original equilibrium when it next equilibrates.12 Especially if we are
unwilling to abandon exclusive focus on equilibrium outcomes, ruling out
quasi-stable equilibria is inappropriate.

More generally, what can we say about the set of equilibria that might
occur in the long run? To motivate our answer, we return again to the
game in Fig. 1. While the partially separating equilibrium, Y, is stable with
respect to the intuitive criterion, the pooling equilibrium X is not. For-
mally, we argued earlier that ND(Y)=[Y] and ND(X)=[X, Y]. The
equilibrium Y clearly might occur repeatedly. Because X # ND(X), arguably
the equilibrium X might occur repeatedly as well. But because it is also true
that Y # ND(X), a deviation from X ``might'' occur. And, because Y is
stable, if it occurs, the equilibrium X will never again occur.

Based on the assumption that at any play of the game there might be a
deviation from X to Y, and that once there is, play will never return to X,
we propose to rule out X as a long-run equilibrium. More generally, let
B1(#)=ND(#), Bn(#)=[#"|#" # ND(#$) for some #$ # Bn&1(#)] and B*(#)=
�n Bn(#). B*(#) consists of those equilibria that can arise following a
sequence of deviations from #. If #$ # ND(#) but # � B*(#$), then once #$
occurs the equilibrium # will never occur again. Ruling out the equilibrium
# will be justified if we make the following assumptions about the dynamics
of repeated play. Suppose that the number of periods it takes for an equi-
librium to occur following a deviation is finite; further suppose that there
exists some p>0 such that whenever # occurs, any equilibrium in ND(#)
occurs in the next equilibrated period with probability at least p.13 We call
a dynamic process that satisfies these assumptions nontrivial. When the
dynamic is nontrivial, following the equilibrium # each equilibrium in B*(#),
and only these equilibria, will arise with positive probability. It follows that
as the number of periods approaches infinity #$ # ND(#) and # � B*(#$)
imply that the probability of seeing the equilibrium # converges to zero.

Under these conditions, the set of equilibria that appear with positive
probability in the long run are described in the following definition.14

Definition 4. A set of Nash equilibria G is an absorbing set if
ND(#)�Gfor all # # G. The set G is recurrent if it is an absorbing set and
contains no proper, non-empty subsets that are absorbing sets. An equi-
librium # is recurrent if it is contained in some recurrent set.

13DEVIATIONS, DYNAMICS, AND REFINEMENTS

12 The clearest examples of quasi-stable equilibria are when there is a unique equilibrium in
a game, and a theory of deviations says that it is not stable. For such an example, see Farrell
[10].

13 It is here that we use our assumption that the number of equilibrium outcomes is finite.
We can relax this assumption. (See [13].)

14 [8], [12], and [13] investigate related ideas.
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Since the set of all equilibria of the game is itself an absorbing set, and
since any intersection of absorbing sets is also an absorbing set, we know
that recurrent sets exist.

It is clear from Definition 4 that if play settles on an equilibrium in a
recurrent set, then no equilibrium outside of the recurrent set will be obser-
ved in the future. Moreover, for each #, B*(#) is an absorbing set. It follows
that B*(#) contains a recurrent set for each #. Once this happens, play will
never return to # unless # itself is an element of a recurrent set. Hence, the
probability that a non-recurrent equilibrium will be played infinitely often is
zero. For this reason, we conclude that the definition of recurrence fully cap-
tures the set of equilibria that will persist in the long run.15 To summarize:

Proposition 1. For all games, there exist recurrent equilibria. If the
dynamic is nontrivial, an equilibrium occurs infinitely often with positive
probability if and only if it is recurrent.

Proposition 1 guarantees existence of recurrent equilibria with respect to
even those theories of deviations that do not guarantee the existence of
stable equilibria. We study such a theory of deviations in the next section.
We conclude this section by applying our framework to the intuitive
criterion. Proposition 2 demonstrates that the recurrent equilibria with
respect to the intuitive deviation correspondence coincide with those that
are stable according to the intuitive deviation correspondence (i.e., the set
of equilibria that pass the intuitive criterion). In order to prove Proposition
2, we use the following simple result:

Lemma 1. If there exists a quasi-stable equilibrium #$ # ND(#) such that
#${#, then # is not recurrent.

Lemma 1 follows directly from the definitions of quasi-stability and
recurrence. Since any quasi-stable equilibrium is trivially recurrent, Lemma

14 RABIN AND SOBEL

15 As we discuss in the text, our definition of recurrence sometimes rules out equilibria that
``could'' occur infinitely often, but which are very unlikely to appear in the very long run if
there are lower bounds on the probability of deviations to all equilibria in a deviation corre-
spondence. If either we wish to consider the not-so-long long run, or if we do not want to
assume such a lower bound on deviation probabilities, a weaker definition of recurrent equi-
libria could be defined iteratively as follows. Let E(O) be the set of all Nash equilibria in a
game. For n>0, let E(n)#�# Bn(#). E(1) is the set of equilibria that are in the deviation
correspondence of some other equilibrium. If an equilibrium is not in E(1), it clearly cannot
persist in the long run, because it is itself not robust to deviations, and would never be
deviated to by another equilibrium. Likewise, any equilibrium not contained in E(n) for some
n will not persist in the long run. Any equilibrium which is contained in E(n) for all n, on the
other hand, might occur infinitely often. Under this definition, the equilibrium X in Fig. 1
would be deemed recurrent because it is contained in its own deviation correspondence.
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1 means that if the deviation correspondence from every equilibrium con-
tains a quasi-stable equilibrium, then an equilibrium is recurrent if and
only if it is quasi-stable. Indeed, this case applies to the intuitive deviation
correspondence:

Proposition 2. The set of equilibria that are recurrent with respect to the
intuitive deviation correspondence are precisely the set of stable equilibria,
which in turn is precisely the set of equilibria that passes the intuitive
criterion.

Proof. Applying Lemma 1, we need only show that, for all equilibria #,
there exists #$ surviving the intuitive criterion such that #$ # ND(#). This
result holds trivially if # survives the intuitive criterion. Suppose that it does
not hold for some # failing the intuitive criterion. Let (71* , 72*) be the
expansion of #. Now consider the hypothetical game in which the payoffs
are the same as the game being examined, but in which only the messages
and actions in (M, Q*) are available to the players, where Q* is the set of
actions played with positive probability (on or off the equilibrium path) by
some strategy in 72*. We know by the Cho and Kreps existence theorem
that, with respect to this hypothetical game, there exists _ # (71* , 72*) that
passes the intuitive criterion.

To complete our proof, we claim that if an equilibrium survives the
intuitive criterion in the hypothetical game, then it also survives the
intuitive criterion in the actual game. Suppose not. Then there exists
an unsent message, m*, of the sort invoked in the intuitive criterion. To
complete the proof we will show that the best responses to m* must be
contained in Q*, which contradicts the assumption that _ survives the
intuitive criterion in the hypothetical game. When _ fails the intuitive
criterion, the definition of deviation sets requires that a strategy in
which one type of Sender sends m* must be an element of Q1 . Moreover,
all best responses to this strategy must be in Q2 . Hence, since all stra-
tegies contained in Q must also be in (71* , 72*), any deviation by the
Sender that causes an equilibrium to fail the intuitive criterion, as well as
a best response to that deviation, must be available in the hypothetical
game.

The proof of Proposition 2 is direct. We show that for any equilibrium,
#, D(#) contains an equilibrium that passes the intuitive criterion. The
result then follows from Lemma 1.

Proposition 2 defends the intuitive criterion against the Stiglitz criti-
que in a dynamic framework. It implies that any equilibrium that fails
the intuitive criterion will not be played infinitely often with positive pro-
bability.

15DEVIATIONS, DYNAMICS, AND REFINEMENTS
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4. Cheap Talk and Recurrent Mops

A major point of our framework is that there may be unstable equilibria
that are nonetheless recurrent. Yet the deviation correspondence based on
the intuitive criterion did not reflect this point; Proposition 2 indicated that
only stable equilibria were recurrent. In this section, we present in the con-
text of cheap-talk games a deviation correspondence where some unstable
equilibria are recurrent.

Cheap-talk games are signaling games with the property that players'
payoffs do not depend directly on the message sent by the Sender, so that
the payoffs are representable by the utility functions u1(t, a) and u2(t, a).
We shall construct deviation correspondences based on deviations that are
weakly credible in the sense of Matthews et al. [17]. They partition the
Sender's types into disjoint groups, where one group sticks with the equi-
librium and each other group sends a different message. They require that
each type t gets a higher payoff from the Receiver's optimal response to t's
group than what t could get if imitated another group's message. Formally:

Definition 5. For all t # T, let u1*(t) be the payoffs type t gets in equi-
librium #. Call a subset J of T a self-signaling family relative to # if there
exists a partition of J into Ji , i=1, ..., j, and actions ai* such that:

(i); ai* # arg maxa # S2
�t # Ji u2(t, a) ?(t) for i=1, ..., j;

(ii); u1(t, ak*)>max[u1*(t), u1(t, ai*)] for t # Jk and i{k,

(iii); u1(t, ai*)<u1*(t) for all i if t � J.

While inspired by Matthews et al. [17], Definition 5 incorporates a
more liberal notion of allowable deviations than do Matthews et al.16

While we find Matthews et al.'s restrictions compelling if interpreted as a
theory of which deviations necessarily occur in a given play of the game,
our perspective leads us to consider the broader class of deviations that
may occur in the long run.

We must modify the definition of deviation correspondences to take
into account the special nature of cheap-talk games and the deviation
that Matthews et al. permit. We follow Farrell [10] in assuming that
in every equilibrium, and for every subset of types X�T, there exists

16 RABIN AND SOBEL

16 Specifically, when there are multiple statements that might be believed, or if the Receiver
has more than one optimal response to given beliefs, Matthews et al. not assume that he will
choose the action that the relevant types of Sender prefer. We allow a deviation if some beliefs,
and optimal response by the Receiver benefits the relevant types. See [17] and [22] for a dis-
cussion of this issue. We make a further restriction for simplicity that does not substantively
change our results: While Matthews et al. present a definition valid for mixed-strategy devia-
tions, we only allow for pure-strategy deviations.
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a ``neologism''��an unused message m(X) that means ``I am some type
t # X.'' We assume that there are a finite number of messages used in equi-
librium and a finite set of potential neologisms, [m(L)]L�T . For a given
equilibrium #, Definition 6 can be used to construct sets (Q1 , Q2). For
every self-signaling family of types J, partition [J1 , ..., JN] and best respon-
ses ai* to Ji meeting the criteria of Definition 6, let _2 be the strategy that
responds to the neologism m(Ji) by action ai* and to every other message
according-to the equilibrium strategy. Then let Q2 be the set of all such _2

and let Q1 be the set of optimal responses to beliefs over the set Q2 .
Once the set Q has been specified, we create the deviation corre-

spondence by iteratively adding strong best responses, where the Sender's
strategies are restricted to sending those messages that are used with
positive probability in either the original equilibrium or in Q1 .17

We call the solution concept created by applying our framework to this
deviation correspondence recurrent mop. The game in Fig. 4 illustrates
some implications of recurrent mop, and how it differs from existing solu-
tion concepts.

Assuming that the four types of Sender are equally likely, there is a pool-
ing equilibrium where all types of the Sender send the same messages and
the Receiver always takes action G. The pooling outcome is not plausible
according to the arguments of Matthews et al.: types t1 and t2 could
improve their payoffs by jointly deviating with the message ``I am either t1

or t2 ,'' leading to action C, and types t3 and t4 could jointly deviate by
sending the message ``I am either t3 or t4 ,'' leading to action F. For
that reason, the pooling equilibrium is not stable with respect to the mop

17DEVIATIONS, DYNAMICS, AND REFINEMENTS

17 This restriction is necessitated by the structure of cheap-talk games, and is made consis-
tent with rationality by assuming that the Receiver interprets any message as if it were one
of the messages sent in the original equilibrium or in the set Q1 .
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deviation correspondence. Moreover, the deviation correspondence will
contain the only other sequential equilibrium outcome of the game.

This other equilibrium is a partially pooling outcome in which types t1

and t2 pool and induce the action C, while types t3 and t4 pool and induce
action F. This equilibrium is also not stable with respect to the mop devia-
tion correspondence. It is susceptible, for instance, to type t1 deviating by
self-signaling herself, inducing the action A rather than C. Likewise, type t3

is tempted to self-signal herself to induce the action D.
Matthews et al.'s original solution concept is empty in this game. But the

partially pooling equilibrium is a recurrent mop, because it is quasi-stable
with respect to the mop deviation correspondence. That is, a deviation
from the partially pooling equilibrium will never lead players back to the
pooling equilibrium. Deviations from the partially pooling equilibrium
involve the different types trying to separate themselves further, but noth-
ing in the logic of responding to these deviations suggests that types
[t1 , t2] would wish to pool with types [t3 , t4].18

We feel that recurrent mop makes the right prediction in this game��the
subsets of types [t1 , t2] and [t3 , t4] will separate from each other. By
using recurrence as the standard for prediction-making, we formulate a
solution concept that captures that fact. By contrast, the non-existence of
Matthews et al.'s announcement-proof equilibrium leaves the analyst
agnostic about the possible outcomes in this game. We also note that
the solution concept neologism-proof equilibrium developed by Farrell
[10] predicts precisely the opposite conclusion��that only the pooling

18 RABIN AND SOBEL

18 Formally, consider the partially pooling equilibrium in which types t1 and t2 send the
message m12 and types t3 and t4 send the message m34 . The mop deviation set Q2 will include
responding to the message m(t1) with action A, and message m(t3) with action D, and res-
ponding to m12 and m34 with actions C and F. The set Q1 will therefore contain only the
strategy where t1 sends m(t1), t2 sends m12 , t3 sends m(t3), and t4 sends m34 . (Note here why
it is important that we not include ``weak'' best responses during iteration; doing so would
allow, for instance, the Receiver to respond to message m(t1) with action D because he
thought the message would be sent with probability zero. Similarly, the Receiver could
respond to previously unsent messages with D. That is why we do not allow the Sender to
use messages that were not used with positive probability in either the original equilibrium or
Q1 .) In the iterative process, the Receiver would now add in strategies where he responds to
m12 with B instead of C, and to m34 with E instead of F; this response is optimal because he
knows that t1 and t3 are not sending their equilibrium messages. Given this, we would add
to the Sender's strategies the possibility that t2 would in fact send the message m(t1) and t4

would send m(t3). This, in turn, means that the Receiver might respond to m(t1) and m(t3)
with actions C and F instead of B and E. Thus, the deviation correspondence will consist of
strategies where types t1 and t2 send some combination of messages m(t3) and m34 . In par-
ticular, the deviation correspondence contains the original partially pooling equilibrium (using
either the original messages, or the neologisms). We do not add the fully pooling equilibrium,
and hence (since there are no other equilibrium outcomes) the partially pooling equilibrium
is quasi-stable.
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equilibrium will occur. In our opinion, this is because Farrell is overly con-
servative in determining what constitutes credible deviations from an equi-
librium, but is overly liberal in rejecting the partially pooling equilibrium
because it is not stable.19

So far, all our examples of recurrent equilibria have been quasi-stable. In
our final example, we illustrate that non-quasi-stable equilibria can be
recurrent. Consider the game in Fig. 5.20

There are three equilibrium outcomes that involve partial pooling (for
example, type t1 induces the action D, while the other two types induce A),
a separating equilibrium, and a pooling equilibrium in which the Receiver
takes action F. It is straightforward to check that all equilibria permit a
mop deviation. Starting from the outcome in which the Receiver only plays
actions A and D with positive probability, there is a deviation that induces
C. The deviation theory must then include the action F (as the Receiver
allows the possibility that typed t1 and t2 will induce C and type t3 will
send another message). Consequently, the deviation correspondence must
contain the outcome in which types t1 and t2 separate from the other type.
In this way, one can verify that any minimal set for the game in Fig. 5 must

19DEVIATIONS, DYNAMICS, AND REFINEMENTS

19 While our framework can be used to guarantee existence, Fig. 4 illustrates why we don't
feel it should be applied only when there is non-existence using other solution concepts. There
are instances where existing refinements clearly are over-selective permitting equilibria even
when existence is not a problem. In Fig. 4, for instance, a recurrent version of Farrell's [10]
solution concept would conclude that both equilibria are possible, whereas Farrell allows only
the fully pooling equilibrium. While Farrell identifies a sense in which the partially pooling
equilibrium is prone to deviations, the deviation that he proposes involves the players separat-
ing even more��nothing in the logic of his notion of stability suggests that the players would
deviate back to the pooling equilibrium. Even applying his own theory of deviations in this
game, we feel Farrell's solution concept, by including only the pooling equilibrium, is too
selective.

20 This game is modeled after an example in [19], which is itself a variation of a game
introduced by [18].
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contain all three of the semi-pooling equilibria. While none of the equilibria
is quasi-stable in this game, all four non-pooling equilibria are recurrent.
Furthermore, one can show that the deviation correspondences from any of
these equilibria do not contain the pooling equilibrium and that the devia-
tion correspondence from the pooling equilibrium includes the other equi-
libria but not the equilibrium itself.21

We have no broad characterization theorem for recurrent mop, but we
conclude with a result showing that, in a restrictive class of games,
recurrent mop can guarantee a minimal degree of communication that
other solution concepts do not. In particular, we can show that all
recurrent mops involve meaningful communication in games of partial
common interests, which are games where the Sender has a compelling
interest to share with the Receiver some, but not necessarily all, of her
private information.22

To define such games formally, we need to develop some initial defini-
tions. For any non-empty subset of types L, let A*(L)#[arg max� t # L

u2(t, a) +(t) | + is a probability distribution supported on L] and
A*(L, ?)#[arg max �t # L u2(t, a) ?(t)]. The set A*(L) contains all of the
responses that an optimizing Receiver would consider assuming that the
Sender's type is an element of L, while A*(L, ?) requires the Receiver to
derive the relative probabilities of the types in L from the prior ?. Also let
u
�
(t; L)#min[u1(t, a) : a # A*(L)] denote the lowest payoff that type t

would obtain if the Receiver believed that her type was in L, and let u p
1(t)

denote the maximum payoff that type t can obtain in a completely pooling
equilibrium. (For cheap-talk games with generic payoffs, there will only be
one pooling equilibrium payoff.)

Definition 6. A cheap-talk game has partial common interests if there
exists a partition J1 , ..., Jj of T such that:

20 RABIN AND SOBEL

21 Formally, consider the pooling equilibrium, where all types send the message m123 , and
the Receiver responds with F. The deviations from this equilibrium are for t1 and t2 to send
m12 , t1 and t3 to send m13 , and t2 and t3 to send m23 , and for the Receiver to respond to these
with actions C, B, and A, respectively. Given the Receiver's responses, type t1 strictly prefers
message m13 , t2 strictly prefers m12 , and t3 strictly prefers m23 , so that the expansion includes
stragegies where the Receiver responds to m12 with C or E, to m13 with B or D, and to m23

with A or F. Given such stratgies for the Receiver, t1 might send either m13 or m23 . Given
these strategies, the Receiver's stratgies would be to respond to m12 with C, E, or D, to m13

with B, D, or F, and to m23 with A, F, or E. At this point no further strategies would be added
back. The set of strategies does not involve the pooling equilibrium, because for all beliefs by
the Sender, both t1 and t2 will strictly prefer sending m12 to sending m123 .

22 An example of a game of partial common interests is Example 5 of [22], which Rabin
gives as an example where, intuitively, one would want to guarantee meaningful communica-
tion, but where the solution concept he develops does not so. Propertion 3 shows that
recurrent mop does guarantee communication in that and related examples.
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(i) u
� 1(ti ; Ji)>max[u1(ti , ak) : ak # A*(Jk)]for all ti # Ji{Jk ;

(ii) for each i, there exists ai # A*(Ji , ?) such that u1(ti , ai)>u P
1 (ti)

for all ti # Ji ; and

(iii) if L & Jk {< for at least two k, then for each a # A*(L) there
exists an i and ti # L & Ji such that u1(ti ; Ji)>u1(ti , a).

Definition 6 is meant to capture the intuition that it is in the interest of
both players for types in sets Ji to reveal at least that they are in sets Ji

Condition (i) is a strong condition that guarantees that types in Ji prefer
to identify themselves as members of Ji rather than as members of any
other element of the partition. Condition (ii) states that each type would
prefer to identify herself as a member of the partition that contains her type
rather than be pooled.23 Condition (iii) requires that, relative to what is
available by being treated as a member of the set it belongs to, at least one
type loses when members of different elements of the partition pool. We use
this condition to show that once the population arrives at a strategy that
reveals the partition J, it will never move to a less informative strategy
profile. This condition follows from (i) whenever A=� j

i=1 BR2(Ji). This
fact in turn allows us to establish the following result:

Proposition 3. No pooling equilibrium is a recurrent mop in a game with
partial common interests.

Proof. We prove the proposition in two steps. First we show that in a
game with partial common interests the deviation correspondence begin-
ning from a pooling equilibrium must contain a partially revealing equi-
librium in which types in different sets Ji send different messages. Second
we show that the deviation correspondence that starts from an equilibrium
in which types in different Ji send different messages contains only equi-
libria with the same property. Formally, let [Ji], i=1, ..., j be the partition
in Definition 8, let #P be a pooling equilibrium and let B=[(#2 , #1)|(#2 , #1)
is a pure-strategy Nash equilibrium and #1(m, ti){#1(m, tk) whenever
ti # Ji and tk # Jk for i{k]. Step 1 demonstrates that ND(#P) & B{<,
while Step 2 demonstrates that ND(B)�B. It follows from the defi-
nitions that there is no recurrent mop containing #P. It follows from
Definition 8 that B is non-empty (it must contain a partially pooling out-
come in which types in the same Ji send the same message, but separate
from types in other Ji); to support the equilibrium, select actions ai #
A*(Ji , ?) for i=1, ..., j. Specify that the Receiver responds to each message
with one of these actions and that for each i there exists a message to
which the Receiver takes the action ai . It is apparent that the deviation

21DEVIATIONS, DYNAMICS, AND REFINEMENTS

23 Conditions (i) and (ii) therefore together guarantee that J is a self-signaling family of sets
relative to any pooling equilibrium.
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correspondence starting from #P contains this outcome: Q2 and Q1 add the
appropriate equilibrium strategies.

It remains to show that ND(B)�B. Start with any equilibrium in B. It
follows from (iii) of Definition 6 that any self-signaling family that exists
relative to an equilibrium in B must be a subpartition of [Ji]. It follows
from (i) and the full-support assumption on conjectures that the expansion
process only admits actions contained in A*(L) for L�Ji for some i.
Therefore, if type ti # Ji sends message mi with positive probability under
# # B, then every strategy for the Receiver that is in D(#) must respond to
mi with an element of A*(Ji). It follows from (iii) that no element of ND(#)
can pool types from different elements of the partition. This completes the
proof.

Proposition 3 states that in games with partial common interests, players
will not babble uninformatively forever. Blume et al. [5] obtain a related
result in their study of evolutionary stability in cheap-talk games, but to
our knowledge, the result holds for no other cheap-talk solution concept.24

Along with the examples of this section, Proposition 3 demonstrates that
we can construct solution concepts within our framework that are both
more powerful and more realistic than existing concepts.

5. Discussion

We conclude by discussing two further areas of game-theoretic research
to which the general principles outlined in this paper could be applied.

Bernheim et al. [4] consider the frequent supposition in game theory
that, in communication-rich environments, only Pareto-efficient equilibria
will be played. They follow [1] in pointing out a problem with this
hypothesis in multi-person games: A Pareto-efficient Nash equilibrium may
be susceptible to a coalition of players renegotiating their behavior so as to
yield them all higher payoffs, given that other players continue to play their
equilibrium strategies. While this will leave some other players worse off,
such renegotiation may be likely if there is opportunity for private com-
munication.

To deal with this issue, Aumann [1] proposed the solution concept of
strong Nash equilibrium, which rules out all Nash equilibria that are
susceptible to any such deviating coalition. Bernheim et al. argue that
strong Nash equilibrium rules out too many equilibria, because it ap-
plies no test as to whether the outcome negotiated by the deviating coali-
tion is itself susceptible to renegotiation. They define a solution concept,

22 RABIN AND SOBEL

24 Sanchirico [27] suggests that a related result might be possible in his dynamic learning
model.
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coalition-proof Nash equilibrium, in which equilibria are ruled out only if
there exists some beneficial coalitional renegotiation that is itself free from
further coalitional renegotiation.

Our model does not directly apply to this issue, partly because we have
not formalized it for multi-player games, but mostly because it is hard to
conceptualize common knowledge, etc., without an explicit model of how
players communicate. Yet our framework suggests that both the strong
Nash equilibrium and the coalition-proof Nash equilibrium may be mis-
leading in focusing too much on whether an equilibrium is ``stable,'' rather
on whether it is ``recurrent.''

While Bernheim et al. may be correct in suggesting that many of the
renegotiations allowed by strong Nash equilibrium need not lead to stable
behavior, we question their inference that such renegotiations are unlikely.
In our framework, we would instead allow all such renegotiations and con-
sider their long-run implications. Doing so, we could obtain an equilibrium
concept that incorporates intuitive notions of when equilibria are subject
to renegotiation but, unlike Aumann and Bernheim et al. guarantees exist-
ence.25

While we have focused on equilibrium outcomes throughout this paper,
the equilibrium hypothesis itself has come under attack in recent years (see,
e.g., [3] and [20]). We wish to conclude by discussing how our framework
could be useful both in exploring the foundations of equilibrium analysis
and in developing useful non-equilibrium theories.

Suppose that we defined deviation correspondences with respect to non-
equilibrium outcomes as well as equilibrium outcomes, and said that a set
of outcomes O is recurrent if it is minimal with respect to the property
D(#)�O for all # # O. Recurrent outcomes would be those outcomes that
are contained in some recurrent set. While this definition maintains the
hypothesis that play eventually converges to a recurrent set, it no longer
leads us automatically to focus only on equilibrium outcomes.

Of course, because stable equilibria are themselves recurrent sets, they
would still be natural candidates as outcomes upon which play will settle.
In fact, if it turned out that every deviation correspondence (even those
generated from non-equilibrium outcomes) constructed from the intuitive
criterion contains a stable equilibrium, then our framework would suggest
that only stable equilibria will occur in the long run, even if we do not a
priori focus only on equilibria. Thus, Cho and Kreps's theory of deviations
would provide a (partial) justification not only for selecting their equilibria
among all equilibria, but also among all outcomes.

As we showed in Section 4, however, there are games where no equi-
librium is stable according to the mop deviation correspondence. Thus, the

23DEVIATIONS, DYNAMICS, AND REFINEMENTS

25 Chwe [8] suggests a related approach.
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implied solution concept ``recurrent mop rationalizability'' would include
non-equilibrium as well as equilibrium outcomes. It would nonetheless
have some predictive power. In Example 3, for instance, although it would
not uniquely predict the partially pooling equilibrium, recurrent mop
rationalizability would include only outcomes in which there is partial
separation of the differing types.

The above conjectures all suggest that a variant of our framework can be
used not only to investigate which equilibria will occur in the long run, as
we have done in this paper, but also to investigate whether play will con-
verge to equilibrium and, if play does not necessarily converge, which non-
equilibrium outcomes might recur infinitely often.
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